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Transformations Groups of the Andersson-Perlman Cone

symmetric cone Q of a Euchdean Jordan algebra. We exhibit a subgroup
of the automorphism group of © which operates transitively on Q(K) and
show that Q(K) is a simply-connected submanifold of Q.

and M. D. Perlman for real symmetric matrices [AP]. All mathematlcal results
in [AP] were generalized in [MN] to the setting of Euclidean Jordan algebras,

employing Peirce decompositions and Frobenius transformations.

In this note we show that one can also generalize the results of [AP] on
transitive groups to the framework of Andersson-Perlman cones in Euclidean
Jordan algebras. Our interest in these groups is explained in the following

remarks. An Andersson-Periman cone is a subcone 2(K) of the cone €} of an
Euclidean Jordan algebra V' defined in terms of a complete orthogonal system
& = (e, ,€n) of idempotents of V' and a ring K of subsets of I = {1, ... ,n},
see 6.. If Q; denotes the symmetric cone of the Peirce-1-space V (e;, 1) of e; then
always
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and both upper and lower bounds can be obtained by varying K. Thus, one may
consider Q(K) as an interpolation between Q and Q1 @ Qy @ -+ & Q,,. In the

Research partially supported by a research grant from NS

TQAN NQAG_RO2o
ID0IN UY4y—0dss

ﬁ



204 NEHER

(K nterpolates various Well known subgroups of the automorphrsm group
G(Q2) = {g € GL(V);g¢ Q = Q} of Q. In general, T is a semidirect product

Mg ={g€G(Q);92 =%} =PQLO®0o - &) K¢ (1)

where Kg = {f € AutV; fe; = ¢; for 1 <i < n}. Observe that (1) is the Cartan

and both bounds are attained. For example, if Q(K) = Q and 5 is a Jordan frame
then N is the s0- called strlct trlangular subgroup [FK]
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Our basic reference for Jordan algebras is [FK]. Some of the results and notations
used are summarized below.

Throughout, V' denotes a Euclidean Jordan algebra with identity ele-
ment e, left multlphcatlon L( ) defined by L( )v = uv(u vE V) and quadra,tlc

for (u,v,w E V). The Jordan triple system left multiplication L(u,v) (denoted

In particular, any Lie subgroup of a Lie group is closed and has the induced
topology. Closed subgroups of a Lie group are always Lie subgroups in a unique

IRTSNT

We denote the symmetric cone of V' by © = Q(V). This is an open

YO

subgroup of GLR( ). Its 1dent1ty Component Wlll be denoted by G Moreover
G () is an open subgroup of the structure group of V defined as the group of
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9L(u,v)g™" = L(gu, 9"~ 'v) (1)
for all u,v eV ([FK; II1.5 and VIIIL.2]). The Lie algebra g(V') of the structure

u,v) — Li{u, X*v) (2)

([FK; VIIL.2.6]). The group of automorphlsms of V will be denoted AutV'. For
any g € G(2) one knows ([FK; IIL.5] and [FK; VIII.2.4]):

ge=e & g9 =1d & ge AutV (3)

by V(c,i) = {v € Ve = = iv},i € {0,5,1}. The Pelrce decomp081t10n of an
arbltrary y € V is written in the form y = y1 + y12 + yo Where yZ € V(c 7,)

¢
for 1 = u 1 and Y12

The adjoint of the Frobenius transformation operates as follows [MN; 2.7]:

Te(2)" = (21 4 2¢(2212) + P(2)x0) ® (212 + 2220) © 0. (5)

o

Throughout, we ﬁx a complete orthogonal system &=

(% R R I/
= b5 ] !
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For » & | we let
— Y7 X7 ~ 1.1 . M
It S = Vi Weo annravia
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Via % V11 X V22 =TcM, the tangent space of M at ¢, we have
TeF(uq,v1,v2) = v1 @ 2(u1yr + z1v1) @ P(z1)v1 + {21 y1 w1} + va.

Hence, if T¢ F(u1,v1,v2) = 0 we obtain v; = 0, then u; = 0 because 4y1_1(y1u1)

C U1 = U = u1. Dhut i

w = i bv mduction. =

Lemma 4. (a) For zj; € Vij,i # j, and Ty € Viy the Frobenius transfor-
mation T;(z;j) operates as follows

(b) For z;; € Vij and zi € Vi we have the following commutation formulas:

7i(2ij)Te(21) = Te(2m) Ti(2i5) @ € {4, k, 1} and k & {1,4,5}, (2)
73 (i) Tk (20i) = T (2hs + 2245 280) i (2i5) !{2 J, kf}! =3, (3)

using (1) and a case-by-case analys1s A lternatlve roof for

('D/—\

as follows. Since 7.(z) = exp(L(z,¢)) we have for any invertibl endomorphlsm
97i(2i)g ™" = exp(9L (2, ex)g ). (5)

7i(2i5) L(zre ex) 7 (215) = L(7i(zi5) 20, 7 (2i5) en)

.r .9 _/‘ BN

AN "III Ck “ROM,

(2 5). Thlsl together Wlth (5) for g= '(zm) 1mphes (2) and (3). One can prove
(4) in a similar fashion:

