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ADMISSIBLE NILPOTENT ORBITS OF REAL AND p-ADIC SPLIT
EXCEPTIONAL LIE GROUPS

MONICA NEVINS

ABSTRACT. We determine the admissible nilpotent coadjoint orbits of real and p-adic split exceptional
Lie groups of types G2, Fi, Es and E7. We find that all Lusztig-Spaltenstein special orbits are
admissible. Moreover, there exist non-special admissible orbits, corresponding to “completely odd”
orbits in Lusztig’s special pieces.

1. INTRODUCTION

The orbit method, introduced by Kirillov [Ki], Moore [M1] and Duflo [Du], among many others,
conjectures a deep relationship between irreducible unitary representations of a Lie group G (defined
over a real or p-adic field) and the coadjoint orbits of G acting on the dual of its Lie algebra (g*).
As a result of much work by Lion-Perrin [LP], Auslander-Kostant [AK] and Vogan [V1, V2], the orbit
method has been realized for all but: the orbits of reductive Lie groups over p-adic fields; and nilpotent
orbits of reductive Lie groups over R. (For reductive groups, we can and do identify the adjoint and
coadjoint orbits of G in a natural way, which allows us in particular to define nilpotent orbits.)

In an effort to understand these remaining cases, Schwarz [Sch], Ohta [O] and Nevins [N1] determined
the admissible nilpotent orbits of most groups of classical type over the real and p-adic fields. It was
found that for all split groups (and some others), the set of admissible orbits coincides exactly with the
set of special orbits [L1, Sp]. In this context, we define an orbit of the real or p-adic group to be special
if the corresponding algebraic orbit is special.

Let %k denote either R or a p-adic field. In this paper, we consider the nilpotent orbits of k-points
of split simply connected Lie groups of exceptional types G2, Fy, Fg and E;. For each algebraic non-
even nilpotent orbit of these groups, we choose a k-rational representative such that the corresponding
rational orbit is “split” over k. We then determine the admissibility of that rational orbit. For the
groups of types G4, Fy and Eg, we go on to compute the number of other k-rational orbits of the given
algebraic orbit and determine their admissibility as well.

We prove the following theorem (summarized here from Sections 6 to 9).

Main Theorem. Let G denote the k-points of split simply connected Lie groups of exceptional types
Gs, Fy, Eg or E;. Then

(i) every special orbit gives rise to a split admissible orbit;
(ii) there are non-special admissible orbits, occuring as completely odd members of special pieces (see
Table 1)

Now assume that k = R or has odd residual characteristic. Then for the groups of type G2, Fy and Eg:

(iii) admissibility is independent of the choice of rational orbit within a given algebraic orbit, except
for the By-orbit of Fy.
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For an algebraic group G, one defines a special piece P; as a union of a unique special nilpotent
orbit O, and those nonspecial nilpotent orbits contained in its closure O,, but not in the closure of
any smaller special orbit. This defines a partition of the set of nilpotent orbits. In [L2], Lusztig gives
a parametrization of the nilpotent orbits in each special piece P; by the conjugacy classes of a finite
group he denotes A(OQ;). This group is (with few exceptions) equal to the equivariant fundamental
group 71 (0;) of the orbit.

The admissible orbits are exactly those orbits O, in a special piece P; for which (a) A(O;s) is a
symmetric group on n letters (n > 3) and (b) the conjugacy class identifying O, is identified by a
completely odd partition of n. This is automatic for the special orbits (whose corresponding conjugacy
class (the identity element) is represented by n ones. See Table 1 for a list of the nonspecial admissible
orbits and their parametrization within special pieces.

Group | Orbit O, A(Os) | Lusztig parameter
G2 ~A1 G2 (al) S3 (3)
F4 A2 =+ Al F4(a3) S4 (3, ].)
E(; 2A2 + Al D4(a1) Sg (3)
E; 245 + Ay D4((11) Ss (3)
E; As + A E7(CL5) Ss3 (3)
TABLE 1. The non-special admissible orbits of G2, Fy, Eg and E;.

We remark that this identification of admissible orbits as completely odd members of special pieces
is consistent with known results for classical groups (where in particular the A(O;) are never symmetric
groups).

This result clarifies the heretofore mysterious link between the algebraically defined special orbits
and the geometrically defined admissible ones. It remains to show this link in a natural way; proving
perhaps a conjecture of Vogan that admissibility is some mod Z/2Z reduction of an intrinsic object
related to the geometry of the special pieces.

Conjecture. We expect that the admissible non-special nilpotent orbits of Eg will be:

Orbit O A(Oy) | Lusztig parameter
245 + A; D4(CL1) Ss3 (3)

245 + 24 D4(a1 + A S3 (3)

FEg (a3) + A Eg (a7) S5 (3, 1, ].)
Ag+ A FEg(ar) Ss (5)

FEg + Ay FEg (b5) S3 (3)

Note that A. Noél [Nol, No2] has independently computed the admissible nilpotent coadjoint orbits
for all real exceptional groups, using techniques of Ohta [O]. His results agree with ours where they
overlap, and moreover, they support the above conjecture for Fg over R. In addition, he has found a
handful of orbits, like By of Fy, for which admissibility is a non-stable criterion. For some non-split
exceptional real Lie groups, he has shown that there are non-admissible special orbits (just as for some
non-split classical groups over R; see [Sch, O]).

In this paper we have excluded the study of the nonsplit rational orbits of E; due to their sheer
number and diversity. Fields of residual characteristic equal to 2 are excluded in the discussion of
nonsplit rational orbits because many of the results used in Appendix B either fail directly in that case
or at least would require separate arguments.

The structure of the paper is as follows. In Section 2, we set our notation for the remainder of the
paper and recall the definition of an admissible nilpotent orbit. In Section 3, we describe the procedure
for determining the admissibility of “split” nilpotent orbits of the exceptional groups considered here.
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Our discussion of the occurence of other rational orbits within (the k-points of) each algebraic orbit
begins in Section 4. There, we compute a bound on their number using Galois cohomology, and go
on to describe a method for obtaining representatives of these additional orbits. In Section 5 we give
constraints on the structure of the groups G? that can arise (for ¢ classifying a nonsplit orbit in a given
algebraic one).

Sections 6 to 9 are devoted to studying the orbits individually and recording their admissibility.
We relegate our explicit computations with respect to additional rational orbits to the appendices.
In Appendix A we give explicit representatives of each rational orbit and show that in each case our
bound, computed using Galois cohomology, was minimal. In Appendix B we summarize results needed
to determine the admissibility of the non-split rational orbits occuring here.

Acknowledgements. Many thanks to Eric Sommers, for pointing out the relation between the ad-
missible nonspecial orbits and special pieces, and to Jason Levy, for many fruitful discussions. The
determination of the admissible nilpotent orbits of G was part of my thesis [N1], conducted under the
generous supervision of David Vogan.

2. ADMISSIBILITY

In this section, let us set our notation for the remainder of the paper, and recall the definition of
admissibility (originally defined by [Du] over R).

Let k be a real or p-adic field. Let G be a linear algebraic group of exceptional type, defined and
split over k. Write G = G(k). Let ® denote the set of roots of G, and A a set of simple roots.

Identify the adjoint orbits of G with its coadjoint orbits via a nondegenerate invariant form (,) on
g. For each nilpotent orbit G - E in g, choose H, F' € g so that ¢ = span{E, H, F'} is a Lie subalgebra
of g isomorphic to s[(2,k). Define g® to be the centralizer in g of ¢ (i.e. the span of the trivial
subrepresentations of ¢ acting on g), and G to be the corresponding subgroup of G. Let g [—1] denote
the subspace of —1 weight vectors of g with respect to H. It is a symplectic vector space, endowed with
the canonical Kirillov-Kostant symplectic form wg(X,Y) = (E,[X,Y]), X,Y € g[-1]. Then G? acts,
via the adjoint action, on g[—1], and preserves wg.

The orbit G - E is admissible if the cover of G® defined by the diagram

(G%)™ —— Mp(g[-1])

(2.1) l l
G* —— Sp(g[-1))

splits (i.e. admits a smooth section) over G¢, where G¢ is the topological identity component when

k =R, and an open normal subgroup containing I otherwise (see [N2]).

Remarks. (i) Each even orbit is automatically admissible, since in that case g[—1] = {0}; these
orbits are also all special. Therefore we need only consider noneven orbits in this paper.
(i) We will need to assume that the residual characteristic of & is odd to determine the admissibility
of non-split rational orbits; see Appendix B.

3. ADMISSIBILITY OF SPLIT ORBITS

For each orbit O of the algebraic group G, its set of k-rational points O(k) is a union of one or more
orbits of G. We call a rational orbit in O(k) split if the corresponding reductive group G? is split over
k. Each orbit O of a split group G has one or more split rational orbits, and it is these orbits that we
wish to consider in this section.

Our method for choosing a k-rational representative E of O such that G - E is split is as follows;
see [CMcG] for an overview of the subject. Note that all these computations were made feasible by
programming them as functions for use with MatLab [M].

First set up a Chevalley basis {hq,z5 | @ € A,3 € ®} for g, where [zg,z_g] = hg and the other
structure constants are obtained from [GS].
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Given the weighted Dynkin Diagram of O, reconstruct the neutral element H € g of a Lie triple
classifying O, uniquely chosen to lie in the dominant chamber of the maximal split torus. In fact, H will
be a non-negative integral linear combination of the root hy’s. Then identify g[2], the 2-weight space of
H acting on g; this contains a dense subset of representatives for O. Now the Bala-Carter label for O
identifies the semisimple part of a Levi subgroup [ of g, and g[2] contains the span of its simple roots.
The orbit O is the saturation of a distinguished orbit of [ (also identified by the Bala-Carter label). We
can choose a “standard” representative of this orbit using techniques of [CMcG, Ch.5]; this is E, the
desired representative of a split orbit in O(k). Finally, one can deduce the value of F' € g[—2] such that
¢ = span{E, H, F'} forms an sl(2, k)-subalgebra of g, which in turn classifies the rational orbit through
E.

Now compute the subalgebra g¢ = {Z € g[0] | [E,Z] = 0}. (This subalgebra is called C in [E].
Elkington’s tables contain some errors, however; among them: Fjy: orbit A;; Fg: orbit Ay + 2A45; Er:
orbits (3A41)', 242 + A1, and (A4s)'.). It is split over k, and we can easily decompose the subspace g[—1]
into irreducibles under g®. One can often use this to deduce the structure of (the algebraic identity
component of) the corresponding group G®. For example, if all positive weights occur in representations
of the Lie algebra, then G® must be simply connected. Where this reasoning does not apply, we can
find other simple arguments. (We elaborate on this step in Sections 6 through 9.)

At this point in the computation, we have all the data necessary to determine the admissibility of
the orbit as per the definition in Section 2. For the remainder of this Section, we describe some criteria
for admissibility in our particular settings.

The Steinberg Cocycle. To simplify notation, let G temporarily denote any simply connected simple
Chevalley group (split over k), and G its set of k-points. (In practice, G will be G® or some subgroup
thereof.) Choose a split Cartan subgroup H.

Steinberg cocycles were defined by Moore in [M2, Ch.III] as explicit representatives of the cohomology
classes in H%(k,G). In the case of the metaplectic covering group of a symplectic group Sp(V), the
Steinberg cocycle is defined as follows ([R], [LV, appendix]).

The usual cocycle ¢; of the metaplectic cover — obtained by restriction of the cocycle of the C'-
cover of the symplectic group — is defined relative to a choice of lagrangian (i.e. maximally isotropic)
subspace [ of V' (see [LV, A.9]). For our purposes, it suffices to note that for g,¢’ € Sp(V), ci(g9,9") =1
if either g or ¢’ preserves [. In general, ¢;(g, g') takes values in the set of eighth roots of unity us C C.

Let v denote the Weil index — a unitary character of the group k*/k*?. Tt satifies the integral

equation ([W, §14])
y(1)y(ab) _

Aanm
where (-/-); denotes the (2-)Hilbert symbol of k (see, for example, [Neu, III §5]). Define det(ay,g.;) to
be the determinant of the linear transformation of [ to ¢ -1 as in [LV, A.13].
Then one can normalize the usual cocycle ¢; via the formula

ci(g, h)t(gh)

()

(3.1) S(g,h) =

where
t(g) = (1)t~ HmOFdmaIn g (det oy 1) 7
This is the Steinberg cocycle.
Moore proved [M2, ITI,Lemma, 8.4]

Lemma 3.1 (Moore). If a is a long root, and H,, is its corresponding one-parameter subgroup in H,
then any Steinberg cocycle is determined by its restriction to H,,.

In particular, this implies that the covering of G induced by such a cocycle splits if and only if its
restriction to H,, is trivial.

Note that G = SL(2, k) is a group to which this theory applies, and that Moore’s lemma reduces the
question of splitting for general G in this class to the splitting over a root SL(2, k) subgroup. Bearing in
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mind the admissibility calculation we wish to carry out (¢f (2.1)), let us compute the Steinberg cocycle
arising through the special case of k-representations V' of SL(2, k) such that SL(2,k) — Sp(V, k).

Theorem 3.2. Suppose V is an even-dimensional representation of SL(2,k) affording an invariant
symplectic form. Then the metaplectic cover of SL(2,k) induced by the map ¢: SL(2,k) — Sp(V, k) is
trivial exactly when the total number of subrepresentations of V' having dimension of the form 4n + 2
(for some n) is even.

Proof. Since the symplectic form on V is SL(2, k)-invariant, the decomposition of V' into irreducible
representations under SL(2, k) preserves orthogonality. Thus, non-isomorphic irreducible representa-
tions are orthogonal and the isotypic subspaces of V' are (nondegenerate) symplectic subspaces. Denote
the unique n-dimensional irreducible representation of SL(2,k) by V™. Note that it admits a unique
nondegenerate invariant symplectic form when n is even, and is isotropic with respect to any invariant
symplectic form otherwise.

Let us first consider the case of V = V2", Denote by h(t) the image of the matrix

b &

h(t) = diag(t?™ 1,203 . gl 7t gmands 0 ).
This is the semisimple element to which we should restrict the Steinberg cocycle to determine whether
or not the cover of SL(2, k) induced by the metaplectic cover of Sp(V, k) splits.
Note that h(t) preserves the Lagrangian [ spanned by the weight vectors of positive weight, and so
ci(h(t),h(s)) = 1for all 5,t € k. We compute det(ap).,;) = det(h(t)];) = t"*; and so (3.1) simplifies to

™)
(3-2) S(h(t),h(s)) = S (5™

Hence S is trivial (for all s,t) if and only if n is even.

Now suppose V contains an odd-dimensional irreducible subrepresentation V271, Since each isotypic
space under SL(2) must be a symplectic space, it follows that V27! occurs with even multiplicity. We
may choose the Lagrangian ! to be a direct sum of half of these irreducibles. Since h(t)|y2n+1 =
diag(t?™, =2 ... ,t72"), it follows that det(h(t)|y2n+1) = 1 for all ¢ € k. Consequently, the Steinberg
cocycle takes value identically 1 on the isotypic space of any odd-dimensional irreducible.

Finally, consider the general case, where we have a decomposition of V into irreducibles under
SL(2,k) of the form V = @521 mw V™ . We deduce from the above that the Steinberg cocycle will be
S(h(t),h(s)) = (s/t)kMZ, where M = ", ma,n?. It is thus trivial exactly when M is even, as we were
required to show. O

in Sp(V, k); then

= (s /1" ) = (/)7

Of course, in what follows, G® need not be simply connected or split over k. Let us recall a splitting
theorem from [N2] which is sometimes applicable in such cases.

Theorem 3.3. (a) If G® preserves a lagrangian subspace of g[—1], then the corresponding metaplectic
cover splits over G%. (b) If G® preserves complementary lagrangians and there exists a G?-invariant
intertwining operator between them, then the cover splits over all of G%.

4. OCCURENCE OF OTHER RATIONAL ORBITS

Using the data generated in the course of determining the admissibility of the split orbits (see
Section 3), let us bound the number of rational orbits for each algebraic orbit using Galois cohomology.

Proposition 4.1. Let G be a simply connected exceptional algebraic group, E a nilpotent k-rational
element of its Lie algebra, and ¢ an sl(2,k)-subalgebra of g. Then the number of k-rational orbits of
G = G(k) in the k-points of the algebraic orbit G - E is equal to the order of H'(k,G¥). It is bounded
above by the order of H'(k,G?).
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Proof. Note first that by [S, II1.4.4], the number of rational p-adic orbits in the k-points of a given
algebraic orbit O = G - E is finite. To compute this number, we begin with the short exact sequence
of sets 1 - GF — G — G/GF — 1. Take Galois cohomology [S, I-64,1-65], to obtain the long exact
sequence

1 —= GE(k) - G(k) = (G/G¥)(k) = H'(k,G¥) —» H (K, G).
The k-rational orbits are the G = G(k) orbits on (G/GF)(k). Hence their number is measured by the
quotient (G/GF)(k)/G, which is in bijection with

ker(a: H'(k,GF) = H'(k,G)).

In our setting, G is simply connected linear algebraic group, and hence by [KnI, KnlI], we have that
H3(k,G) = 0 for all s > 1. In particular, the number of rational orbits is given by the order of
H'(k,GP).

We can make a further reduction. Since E is nilpotent, G is the semidirect product of its reductive
part G and a unipotent part U¥. The first cohomology group of the unipotent group U¥ is trivial by
[S, IIL.2.1], so the short exact sequence 1 — U¥ — G¥ — G? — 1 yields the following exact sequence
in cohomology

0— H'(k,GF) = H'(k,G?).
Thus, the number of rational orbits in G¥ (k) is bounded above by the number of elements in H'(k, G?).
O

In practice, it is far easier to determine H'(k,G?) than H'(k,G?), as G? is often a semisimple group.
It may not be connected; however, its algebraic component group is well-known (see, for example,

[CMcG, Ch.8.4]). We have

G? /Gy ~ (G- E),
where Gg is the algebraic connected component of the identity (and known to us from the calculations
of the preceding section), and 71 (G - E) is the G-equivariant fundamental group of the orbit.

Corollary 4.2. In the setting of Proposition 4.1, suppose that Gg s a simply connected algebraic group.
Then H'(k,G?) injects into H'(k, 71 (G - E)).

Proof. The short exact sequence 1 — Gg — G? = 1 (G- E) = 1 gives rise to the long exact sequence
(4.1) - — H'(k,G) — H'(k,G?) — H'(k,m1(G - E))
in cohomology. By [Knl], H!(k, (Gg’) =0 when (Gg’ is simply connected. O

For those cases for which (G:gS is not simply connected, we note the following immediate lemma, from
[Kn, Ch. IV].