Tj(Zjl)_lTi(Zij)Tj(Zij) = exp L(Tj(—Zjl)Zij, Tj(Zjl)*ei) = exp L(Zij — QZiijl, 62‘).
| |
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Ag:P(QlEBQQEB"'EBQn)_eXpL(‘/ll@VQQ@ @Vnn)
Ke={fecAutV;fe;=e;,1 <i<n},

Theorem 5 7‘ (a) Mg = {9 € G(Q):gVi; = Vi for all i,5} = {g €

(b) Mg opemtes tmnez’tively on QﬁBQgé} —®Q, C Q. More precisely, Ag C Mg
and for every w € Q1 &Ny @ --- @y, there exists a unique a € Ag such that

l_l_/—llll‘l;

(c) K¢ is a subgroup of Mg satisfying

Ke = Mg NAutV = {m € M;mm* = Id}. (1)

and k: € Kg Thus we have a decomposztzon

Mg =Ac Ke~ (V11 ®Vas @+ ® V) X Kg  (diffeomorphism).  (2)

Eroof.
iadl it am = /A4 K o a3 19 Invortinioe wo nave i y.. — V.. 1 ~
|LUI iU 1Hov L LVL . [ SV 1Hov 10 iivuol ULUJ.\_/, \AAY) 1icuvv o l’l/v"l/"l/ _— Vﬂq . J_UJ. l/ -r— Il

and zw € Vm we have zij = {e; zij ej} and hence, by (2.2") and the Peirce

whence the first equality in a). The second is then immediate since the Peirce
spaces V;; are the joint eigenspaces of the commuting endomorphisms L(e;),1 <

(b) Let w=w1 @ Dw, € Y B---DQ,. Then, by the Peirce multiplication
rules, P(w)V;; = P(w;)Vi; C Vi and hence A C M. Let Jw = /w1 @& -+ Jw,
where \/471 € Q; is the umque square root in Q; of w;. Then P(\/_ ) € A and

ﬁ'l / ﬁ/ \ ﬁ/ :\

= 2 thus x = y by
Since gQ = Q for any
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Conversely, any f € K C AutV C G(Q) has the propérty fVii = fV(eZ, 1) -
(fez, 1) = Vn and thus hes in M ﬂ AutV. The equality Mg NAwtV = {m €

(d) For m € M there exists a unique a € A such that me = ae, ie., k =a"'m €
Aut VN M = K in view of (2.3) and c). (2) follows from the fact that exp is a

Hﬂm)v‘l{& n | l | Ler \T‘rl I/ I r\l_\ Tnu Sirmciare oroup I\T I/ R \]Ylll_\ \TT! |/ | o

Str(V)*, it is the group of real points of a reductive algebralc group, and G (Q) C

Str(V) is a finite covering of the (topological) identity component Str(V)C.

More generally, Str(V)e = {g € Str(V);mV;; = Vj; for all ¢, 5} is invariant

sense of [W; 2.1]. TheVdécfomposmon (2) is the Cartan decomposition of Mg in
the sense of [W; 2.1.8]. In particular, K¢ is a maximal compact subgroup of

2) If £ = {e} then (2) specializes to the well-known Cartan decom-
position G(©2) = P(Q) - AutV ([BK; XI Satz 4.5]). The corresponding de-
Composmon of the Lie algebra LleG(Q) = g(V) is the Cartan decomposition

—l||/|u_\||n1r-|/ H-}

Tords frame 1.« oayoary o

i Tici iOs WWrIiT P T RO O7T0iiTy 4 i iH R
vr“ u.\xuq, 1 { i5 all aufllail R;uup alil COLLC A S A A A A A L

VI.3, p. 112]. In this case a = L(V11 @ Vo @ -+ - ® V) is a maximal abelian
subspace of L(V') C g(V') so that Mg coincides With the group M of [W; 2.2.4].

5. Transformation groups of () defined by £ and a partial order.
We let < be a partial order on I = {1, ... ,n} which is weaker than the canonical

order: i <j=1<j. Weput i <j < i <j,i# j and define

ey = Zk<z ) (i) = Teqy

T/’ 177 iN T i T riz=<) — 7
g - vl PN b= B I A VA | K] — | | VAR . L VAT

. o

Theorem 7. (a) The grmm Ng - 1s a unipotent simply-connected Lie subgroup
' c
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Trans1t1v1t of < 1mphes that n = {n € End V,nV” - Vw< for alli < j} is a
nilpotent subalgebra of End V. Therefore, u=! = Id + 3,5, (—n)® shows that
N is closed under taking inverses. Similarly, N is also closed under products
and therefore a subgroup of G(€2). It is a closed subgroup of G (©) and therefore

[ VN TL £,.1 r F1Y 1, a4 AT o /rmy s
ihvorraim o~ 0N I+ fAallaara fravn (1) at \ \ rtnd {(TTh
. ]

a
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N Conversely, let w e N. By deﬁnrtlon there exist unique z; € V(H) and
vo € V(e1,0) such that ue; = e; + 21 + vg. Observe that u*x1; = 17 for all
x11 € Vi1 since (u —1d)V C ViT. Hence, by (2.4) and the Peirce multiplication
rules,