Lemma 4.3 (Kneser). If G is a semisimple connected algebraic group defined over k, and G is its
simply connected covering group, with kernel F, then H'(k,G) ~ H?(k, F).

We have from [S]:

e If k contains all nth roots of unity, then H'(k, u,,) = k*/k*", and H?(k, p,) = Z /nZL.

e If G,, denotes the multiplicative group of the field, then H'(k,G,,) = 0.
Thus, Proposition 4.1 gives an effective means of computing an upper bound on the number of rational
orbits in the k-points of a given algebraic orbit. We can then use the following more direct method to
determine if this bound on the number of rational orbits is optimal.

By a Theorem of Mal’cev [CMcG, Thm 3.4.12], we know that the stabilizer of H in G acts transitively

on the dense subset P of orbit representatives of O in g[2]. Now P(k) will decompose into one or more
orbits under G* (k) = GH.

Proposition 4.4. The rational orbits of G acting on P are in one-to-one correspondence with the
rational orbits of G acting on O(k) C g.
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Proof. Given a rational Lie triple ¢ = {E, H, F'} representing the orbit O (as in Section 3), suppose
{E',H' F'} is another rational Lie triple ¢’ representing an orbit in O. Then ¢ and ¢’ are conjugate
under an element g € G. In particular, their neutral elements H and H' are both diagonalizable over
k, and hence conjugate under G = G(k). WLOG assume H = H', so that E and E' both lie in P(k).
Whence ¢ and ¢’ are conjugate under G if and only if E and E' are conjugate under G*. O

The Lie algebra of G¥ is simply g[0], the zero-weight space of g under H. It contains G? as a
subgroup which fixes E. This lemma thus reduces the problem of determining the rational orbits of an
exceptional Lie group acting on its Lie algebra down to determining the rational orbits of a much smaller
group acting on a vector space. This is often feasible (see Appendix A), but nonetheless somewhat
unsatisfactory — we have “reduced” from a simple group and a specific irreducible representation to a
reductive group and a (generally) non-irreducible representation.

Remark. In Sections 6 to 8, we record the fundamental group of each orbit and the number of real
rational classes (obtained from [CMcG]). We computed a bound on the number of p-adic rational classes
using Proposition 4.1, and then verified it on a case-by-case basis in Appendix A using Proposition 4.4.

5. POSSIBLE FORMS OF NON-SPLIT RATIONAL ORBITS

For those algebraic orbits admitting more than one k-rational orbit, we proceed to decide admissibility
as follows. If E' is a representative of such an orbit, then the sl(2, k)-subalgebra ¢' it defines must be
conjugate under G to ¢. Hence in particular, G?" must be conjugate to G® under an element of G, and
in fact must be a (possibly different) k-form of G®. We can further constrain the possibilities by noting
that, upon tensoring over k with an algebraic closure of k, the action of G?' on the corresponding g [—1]
will be equivalent to the split orbit case. Let us explore this constraint now.

In the following let G be a reductive algebraic group acting on a finite-dimensional vector space V,
such that the group of k-points of G act rationally on the vector space of k-points of V. (In application,
this G will be G )

Lemma 5.1. Suppose G acts irreducibly on V. Then G(k) acts irreducibly on V (k).

Proof. Suppose W is an invariant proper k-subspace of V (k). Then the subspace W' = W ®y, k is an
invariant proper subspace of the action of G(k) on V. G(k) is Zariski-dense in G. The set of all g € G
that preserve the subspace W' is a Zariski-closed set (since the action is algebraic) and contains G(k),
hence is all of G. Thus W' is an invariant subspace, and so much be {0}, by irreducibility. Thus there
are no non-trivial invariant proper k-subspaces of V' (k), and the action is irreducible. O

The converse is not true, in general; an irreducible k-rational representation of a non-split k-form
of G may decompose, upon passage to the algebraic (or even separable) closure, into a direct sum of
irreducibles of G. Let ks denote the separable closure of k. More precisely, we have the following results
of Tits [T2, Théoréme 3.3, Théoreéme 7.2 et Lemme 7.4].

Theorem 5.2 (Tits). Let G be a reductive group defined over k.

(i) Let A be a dominant integral weight of G and let kyx be the extension field of k corresponding to the
stabilizer subgroup of X in Gal(ks/k). Then X gives rise to an absolutely irreducible representation
pa of G over some central simple division algebra Dy over k.

(ii) Each k-rational irreducible k-representation of G(k) is isomorphic to some p%, where p% is obtained
from px by restriction of scalars (from Dy and kx to k).

(iii) Let dy denote the degree of Dy over ky (i.e. the square root of the index), and suppose the orbit of
X under the Galois group Gal(ks/ky) is {\1, A2, ... A\n}. Then, upon passage to ks, p§ decomposes
into a direct sum of dy copies of px,, dx copies of px,, and so on.

The orbit of A under the Galois group can be read from the Tits diagram (see [T1]) of G. Thus,
whenever the decomposition of a (finite-dimensional) vector space V into irreducibles under G is known,
we can apply (iii) of Theorem 5.2 to deduce whether or not this arises from a decomposition of V (k) into
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irreducibles under G(k). In many cases, this allows us to exclude from possibility various groups G?' (k)
as occuring in other rational orbits. Where nonsplit orbits may occur, we compute their admissibility
on a case-by-case basis (see Appendix B).

6. G9,
a=>p

Bala-Carter Label: A;; Weighted Dynkin Diagram: 1 => 0 (not special)
Lie Triple ¢: z2q435, 2Hy + Hg, T_24—38

g¢ = Span { Xp, X_p, Hg } >~ sl(2, k)

g[-1] = v*

We have Gg = SL(2,k); apply Theorem 3.2. The orbit is admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: ;l:; Weighted Dynkin Diagram: 0 =>1 (not special)
Lie Triple ¢: 24428, 3H, +2Hg, _n_28

g® =span { X,, X_,, Hy } ~ sl(2,k)

gl-1] = v?

We have Gg’ = SL(2,k); apply Theorem 3.2. The orbit is not admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

7. FY,
o—fB=>vy—9§

Bala-Carter Label: A;; Weighted Dynkin Diagram: 1— 0 =—>0—0 (not special)

Lie Triple ¢: L2a+3B8+47v+26 > 2hq + 3hﬂ + zh"y + hs y L—2a—3B8—4y—24

g% = span { the subalgebra with simple roots 3, v, § } ~ sp(6,k)

g[-1] = V' (highest weight Ly + L + L3 (notation of Fulton [FH, sec17))

We have GS’ = Sp(6,k). The SL(2, k)-subgroup associated with the long root of Sp(6,k) decom-
poses g[—1] into five 2-dimensional irreducibles, and four copies of the trivial representation. Apply
Lemma 3.1 and Theorem 3.2. The orbit is not admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: ZI; Weighted Dynkin Diagram: 0— 0 =>0—1 (special)

Lie Triple ¢: Tot+2B+37+28 5 2hqo + 4h5 + 3h’y + 2hs , T_a—28-3y—25

g = span { z,, T8, TatBs TR+2v, TatB+2vs Lat+28+2v> Pas Na, Iy, and the corresponding negative root
spaces } ~ sl(4,k)

gk1] = Via ® Vi

We have GS = SL(4, k). Under any root SL(2, k), g [~1] decomposes as 2V2®4V"; apply Theorem 3.2.
The orbit is admissible.

Fundamental Group: Sy; #R-orbits: 2; #p-adic orbits: |k*/k*?| (see Appendix A.1)

Note on rational classes: We see from Appendix B.3 that the only other form of G¢ could take is of a
special unitary group and that the cover of Gg’ would split in that case as well. All rational orbits are
admissible.

Bala-Carter Label: A; + ;4:; Weighted Dynkin Diagram: 0— 1 =>0—0 (special)

Lie Triple ¢: To12512v+26 + Tat26+3+v46 » Sha +6hg +4hy +2hs , T_a_25_2y—25 + T_a—28-3v—5
g% =span { T, T_q, haj =22, + 225, —T_~ + T_5, 2h, + 2hs } =~ sl(2,k) @ s1(2, k)

g[-1] = 6V? under first s[(2,k); g[—1] = 2V! & 2V under second s((2, k)
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We have that the first sl(2, k) corresponds necessarily to an SL(2, k), since it has an even-dimensional
irreducible representation. On the other hand, the second sl(2, k) embeds into g as a 3-dimensional
representation (ie. the image lies irreducibly in the s[(3,k) corresponding to the roots v and §),
and hence necessarily lifts to PGL(2,k) as a group. The two subalgebras commute; hence Gg(k) =
SL(2,k) x PGL(2, k). Finally, note that the metaplectic cover splits over each group individually (using
Theorem 3.2). The orbit is admissible.

Fundamental Group: 1; #R-orbits: 2; #p-adic orbits: 2 (see Appendix A.2)

Note on rational classes: By Appendix B.1 we see that the metaplectic cover will split over all other
rational forms, and hence that all rational orbits are admissible.

Bala-Carter Label: A, + ;4\1; Weighted Dynkin Diagram: 0— 0 =>1—0 (not special)

Lie Triple ¢: Toygt2y +2p+2y+26 + Lat2s+2v+5 » 4ha+8hg+6hy+3hs , 20 _a—p_oy+22_p_2y—25+
T_q—28-2y—3

g% =span { —2r3—T_5+T_q_p, Ts +2Tatp — T—p, —2he — hs } = s1(2,k)

gl-1] = VeVt

We have Gg = SL(2,k); apply Theorem 3.2. The orbit is not admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: By; Weighted Dynkin Diagram: 2— 0 =>0—1 (not special)

Lie Triple ¢: Totp+y + Ta4+24+26 5 6hqo + 10h@ + 7h7 + 4hs | 3T_q—pg—n + 4.%'_3_27_25

9% = span { 28, T_g, hg, Tat2y, T_g_24, hg + hy } = s1(2,k) © sl(2, k)

g[-1] = 2V!'@® V? under each sl(2, k), with the two 2-dimensional subrepresentations complementary
We have that each sl(2, k) corresponds to an SL(2, k) at the group level, and their Lie algebras com-
mute. Using Chevalley bases ([Ca, page97], we can argue directly that the two groups can admit no
intersection. Hence G¢ (k) ~ SL(2, k) x SL(2, k). The metaplectic cover over each SL(2, k) fails to split
by Theorem 3.2. The orbit is not admissible.

Fundamental Group: So; #R-orbits: 2; #p-adic orbits: |k*/k*?| (see Appendix A.3)

Note on rational classes: Each non-split rational orbit has corresponding group G¢ ~ SL(2, E), for
E varying over all the nontrivial quadratic extensions of k. As shown in Appendix B.2, the non-split
rational orbits are thus not all admissible, and this variability depends on k.

Bala-Carter Label: :4; + A;; Weighted Dynkin Diagram: 0— 1 =>0—1 (not special)

Lie Triple ¢: TB+2y+6 T Latf+y+s + Tat28+27 » Shq + 10h5 + 7}7”7 +4hs , 22 _g_oy—5+20_q_pg—ny—s+
T o282y

g% = span { To + Ty, Tog + Ty, ho + hy } = 5l(2,k)

gl-1] = 2V e Vv*

We have Gg = SL(2,k); apply Theorem 3.2. The orbit is admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: C5(a;); Weighted Dynkin Diagram: 1—0=>1—0 (not special)

Lie Triple ¢: zg42y + TatBty+6 + Ta42v+25 , 6ha + 11hg + 8hy + 4hs , 42_g_oy + 32 _0—g—r—5 +
T_B3-2y—-26

g? = span { zp, z_g, hg } ~ sl(2,k)

g[-1] = 3v?

We have Gg = SL(2,k); apply Theorem 3.2. The orbit is not admissible.

Fundamental Group: S»; #R-orbits: 2; #p-adic orbits: |k*/k*?| (see Appendix A.4)

Note on rational classes: By Appendix B.1, we conclude that all rational orbits are split, and hence
none are admissible.
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Bala-Carter Label: C5; Weighted Dynkin Diagram: 1— 0 =>1—2 (special)

Lie Triple ¢: o5 + Tatpiy + Tps2y » 10he + 19hs + 14h., + 8hs | 87_5 + 50 —a—p_y + 9T_p_2,
g® = span { 25, T_g, hg } = s(2,k)

g[-1] = 2v?

We have Gg’ = SL(2,k); apply Theorem 3.2. The orbit is admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

8. B

Q2
ar 03 04 05 Qg

Bala-Carter Label: A;; Weighted Dynkin Diagram: 1 (special)
0-0-0-0-0
Lie T‘I'iple (ZS: ma1+2a2+2a3+3a4+2a5+a6 9 ha1 +2ha2 +2ha3 +3ha4 +2ha5 +ha6 9 x—a1—2a2 —2a3—3a4—2a5—a6

g% = span { the subalgebra with simple roots a1, a3, aa, as, ag } =~ sl(6,k)

g-1] = v*

We have Gg = SL(6, k) because Eg admits a faithful 27-dimensional representation, which must decom-
pose under G¢ with a 6-dimensional irreducible factor. To determine admissibility, apply Lemma 3.1.
Each SL(2,k) root subgroup decomposes g[—1] into 6V @ 8V1; apply Theorem 3.2. The orbit is
admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: 24,; Weighted Dynkin Diagram: 0 (special)
1-0-0-0-1

Lie Triple ¢: Ta, tast2as+2as+as+as TLar+as+as+20s+2as+as > 2har +2hay +3has +4hay +3has +2hag

» T—ay—ae—2a3—204—as—ag + T—qi—as—az—2as—2a5—as

g% = span { hay + has — hag and the subalgebra with simple root vectors 4, , Ta,, Loz — Tas } = V

+ so(7.k)

g[-1] = 2V,pin under the split so(7, k)

We have G?(k) = Spin(7,k) x k* since the Lie algebra admits the 8-dimensional spin representation.

We can apply Lemma 3.1; since their are two copies of Vypp, it follows immediately from Theorem 3.2

that the metaplectic cover of Spin(7, k) will split. The metaplectic cover of k* splits by Theorem 3.3.

The orbit is admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: 34;; Weighted Dynkin Diagram: 0 (not special)
0-0-1-0-0

Lie Triple ¢: Taytastast2astastas T Lartast2as+2astas T Lastas+2ast2as+as > 2ha1 +3h(12 +4ha3 +

6ha4 + 4ha5 + 2ha6 » T—qi—as—az—2aa—as—ag + T—qi—as—2a3—2as—as + T—qs—az—2as—2a5—as

g% = span { sl(2, k)(az), s[(3, k) with simple root vectors —T,, +Ta; and To;+Ta } =~ s1(2, k) ®sl(3, k)

g[-1] = 9V? under the sl(2,k); g[—1] = 2V! & 2V?® under the sl(3, k)

There is a decomposition of g[—1] into 9 symplectic 2-dimensional irreducible representations under
this s[(2, k). Hence the cover fails to split over the sl(2, k) piece, even though the decomposition into
lagrangian subspaces under sl(3, k) implies that the cover does split over the sl(3, k) piece.

We have that the s[(2,k) lifts to a copy of SL(2,k) at the group level. The sl(3,%k) embeds into
sl(3, k) (a1, a3) ®sl(3,k)(as, ag), and each of these sl(3, k)-subalgebras admit 3-dimensional irreducible
representations. Thus our sl(3, k) lifts to a copy of SL(3,k) at the group level. Finally, we note that
the roots of the s[(2, k) are orthogonal to those of the (3, k), and the groups can admit no intersection.
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Thus G® = SL(2,k) x SL(3,k). The metaplectic cover does not split over the SL(2,k) factor by
Theorem 3.2. The orbit is not admissible.
Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A; + A;; Weighted Dynkin Diagram: 1 (special)
1-0-0-0-1

Lie Triple ¢: Taitastastastas T Lartastastastas T Lastast2astastas » 3h’a1 +4h'a2 +5h'043 + 7ha4 +

5h0¢5 + 3ha6 > 21’*041*02*013*014*045 tT a1-0s-as—as—ag T 23}70‘27‘1372‘1470‘5706

g% = span { ha, + 2ha, — hag, and the subalgebra with simple root vectors za, and Ta,ta; } =~

V ®sl(3,k)

g[-1] = 2V! @ 4V?3 under the sl(3, k)

We have G¢ = SL(3,k) x k*, since the sl(3, k) admits a 3-dimensional irreducible representation, and

the two subgroups do not intersect. Apply Lemma 3.1 and Theorem 3.2. The orbit is admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: As + 2A4;; Weighted Dynkin Diagram: 0 (special)
0-1-0-1-0

Lie Triple ¢: To,tastastas + Tastastastastas T Tastas+2astas T Tastastast+2aatastas » oy +

4ha2 + 6ha3 + 8ha4 + Ghas + 3ha6 ) 2$—a2—a3—a4—a5 + 2$—a2—a3—a4—a5—a6 + Toas—az—2as—as T

T—qi—as—az—2a4—a5—as

B¢ = Span { _2:1:044 — Tag + TT—q, + Teasr—asy ~Ta; — 2$a2+a4 + T—ay + T—qg5 ha1 + 2ha2 + ha(j)

hoy — hag + hoy } ~sl(2,k)DV

g[-1] = 2vZe2v!

We have G® = SL(2,k) x k*; apply Theorem 3.2. The orbit is admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A3; Weighted Dynkin Diagram: 2 (special)
1-0-0-0-1

Lie Triple ¢: Ta,ta, T Tastastastas T Taitastastastas » 4har +6hay + Thay +10ha, + Thay + 4hag

) 3'7:—042—044 + 3'1.—042—043—044—&5 + 43:—041—043—(14—015—046

g¢ = Span { Tagtour TasTT—as, ~Tas TZastastas) Lastas) T—az—ass Taz TT—as; ~T—as TT-az—as—as;

L—oo—as—as—ag ha3 + ha4; _h‘as + has: ha1 + has } = 30(57k) D Vv

g[-1] = 2V* under the split so(5, k)

We have G® = Sp(4,k) x k*, by the existence of a 4-dimensional irreducible representation. Apply

Lemma 3.1 and Theorem 3.2. The orbit is admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: 24, + A;; Weighted Dynkin Diagram: 0 (not special)
1-0-1-0-1

Lie ,Triple ¢: Tartastas T Tastastas T Tartastastastas T Lastastastastas T Tastast2aatas »

4hy, + dhoy + Thay + 10ha, + Thay + 4hog 5 2T _01—as—as + 2%—as—as—as + 28— 01—as—az—as—as +

2T ay—as—as—as—as T T—as—as—2as—as

g% = span { —Za, + Tas + T—as Tas — T—ag + T—ass —Pay + Pag + has } = s1(2, k)

gl-1] = 4vVieV?