In view of (2.4) this shows

put c-e—el

-~ [P O A PR I o
i 1Caves iTi o1 TWe
1Caves v 113 Co 1] <

@V’ lies in the correspondlng subgroup N’ of G(Qc) defined W;th respect to
ENVie,1) = (e, ... ,e,) and the restriction of < to {2, ... ,n}. By induction,
a|V' = 15(22) -+ Tn_1(2n_1)|V’ for suitable z; € V<) (=1d if n = 2). Then

U= (12(22) - Tpo1(20-1)) M0 = Toa(=2p1) - T

T b 1 . 1 1
TR kis kis €k ; 01 ) s
R T R N 0
alltl HEHCe 101 <; © vV /5]
—r —r
I B SR I VR
k=i k=<1

This shows that

N":= {1y (2n) -+ T2y(22) 52 € Vigp, 1 <i <n} C N.
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By (4

Subgroup of

Ti(2ij) Ti(zk) there are two cases to be considered: if k =i or k ¢ {i, 7,1} then,
by Lemma 4.b, Ti(zij) Tk(zkl) = Tk(zk[)ﬂ'(zij) == T<l>(2kl)7'<j>(z7;j) € N/, while for
k = j we have, by Lemma 4.b and (4)

Conclude n' =n it is sufficient to prove that n’ is a subalgebra Indeed the Lie
. NI S8 N by osa! VA VACEIN AT/ AT Lo

k since z;; =0 unless i < j. This proves [L(z;,e;), L(w;,e;)] € L(VE<) ¢;).
(b) It follows from Theorem 5.a that M C T'. Moreover, M normalizes N since

[

Because M NN = {Id} it is clear that MN = {mn;m € M,ne€ N} C T is a
Semidirect product. To prove the other inclusion let t € T. We will construct
= VJJ for1<j<i

m m [y
¥ . {
7 Lga , g T U

et
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suitable ¥’ € B. Since z;; € Q; is invertible in Vj; , we can find 2/ € V<) such
that 2z2'w;; +x;< = 0. Thus, replacing t by 7;(2’)t, we can assume te; = x;; + b’

t'Uii S tP(ei)'Uii = P(tei)t*_l’uii c P(Jlu + b/)D
= P(zy)D + P(V')D + {x;; Db} = P(x;)D = Vi,

1 11 1 . 1 11 1 11 .1,"‘

Pelrce spaces Vj;. If such a g is also orthogonal the matrlx is in fact a diagonal
block matrix. It follows that ge; € V;; is an idempotent of the same rank as e;
and hence gez =ei- Thus T ﬂ Aut V C K and the other inclusion is obvious.

Remarks 8. 1) Since Ng¢ < is unipotent it does not contain any non-trivial

2) The map

V(1-<) X e X V(n_1-<) — Ng : (Zl, S Zn—l) — Tl(Zl) Tn_l(zn_l)

is in fact a diffeomorphism. Indeed, that the map is a bijection follows from (1)
and Proposmon 3 As a product of exponentlals it is obv10usly dlfferentlable

ne iSO a spec
case of a general re sult on canonlcal coordmates of solvable L1 e groups ([B §9.6,
)




To describe Q(IC) we need the follovvlng notatlons For any
} and x € V we put cx = ) pci ¢ and xx = P(ck)z, the

5 is the s SYIinetric cone or the Buclidean Jordan enra v (Ck, 1}

In particular, zx is invertible in V(ck,1). We denote by x) the inverse of
zg in V(ck,1) and view a:l_(l as an element of V. We note that in general
2 # P(eg)(z™). For K =@ weput cg =0 and 2" = 07! = 0. The AP

—1

-1

Txop +TrhL =Tk + L

for all K, L € K. Equivalent characterizations of Q(K) are given in [MN; Thm.
2.4].

The link with the results obtained so far in this paper is property (1)
below. To eXplaln it, we recall that @ 7é K e is jom irreducible if K is not a
/C K "C K} and (K ] K \ (K ) then K is join—irreducible if and only if [K [ ] #*
@ We denote by J ( ) the set of all Jom—lrredumble sets in IC One knows [AP;

QK)=Ne (U @--- Q) (1)

We transport the obvious manifold structure of V3= x ... x V=1<) 5w Qq x .- . x
{1, to §2(K) via Fi. By Proposition 3, {2(K) is then a simpiy-connected ciosed
submanifold of Q (with the induced topology). Also, Proposition 3 implies,

opemtzon the zsotmpy group of e zsomorphzsm
of manifolds




that M operates tran31t1vely on
= NMe. But this implies that both M and

_LLJ.\JJ.\./LUJ.\J\ £ UPpPULQUuUS uidi UIVULY

the 1sotropy group of e in T is K¢, and hence the

on Q(IC) By Theorem 6.c
m B, §1.7 Prop. 14]). [

isomorphism follows fro

—~ k
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