We have Gg = SL(2,k); apply Theorem 3.2. The orbit is admissible.

Fundamental Group: Z/3Z; #R-orbits: 1; #p-adic orbits: |k*/k*®| (see Appendix A.5)

Note on rational classes: the existence of a unique 4-dimensional rational representation implies that

all orbits must be split, and hence admissible.
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Bala-Carter Label: A3 + A;; Weighted Dynkin Diagram: 1 (not special)
0-1-0-1-0

Lie Triple ¢: Tas+asz+as + Lai+az+astas + Tas+oas+as+as + Lag+astas+ags > 4h(11 + 6h(12 + 8ht13 +

11ha, + 8has + 4hag , 3T—as—as—as + 4T—a1—ag—as—as + 3T—as—as—as—as T T—ag—as—as—as

g¢ = span { Ta,, T au; Bous 2hay + hag — has + hag } = sl(2,k) OV

g[-1] = 5V? under the sl(2, k)

We have G (k) = SL(2,k) x k*, a direct product since the two subalgebras commute. Apply Theo-

rem 3.2. The orbit is not admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A, + A;; Weighted Dynkin Diagram: 1 (special)
1-1-0-1-1

Lie Triple ¢: To,tas + Tastastas T Tastastas T Tastastas T Tastastas s Oay + 8hay + 11ha, +

15ha4 + 11ha5 + Ghas J 63:70417013 + 41"7(1270137(14 + 43770427(147(15 + T —az—as—as + 61;7(1470457046

g% = span { —2ha, — hay — 3hay + hag +2hag } =V

g[-1] = trivially decomposed under g¢

We have G® = k*, which clearly preserves Lagrangian subspaces; apply Theorem 3.3. The orbit is

admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

Bala-Carter Label: A;; Weighted Dynkin Diagram: 1 (not special)
2—-1-0-1-2

Lie Triple ¢: zo, + ZTag + Tastastas T Tagtastas T Lag+astas 5 Shay + 10k, + 14he, + 19k, +

14ho, + 8hag , 8T—a, + 8T 0 + DT —as—as—as T OT—as—as—as + IT—as—as—as

9% = span { To,,T—a,,ha, 2~ 50(2,k)

g[-1] = 3v?

We have Gg’ = SL(2,k); apply Theorem 3.2. The orbit is not admissible.

Fundamental Group: Z/3Z; #R-orbits: 1; #p-adic orbits: |k*/k*3| (see Appendix A.6)

Note on rational classes: By Appendix B.1, all orbits are split, hence none are admissible.

Bala-Carter Label: Dj(a;); Weighted Dynkin Diagram: 2 (special)
1-1-0-1-1

Lie ,Triple ¢: Tas tTartas T Tartastas T Tasctastas T Tastastas > 7ha1 + 10ha2 + 13h0¢3 + 18ha4 +

13hay + Thag » 1020y +22 01— 053 =9 —as—as +2T—a5—a T9T—01—az—as +0T—as—as—as +TT—as—as—as

g¢ = Span { -hay +hag-has+ha, } ~V

g[-1] = trivially decomposed under g®

We have G® = k*, which clearly preserves Lagrangian subspaces; apply Theorem 3.3. The orbit is

admissible.

Fundamental Group: 1; #R-orbits: 1; #p-adic orbits: 1

9. EY,

Q2
T O3 O 05 Og Q7

In this section, let n, nonsninsnen, denote the root vector X, oy +nsms+ngas+nacstnsas+neos+nroy and
% _ninsnsnansnen, the corresponding negative root vector.
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Bala-Carter Label: A;; Weighted Dynkin Diagram: 0 (special)
1-0-0-0-0-0

Lie Triple ¢: 22334321 , 2ha, + 2ha, + 3has + 4ha, + 3hay + 2hag + ha, , T_2234321

g = span { subalgebra with simple roots s, a3, a4, as, as, ar } ~ so(12, k)

g-1] = v*

We have G¢ = Spin(12, k), since it admits a spin representation. A root SL(2,k) corresponding to a

long root decomposes g [—1] into 16 copies of the trivial representation and 8 copies of the 2-dimensional

representation. Thus the cover splits over each long root by Theorem 3.2, and consequently over G¢ by

Lemma 3.1. The orbit is admissible.

Bala-Carter Label: 24;; Weighted Dynkin Diagram: 0 ( special)
0-0-0-0-1-0

Lie Triple ¢: x1223221 +T1123321 , 2ha; +3ha, +4hay +6ha, +5has +4has +2ha, , T_1223221 +T_1123321
¢ = span { To;,T—ars hay; Ba with positive T00ts Ta,, Tag,Tay, and Tay — Ta, } =~ sl(2,k) ® 50(9, k)
g[-1] = 16V2 under the s[(2,k); g[—1] = 2V''6 under the split s0(9, k)

The 16-dimensional representations are complementary lagrangians. Consequently, the cover of G
splits over each piece individually.
We have G¢ = SL(2,k) x Spin(9, k), since each group admits representations of the simply connected
group, they admit no intersection, and their Lie algebras are orthogonal. Applying Lemma 3.1 and
Theorem 3.2, we deduce that the cover of G? splits over each piece individually. The orbit is admissible.

Bala-Carter Label: (34;)'; Weighted Dynkin Diagram: 0 (not special)
0-1-0-0-0-0

Lie Triple ¢: 1122001 + T1123211 + T1223210 5 3hay + 4hay + 6hay + 8ha, + 6hay + 4hag + 2ha, ,

T-1122221 + T_1123211 + £—_1223210

g? = span { To,, T_ay, ha,; C3 with simple roots Tay, —Ta, + Tags Tas + Ta, = 5[(2,k) @ sp(6, k)

g[-1] = 15V2 under the sl(2,k); g[—1] = 2V @ 2V under sp(6, k)

We have that the sl(2, k) lifts to SL(2,k). With the help of explicit calculations to determine which

copy of C3 in E; we have, we deduce from [LS, Table 8.6] that it admits a 6-dimensional irreducible

representation, and hence lifts to Sp(6, k) at the group level. The two groups commute and admit

no intersection, so G¢ = SL(2,k) x Sp(6,k). The cover does not split over the SL(2,k) piece of G?

(although it does split over Sp(6, k), since the representations are complementary lagrangians). The

orbit is not admissible.

Bala-Carter Label: 44;; Weighted Dynkin Diagram: 1 (not special)
0-0-0-0-0-1

Lie Triple ¢: z1111111 +To112221 + 1123211 + 71223210 > 3hay +5hay +6hay +9ha, + Thay +5has + 3ha,

, 1111111 + To112221 + 1123211 + T_1223210

g% = span { hag, has, Pay + hay + hags Tag — 10110005, T0001100 — T—0011000> Tags Ta; — T0001110,

20011100 — T—as> Tass £1010000 + Too11110, Tooooi1o + T1011100, T1011110, and the corresponding negative

root vectors } =~ sp(6,k)

g[-1] = 2véaVvH

We have G¢ = Sp(6, k), by the existence of the 6-dimensional irreducible representation. The restriction

of the representation g [—1] to the SL(2, k) arising from the long root decomposes as seven 2-dimensional

representations and twelve trivial representations. Hence the cover does not split over this SL(2,k),

and therefore, by Lemma 3.1, it doesn’t split over G = Sp(6, k). The orbit is not admissible.

Bala-Carter Label: A; + A;; Weighted Dynkin Diagram: 0 (special)
1-0-0-0-1-0
Lie Triple ¢: Zio11110 + To112221 + Z1223211 , 4ha;, + hay + Tha, + 10he, + 8hey + 6hg, + 3hq,
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2z 1011110 + T_o0112221 + 2Z 1223211

g® = span { The copy of A3 generated by as, a4, as, and a Cartan part through hg, — hg,. + ~
sl(4,k)eV

g[-1] = 6v*

We have Gg’ = SL(4,k) x k*, since the H part lifts to a copy of k* inside the Cartan subgroup of G
and so normalizes SL(4). Restricting to a root SL(2, k) of SL(4, k) gives a decomposition of g[—1] into
6 two-dimensional irreducible representations. By Lemma 3.1 and Theorem 3.2, the cover splits. The
orbit is admissible.

Bala-Carter Label: A, + 2A4;; Weighted Dynkin Diagram: 0 (special)
0—0—1-0-0-0

Lie Triple ¢: x1122110 +Zo112211 +Z1112111 + Z1112210 5 4oy +6hay +8has +12hq, +9hay +6has +3Rq,

, 221122110 + 2T 0112211 + 1112111 + T_1112210

g¢ = span { Ty ,.’L',awh,m; 2T, +Tas —Tas +Tar, Toa; 2T a3 —T—as +T—ar, 2ha1 +2ha3 +ha5 +ha7;

0000110 — £0000011,L—0000110 — £—0000011, Pas + 2has + ha, } ~ sl(2,k) @ sl(2,k) ® sl(2, k)

g[-1] = 12V? under the first and third; g[—1] = 4V2 & 4V* under the second

We have that the groups all are SL(2, k)s, and all commute with one another. However, the second and

third SL(2, k) share a common center. So G& = SL(2, k) x (SL(2, k) x SL(2, k)) /Z/2Z. By Theorem 3.2,

the cover splits over each SL(2, k) individually. Moreover, the common intersection of the second and

third SL(2, k) is the center, and the two splitting maps agree over this center. Hence the cover splits.

The orbit is admissible.

Bala-Carter Label: A3; Weighted Dynkin Diagram: 0 (special)
2—-0-0-0-1-0

Lie Triple ¢: Z1111000 + T1011100 + To112221 5 6Ray + Thay + 10hg, + 14ha, + 11k, + 8hoy + 4ha,

3T_1111000 + 3Z 1011100 + 4T 0112221

¢® = span { Za,, T—a,, ha,; B3 with simple root vectors: z3, x4, T2 + x5 } ~ sl(2,k) @ so(7, k)

g[-1] = 8V?2 under the sl(2, k); 2V® under the split so(7, k)

We have Gg’ = SL(2,k) x Spin(7), because their Lie algebras commute and so(7,k) admits an 8-

dimensional irreducible (spin) representation. The cover splits over the SL(2, k) by Theorem 3.2. The

two 8-dimensional representations are seen to be complementary invariant Lagrangians, and so the

cover splits over Spin(7, k) by Theorem 3.3. The orbit is admissible.

Bala-Carter Label: 245 + A;; Weighted Dynkin Diagram: 0 (not special)
0-1-0-0-1-0

Lie Triple ¢: xoo11111 + 1111111 + Ti112110 + 1122100 + ZTo112210 5 Ohay + Thay, + 10hy, + 14k, +

11hay + 8hag + 4hay; 5 2T 011111 + 2% 1111111 + 221112110 + T1122100 + 2T 0112210

g¢ = Span { —Tay T+ Tag + T, ha1 - hag + ha57 —T_q; + Toas + Tasi Tas + Tar + 0101100, hag +

Qha4 + ha5 + ha7, T_qs +T_o, + T_0101100 } ~ 5[(2,k) @5[(2, k)

g[-1] = 8V2 & V* under the first; g[—1] = 8V! @ 4V? under the second

We have that the first A is an SL(2, k); the second embeds inside of a copy of A5 in E7, and decomposes

the standard representation of s[(6, k) into even-dimensional irreducibles. Thus it is an SL(2, k) as well.

There is no intersection between them. Moreover, they commute. Thus G¢ = SL(2,k) x SL(2,k) By

Theorem 3.2, the cover splits over each piece individually. The orbit is admissible.

Bala-Carter Label: (A3 + A;)'; Weighted Dynkin Diagram: 0 (not special)
1-0-1-0-0-0

Lie Triple ¢: 21011000 +1111111 +Zo112111 +Zo112210 , ﬁhal +8ha2 +11ha3 + 16ha4 + 12ha5 +8ha6 +4ha7

, 3T_1011000 + 3T_1111111 + T—0112111 + 4%_0112210
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g% = span { Tay, T—ag, Pags Tags T—aes Rags T0000111 + T—asy Tas + T—00001115 —Pas + Pag + hag + has
} ~sl(2,k) ®sl(2,k) @ sl(2,k)

g[-1] = 9V? under the first; g[—1] = 10V & 4V?2 under the second; and g[—1] = 4V! @ 4V? @ 2V3
under the third

We have Gg’ = SL(2) x SL(2) x SL(2) since the three sl(2, k) subalgebras commute and admit no
intersection. By Theorem 3.2, the cover splits on the second and third pieces, but not on first copy of
SL(2). The orbit is not admissible.

Bala-Carter Label: A3 + 24;; Weighted Dynkin Diagram: 0 (not special)
1-0-0-1-0-1

Lie Triple ¢: xi011100 + Zoto1111 + Tooi1111 + To112210 + 1122110 5 6hay, + 8ha, + 11hy, + 16k, +

13hay + 9hag + 5hay 5 3T_1011100 + 4T 0101111 + Z_o0011111 + T_0112210 + 3T_1122110

g% =span { Ta,, T_ays Pas, 0111000 —T—ags —Tag +T—01110005 Pas +Rag+hay—hae } = s1(2,k)Dsl(2, k)

g[-1] = 8V! @ 5V? under the first s1(2,k); g[—1] = 4V! & 4V2 & 2V? under the second sl(2, k)

We have Gg = SL(2,k) x SL(2,k), since their Lie algebras commute, and they admit no intersection.

By Theorem 3.2, the first copy of SL(2) doesn’t split (although the second one does). The orbit is not

admissible.

Bala-Carter Label: Dy(a;) + A;; Weighted Dynkin Diagram: 1 (special)
0-1-0-0-0-1

Lie Triple ¢: z1111000 +Zo101111 +Zoo11111 +Z1011111 +To112210 5 6ha; +hay +12ha, +17he, +13has +

9ha6 + 5ha7 » —2Z_o111000 +4Z_1111000 + T—0101111 + 2Z_0011111 + 2Z_1011111 + 4T 0112210 — 2T _1112210

9° = span { Ta,, T—as, Pas, Tass Toagy has } =~ 82, k) @ sl(2, k)

g[-1] = 8V! ®4V? under each sl(2, k) (with the two dimensional representations all complementary)

We have Gg’ = SL(2,k)xSL(2, k), since they admit no intersection and they commute. By Theorem 3.2,

the cover splits over each piece of G®. The orbit is admissible.

Bala-Carter Label: A3 + As; Weighted Dynkin Diagram: 0 (special)
0-0-1-0-1-0

Lie Triple ¢: zooo1110 + Zot11110 + Toio1111 + Z1o11111 + 1122100 5 6hay + Yha, + 12hy, + 18ha, +

14hgs + 10hgg + Sha, 5 3T 0001110 + 2T 0111110 + 3T 0101111 + 271011111 + 4T _1122100

g¢ = Span { Lag, T—as, ha57 2ha; + hay — h(17 } = 5[(27k) eV

g[-1] = 8V? under the sl(2, k)

We have Gg’ = SL(2, k)xk*, since the Lie algebras of the two pieces commute, and admit no intersection.

By Theorem 3.2 and Theorem 3.3, the cover splits over both pieces of G¢. The orbit is admissible.

Bala-Carter Label: Dy + A;; Weighted Dynkin Diagram: 1 (not special)
2—-1-0-0-0-1

Lie Triple ¢: x4, + To111000 + Zo101111 + Too11111 + To112210 > 10k, +13hg, + 18hg, + 25k, + 19k, +

13has + Thay 5 10T, + 62 0111000 + Z 0101111 + 6Z 0011111 + 6T 0112210

B¢ = Span { RagsPags T—ags 0001110 + T—aj> £0001100 — £—00001105 Lays Lagr T—0001110 + Tass 0001100 —

00001105 T—a, ) = 50(5,k)

g[-1] = 3V*

We have G = Sp(4,k) by the existence of a 4-dimensional irreducible representation. So we have

Sp(4, k) mapping into 3 copies of itself, which does not split. The orbit is not admissible.

Bala-Carter Label: A, + A;; Weighted Dynkin Diagram: 0 (special)
1-0—-1-0—-1-0
Lie Triple ¢: 1011000 + To101110 + T1111100 + Toot1111 + To112100 5 SRay + 11ha, + 15k, + 22ha, +
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17has + 12ha + 6ha, , 47 1011000 + 62 0101110 + 42 1111100 + 6Z 0011111 + T 0112100

g? = span { ha, + hay — Pags has — P, = V2

g[-1] = decomposes trivially under g¢

We have Gf’f = k* x k*, and G? acts diagonalizably. By Theorem 3.3, the cover will split over Gg’ , since
we can intertwine the H-actions across 2 Lagrangians. The orbit is admissible.

Bala-Carter Label: Dj(a;); Weighted Dynkin Diagram: 0 (special)
2-0-1-0-1-0

Lie Triple ¢: x4, +Z1010000 +3Z0001110 +2Z0011110 +Zo101111 +Z0112100 5 10ha, +13ha, +18hq, +26h, +

20ha; +14hog+Tha, 5 22—, +8Z 1010000 +Z 0001110 +2Z 0011110 + 7Z 0101111 +6Z _0112100 + 2Z 0111111

9% = span { Tag, Toags has, Pas — har } = sl(2,k) BV

g[-1] = 6V? under the sl(2, k)

We have Gg’ = SL(2,k) x k*, since their Lie subalgebras commute and they admit no intersection. By

Theorem 3.2 and Theorem 3.3, the cover splits over each piece. The orbit is admissible.

Bala-Carter Label: (4;)'; Weighted Dynkin Diagram: 0 (not special)
1-0-1-0-2-0

Lie Triple ¢: Too00110 + Zo000011 + Z1011000 + T1111100 + To112100 , 10ha; + 14hg, + 19h4, + 28hg, +

22hqys + 16hqg + 8ha, ;, 8T 0000110 + 8Z—0000011 + 5T 1011000 + ST_1111100 + 9ZT_0112100

9% =span { Ta,, T—as, Pas> Tas +Tar +T—as, Tas +T—as +T—ar; —has +has +ha, } = sl(2,k)®sl(2,k)

g[-1] = 5V? under the first sl(2, k); g[-1] = 4V! @ 2V? under the second sl(2, k)

We have that both subalgebras lift to SL(2, k) at the group level, since the second embeds into a subal-

gebra of type Ay in E7 and decomposes its standard representation into even dimensional irreducibles.

They commute and admit no intersection, so Gg = SL(2,k) x SL(2,k). By Theorem 3.2, the cover

splits over the second SL(2, k) but not the first. The orbit is not admissible.

Bala-Carter Label: A5 + A;; Weighted Dynkin Diagram: 0 (not special)
1-0-1-0-1-2

Lie Triple ¢: x4, + T1011000 + Zo101110 + ZToo11110 + T1111100 + Zo112100 , 10ha, + 14hy, + 19k, +

28hqa, +22hqs + 16ha +9ha, , 9T, + 521011000 + 8T 0101110 + 8% 0011110 + ST _1111100 + T 0112100

g% =span { Toy + T0y — T—ag, Tas — Tag + T—as —Pas — Rag + has } = 81(2, k)

g[-1] = 42 V*

We have Gg’ = SL(2,k), and the cover splits by Theorem 3.2. The orbit is admissible.

Bala-Carter Label: Dg(az); Weighted Dynkin Diagram: 1 (not special)
0-1-0-1-0-2

Lie Triple ¢: 24, +2%0000011 — 0111000 +Z0101100+5Z0011100+2Z 1111000 +4T0101110 +3%0011110+4Z 1011110

, 10hqo, + 15ha,+ 20hq,+ 29hq, + 23ho+ 16ha,+ 9, , DT_a, + 220000011 +T—0101100 +2Z_0011100 +

32 1111000 + 27 0101110 + T_1011110

B¢ = Span { Tags T—aas ha4 } = 5[(27k)

g[-1] = 5v?

We have Gg’ = SL(2,k); apply Theorem 3.2. The orbit is not admissible.

Bala-Carter Label: D5 + A;; Weighted Dynkin Diagram: 1 (special)
2—-1-0-1-1-0

Lie Triple ¢: 4, 4+ 0000110 + 0111000 + T0101100 +To011100 + Tooo1111 5 14ha, +19ha, +26ha, +37ha, +

29h4, + 20ha, + 10k, , 14— 4, + 10Z_0000110 + 18T —0111000 + T—0101100 + 8T —0011100 + 10T 0001111

g% = span { o, + T—qy, Tay + Tary —hay + ha, } =~ sl(2,k)

g[-1] = 4V
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We have Gg = SL(2,k); apply Theorem 3.2. The orbit is admissible.

Bala-Carter Label: Dg(a;); Weighted Dynkin Diagram: 1 (special)
2—1-0-1-0-2

Lie Triple ¢: 24, +Tq, + To000011 + Z0111000 + 0101100 + 220011100 — 0011110 > 14ha; +19hq, +26hy, +

37ha, +29ha; +20hgs + 11k, , 142, —92_ o, +202_go00011 + 8T 0111000 + 1120101100 +9Z_0011100 +

20z _o101110

g% = span { Ta,, Ty ha, } = 502, k)

g[-1] = 4?2

We have G§ = SL(2,k); apply Theorem 3.2. The orbit is admissible.

Bala-Carter Label: Dg; Weighted Dynkin Diagram: 1 (not special)
2—1-0-1-2-2

Lie Triple ¢: zo, + Zag + Ta, + Zo111000 + To101100 + Too11100 , 18Ra, + 25hq, + 34ha, + 49hq, +

39has + 28hags + 15ha, , 18x_o, + 287 _og + 152 _q, + 102_0111000 + 15Z_0101100 + 242 _0011100

g¢ = Span { Ty, T—aqs, Pay } =~ sl(2, k)

g[-1] = 3V?

We have Gg’ = SL(2,k); apply Theorem 3.2. The orbit is admissible.

APPENDIX A. FINDING THE GIVEN NUMBER OF RATIONAL ORBITS

A.l. The 4; orbit of F?,. Using the weighted Dynkin Diagram of this orbit, we deduce that g[0] is
the direct sum of a split Lie algebra of type Bs (with simple roots a, 8 and ) and khs (notation of
Section 7). The subspace g[2] has basis

B = {Zp+2y+26, TatB+2v+261 Tat+25+27+265 Tat25+37+26) Tat+25+47+265 Tat3G+47+265 T2a+36+47+26 }-

The split so(7) acts on g[2] as the standard representation, preserving an isotropic quadratic form.
With respect to the basis B above, this form is Q(Z) = z127 + 26 + 7375 + 3. The subspace spanned
by hs acts diagonally with respect to B.

The representative E chosen for the split orbit satisfies Q(E) # 0, whence P may be identified as
the subset of non-isotropic elements of g[2]. Given a representative E' of a rational orbit, conjugation
by SO(7) will preserve Q(E'), and (we check) the action by the one-parameter subgroup corresponding
to hs will modify Q(E') by a square. Thus under G¥, P decomposes into |k*/k*?| orbits. Explicitly,
representatives for these orbits are given in coordinates with respect to B as (m,0,0,0,0,0,1), where
m runs over the square classes in k*.

A.2. Ay + A; orbit of Fy. In this case, g[0] = s[(3, k)5 @ sI(2, k) @ khg. A basis for g[2] is

B = {ma+25+27; LTa428429+6> La+28+27+28 La+26+37+6 La+284+3v+265 $a+2,8+4'y+26}-

The sl(2, k) acts trivially on g[2], the khg acts diagonaly (with respect to B), and the s[(3, k) acts on
g[2] as the symmetric square of the standard representation of sl(3, k). Applying Proposition 4.1, we
deduce that there are at most 2 rational orbits, for any choice of k (real or p-adic).

We have two immediate choices of orbit representatives E = xqy28+27+25 + Tat28+3v+0 and E' =
Tot25+2y + Tat2p+27y+426 + Tatas+dy+26 (Obtained by considering the GH-action on g[2]). Let ¢' be
the standard Lie triple corresponding to E'; then g¢ = sl(2, k) @ so(Q), where the quadratic form Q
is represented by the 3 x 3 identity matrix. When k¥ = R or k has residual characteristic even and
(=1/ = 1)r = -1, so(Q) is not equivalent to s[(2, k), which shows that the two orbits are distinct.

Otherwise, the groups G® and G? are isomorphic; however, one can (laboriously) prove directly that
the two orbits are not rationally conjugate under G¥ (for any choice of k).
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A.3. B, orbit of Fy. Here, g[0] = so(5) ® kh, @ khs, where so(5) is the split subalgebra with simple
roots B and <. The subspace g[2] is 6-dimensional, with basis

B = {Ta;Tat8s TatBtv> Tatf+2ys Tat2p+2ys T+2y+28 )-

With respect to this basis B, h, and hs act diagonally and so(5) acts as Vg @ VI, As before,
the subgroup of G¥ corresponding to so(5) preserves a quadratic form, which is given by Q(%) =
T125+T224+2% in coordinates with respect to B. Moreover, the one-parameter subgroups corresponding
to hg and hs can only change the value of Q(Z) by a square, whereas they can scale the last coordinate
by any value in k*. Whence there must be |k*/k*?| orbits. Representatives of this other orbits are given
in coordinates with respect to B as (m,0,0,0,1,1), where m runs over the square classes in k*.

A more careful look at the groups G¢ arising from each of these rational orbits shows that in fact
each different value m ¢ k*? chosen leads to G¢ ~ SL(2, F(y/m)).

A4. Cs(a1) orbit of Fy. In this case, g[0] = sl(2,k)s ® sl(2,k)s ® khq @ kh,, and g[2] is spanned by

B = {Zatp1vy: T2y, Tpt2y+0> LatBty+o> Lh+2y+2}-

Hence sl(2,k)g acts trivially, whereas s[(2,k)s; decomposes g[2] into irreducibles V* @ V3. Tt acts
transitively on the former; its action on the latter is equivalent to the adjoint representation of SL(2, k)
on its Lie algebra. The one-parameter subgroup of G¥ corresponding to h, will act by scalars (in k*)
on each of these subrepresentations; the subgroup corresponding to h, acts diagonalizably.

Under the identification of V* with the adjoint representation, the representative X = zgiay +
T42+25 corresponds to the matrix 9§. Its orbit under G consists of all nonzero hyperbolic (diago-
nalizable over k) matrices. Choosing representatives X (§) = zgy2y + {Zg42,+26, as & ranges over the
square classes of k*, yields representatives for the remaining rational orbits of maximal dimension.

Finally, using Section 4, we conclude that the elements E(§) = Tq4 4,45 + X (§) must exhaust a set
of representatives for all rational orbits in G - E.

A5. 245 + Ay orbit of Eg. In this case, g[2] is a 9-dimensional space, with basis

B = {wal+‘13+a4’wal+a3+a4+‘153wal+a2+03+a47xal+012+043+a4+‘157
Tastastas) Lagt+astastasr: Lastostast+aer Lastastastastas, $a2+a3+2a4+a5+a6}

and
g[O] = 5[(27 k)2 @ 5[(27 k)3 @ 5[(27 k)5 @ khl @ kh4 @ k‘h(;

Note that the three s[(2, k) subalgebras commute, and that the Cartan pieces will act diagonalizably on
g[2]. Let us compute the rational orbit of the chosen representative E, which equals (1,0,0,1,1,0,0,1,1)
in coordinates with respect to the basis for g[2] above.

First note that the SL(2, k)s-action on g[2] decomposes as 2V2 + 5V, with the two two copies of

the standard representation lying on the first four vectors of the basis above. Hence, for g5 = 2% €

SL(2,k)s, we have g5 - E = (a,c,b,d,1,0,0,1,1), with ad — bc = 1. Similarly, an element g5 = ¢/ €
SL(2, k)3 acts nontrivially only on the next four coordinates, so we have gsgs-E = (a,c¢,b,d, e, g, f, h, 1),
with ad — bc =1 and eh — fg = 1. The action of SL(2, k) does not further enlarge the orbit.

Now action by the one-parameter subgroups corresponding to hi, hs, and hg (denoted by hq(r),
ha(s) and hg(t), respectively) scales these values as follows

hi(r)hy(s)he(t)gags - E = (rsa,rt™ c,rb,rs~ 't~ d, ste,r ‘tg, tf,r s th,r~tst™1).

2¢-1 2 in the second four

This gives a degree of freedom of r in the first four coordinates, of r—'t
coordinates, and 7~ !st~! in the last coordinate.

To solve for an arbitary element of g[2] (except possibly some in a subvariety of lower dimension),
one can choose g3 and g5 to give the correct values up to scaling in the first four, second four, and last
coordinate, respectively. However, to solve r?t~! = m and r~'t? = n implies solving t* = n?m, which

is possible only if £*3 = k*.
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Whence there are |k* /k*3| rational orbits in G-E. Representatives for these orbits are (m,0,0,1,1,0,0,1,1),
with m running over the cube classes in k*.

A.6. Ajs orbit of Eg. We have that g[2] is spanned by

B = {':Cch yLagr Lastas+as; Last+ast+ass wa3+a4+05}

and that g[0] is the direct sum of s[(2, k)4 (which acts trivially on g[2]) and the rest of the Cartan
subalgebra. Our orbit representative £ = (1,1,1,1,1) with respect to the above basis B for g[2];
since the action of G¥ is diagonal with respect to B, any orbit representative must have all non-zero
coordinates. Computing the Cartan action directly and then solving for any possible orbit representative
leads to a cubic equation in k*. Once again, we deduce there are |k*/k*3| rational orbits. One possible
set of representatives would be {(1,1,1,d,1)}, where d runs over the cube classes in k*.

APPENDIX B. ADMISSIBILITY OF NON-SPLIT RATIONAL ORBITS

Those rational orbits for which we cannot by way of the previous section exclude the possibility that
non-split forms of G? arise must be treated on a case-by-case basis. The admissibility of these orbits is
known over R by [Nol, No2]. In this section, we discuss the (very few) cases arising in G», Fy and FEjg.

B.1. k-forms of SL(2). Suppose G? is SL(2). It admits a unique non-split k-form, which we identify
with SL(1,D) = D*, for D the quaternions over k [T1] when k is a p-adic field, and with SU(2) when
k = R. Note that both these groups are compact, each being isomorphic to a special orthogonal group
preserving an anisotropic quadratic form.

Theorem 5.2 implies that these groups do not admit 2-dimensional k-rational representations. Rather,
their standard 4-dimensional k-rational representations decompose into two 2-dimensional irreducibles
upon passage to the algebraic closure.

Lemma B.1. The metaplectic cover of a compact k-from of SL(2) arising from its 4-dimensional
irreducible k-rational representation splits.

Proof. First let k denote a p-adic field (of residual characteristic different from 2), and D the skew field
of quaternions over k. Realize the given representation of D> as left multiplication on D. This action
preserves a symplectic structure on D = F*, hence gives a map D> — Sp(4,k). The image of D* is
a compact subgroup of Sp(4, k), which preserves a self-dual lattice in F*. Hence by [MVW, Ch2.I1.8],
the cover splits.

Now let ¥ = R The standard representation of U(2) preserves a hermitian form on C?. The
imaginary part of this form defines a symplectic form on R* preserved by U(2), and hence gives a
map U(2) — Sp(4,R). This realizes U(2) as part of a dual reductive pair in Sp(4,R), whose full C'
metaplectic cover therefore splits by [MVW, 3.1.1]. Restriction to SU(2) gives a splitting over that
subgroup; since SU(2) is equal to its group of commutators, the image of this splitting map must lie in
Mp(4,R) [MVW, 2.11], as required. O

B.2. k-forms of SL(2) x SL(2). Suppose G? is SL(2) x SL(2). Its non-split k-forms include not only
direct product groups, with one or both factors non-split forms of SL(2), but also SL(2, E), for E a
quadratic extension field of k, viewed as a k-group. The former cases may be understood with the help
of Section B.1.

For k = R, the group SL(2,C) is simply connected, and so any cover of it will split, implying the
orbit is admissible. For k a p-adic field, the answer is less straightforward. We compute the metaplectic
cover in the fundamental case of the standard representation of SL(2, E) (a k-rational representation
by restriction of scalars).

Lemma B.2. Let k-be a p-adic field of residual characteristic different from 2. Let E = k(\/a) be a
quadratic extension field of k (where a € k* is not a square). View SL(2,E) as a k-group; then it
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admits a 4-dimensional irreducible k-rational representation, coming from the standard representation
of SL(2,E) on E? ~ k*. This gives a homomorphism

p: SL(2,E) — Sp(4, k).

The metaplectic cover of SL(2, E) determined by the lift of o to Mp(4,k) splits when either —1 € k*?,
or a = —1 ¢ k*2. It does not split otherwise.

Proof. Note that Lemma 3.1 applies to SL(2, E). The calculation of the restriction of the metaplectic
cocycle of Sp(4,k) to the diagonal subgroup of SL(2,E) is as follows. Let h = diag(z,27') € H C
SL(2,E), with z € E*. Then ¢(h) = blockdiag(A,'A="), where A = [¢2*] and z = a + /ab.

The Steinberg cocycle (3.1) of Sp(4, k), restricted to ¢(H), is S(h,h') = t(hh')t(h)~'t(h')~! since
©(H) preserves lagrangian subspaces. Moreover, t(h) = v(1)y(det(A))~!, so as before (cf (3.2)), we
have S(h,h') = (det(A)/det(A"))x. Now det(A) = a® — ab® = Ng/,(2), the norm of z. The image of
these norms in k* /k*? has index 2. Since k has residual characteristic different from 2, this implies that
det(A) can take on only 2 different values modulo k*?: denote these values {1, a}.

If (a/a)r = (a/ — 1), = 1, then the Steinberg cocycle is identically 1 on ¢(H), implying that the
cover splits. This occurs whenever —1 € k*?, or when a = —1 ¢ k*2.

The remaining cases have k*/k*? = {1,—1,w,—w}, for w € k an element of minimal positive
valuation, and a € {w,—w}. It follows that a = —a and (a/a)r, = —1 and the Steinberg cocycle is
nontrivial. (In fact, one can verify directly that the cocycle (Ng/i(2), Ng/i(2'))r is equivalent to the
non-trivial Steinberg cocycle (2/2')g.) Thus the cover does not split. O

Remark. The (2-)Hilbert symbol is not as simply understood for fields of the residual characteristic
equal to 2. Part of the difficulty lies in the 2V+2 square classes in k* (where N is the valuation of 2 in
k); the triviality of the Steinberg cocycle is far less likely. For y, for example, one can show that for
any nontrivial quadratic extension E, SL(2, E) inherits a nontrivial metaplectic cover from ¢.

B.3. k-forms of SL(4). Finally, suppose G? is SL(4). Its nonsplit rational p-adic forms are (see [T1]):
SL(1,D), for D a central simple division algebra over k such that [D : k] = 16; SL(2, D), for D the
quaternions over k, i.e. [D : k] = 4; and SU(E, h) for (two kinds of) degree 4 hermitian forms h over a
quadratic extension field E of k. Over k = R, its nonsplit rational forms are SU(4), SU(1,3), SU(2,2)
and SL(2,H), where H denotes the quaternions over R.

Denote the three fundamental weights in SL(4) by A1, A2, and As.

Lemma B.3. The special unitary group forms of SL(4) admit k-rational representations which decom-
pose into Vy, @V, at the level of the algebraic closure, whereas the special linear group forms of SL(4)
do not.

Proof. First let k£ denote a p-adic field. Let us apply Theorem 5.2. For the special unitary groups,
we have [T2, Section 6] that dy, is either 1 or 2, and that dy, = d), = 1. Furthermore, we deduce
from the Tits index of these groups that {A1, As} form the only nontrivial orbit of the Galois group. In
particular, there is an 8-dimensional irreducible k-rational representation of G which decomposes into
Vi, @ Vi, at the level of the algebraic closure — namely, the standard representation.

For the special linear groups defined over central simple division algebras over k, we note that the
orbits of the Galois group on the set of fundamental weights is trivial, and so in particular every
irreducible representation p’}\i of is isotypic at the level of the algebraic closure. In particular, the
standard representation psq of G(k) is irreducible over k and decomposes over the algebraic closure as
a direct sum of 4 (for SL(1,D), [D : k] = 16) and 2 (for SL(2,D), [D : k] = 4) copies of py,. Hence
p’}\l = pstq in both cases, and dy, = 4 (respectively, 2). Thus p,, is not k-rational, nor does it occur
with multiplicity 1 as an absolutely irreducible component of a k-rational representation of G(k). O

Hence, whenever g [—1] decomposes as Vy;q @ V%, under G¢ = SL(4, k), it follows that the only other
k-rational forms of G? that can occur correspond to special unitary groups.
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Lemma B.4. Let E be a quadratic extension field of k, and h a Hermitian form on E*. The stan-
dard representation of SU(h, E) gives a map ¢: SU(h,E) — Sp(8,k). Then the metaplectic cover of
SU(h, E) determined by ¢ splits.

Proof. As in the second part of the proof of Lemma B.1, the unitary group arises as half of a dual
reductive pair, and hence admits a splitting over the special unitary group into the (two-fold) metaplectic
group. O
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