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Abstract

In this paper, we will introduce the p-adic numbers and their associated prime ideal and integer
ring. The parahoric subgroups for points in the standard apartment of SO(4) are computed, as
well as the tori in SO(4) presented in [3]. The tori are compared with the parahoric subgroups.
Then, the stabilizer subgroups and the points in the standard apartment fixed by the tori are
determined.
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1 The p-adic numbers

The extension of the rationals through the usual absolute value norm is not its unique such extension.
The completion of Q with respect to the p-adic metric yields the p-adic numbers.

1.1 The p-adic norm

We can define the notion of a norm abstractly.

Definition 1.1. A norm on a field F is a function | · | : F → R+ satisfying,

(1) |x| = 0 =⇒ x = 0;

(2) |xy| = |x||y| for all x, y ∈ F;

(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ F;

Definition 1.2. A norm is called non-archimedean if it satisfies the Ultrametric Inequality, which is
a stronger version of the Triangle Inequality,

|x+ y| ≤ max{|x|, |y|} ∀x, y ∈ F,

and archimedean otherwise.

The usual absolute value on Q is archimedean. A field is non-archimedean if it is equipped with a
non-archimedean norm. Now, there exists a characterization of non-archimedean norms on Q.

Lemma 1.3. A norm | · | on Q is non-archimedean if and only if |x| ≤ 1 ∀x ∈ N.

The proof of the above lemma can be found in [4].

Remark 1.4. (The Archimedean Property). A norm | · | on Q is archimedean if and only if for all
x, y ∈ Q, there exists n ∈ N such that |nx| > |y|.

Now, we define the norm which allows for the construction of the p-adic numbers.
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Definition 1.5. The valuation of n given a prime p, vp(n), is the unique natural number such that
n = pvp(n)n′ where p ∤ n′. Extend this definition to Q by letting vp(

a
b ) = vp(a)− vp(b).

We will use the valuation to obtain the defining properties of a norm. Define, for any x ∈ Q

|x|p = p−vp(x).

Then, | · |p is a non-archimedean norm on Q called the p-adic norm. Notice that the p-adic norm of a
rational number is entirely determined by the prime factorization of the numerator and denominator.
The induced metric d(x, y) = |x− y|p satisfies the ultrametric inequality.

To illustrate the notion of distance, consider the following example. The distance between p and 0 is,

|p− 0|p = |p|p =
1

p
.

The distance between p and 1 is, |p− 1|p = |1− p|p = 1. Also notice, {x : |x|p < 1} = {x : |x|p ≤ 1/p}.

We can see that the p-adic norm of an integer x expressed in base p depends on the least significant
nonzero digit of x. This is opposite from the standard absolute value, where an integer’s size depends
on its most significant digit.

1.2 Properties of non-archimedean fields

We will show some topological properties of non-archimedean field. As stated above, the field Q,
equipped with the p-adic norm is non-archimedean.

Proposition 1.6. Let F be a non-archimedean field. Then every point in an open ball is a center, so
b ∈ Br(a) =⇒ Br(a) = Br(b).

Proof. For any b ∈ Br(a), we know |b− a| < r. For any x ∈ Br(a),

|x− b| = |(x− a) + (a− b)| ≤ max{|x− a|, |a− b|} < r.

Hence, x ∈ Br(b) as |x− b| < r =⇒ Br(a) ⊆ Br(b). Similarly, we obtain Br(a) ⊆ Br(b).

From this result, we have the following consequence.

Corollary 1.7. Let F be a non-archimedean field. Then any 2 open balls are either disjoint or one is
contained in the other, so

x ∈ Br(a) ∧ x ∈ Bs(b) =⇒ Br(a) ⊆ Bs(b) or Bs(b) ⊆ Br(a).

Proof. Suppose, without loss of generality, r < s. If x ∈ Br(a), then Br(a) = Br(x) and if x ∈ Bs(b),
then Bs(b) = Bs(x), by Proposition 1.6. Then,

Br(a) = Br(x) ⊆ Bs(x) = Bs(b),

as required.

We have shown that the complement of an open ball is the union of all the open balls in its complement.
However a union of open balls is open. Hence, every open ball in a non-archimedean field is both open
and closed.

1.3 The construction of the p-adic numbers

Any positive rational number r can be represented with a decimal expansion, r =
∑∞

i=k ai10
−i, where

0 ≤ ai < 10. Now, we can also represent any positive rational number r by a p-adic integer, which is
given by, r =

∑∞
i=0 aip

i, where p is prime and 0 ≤ ai < p. This representation of the rational numbers
allows us to consider congruences modulo pn.
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Definition 1.8. The p-adic integers are defined to be the set of the series,

Zp =

{ ∞∑
i=0

aip
i : 0 ≤ ai < p

}
.

Addition of p-adic integers is defined component-wise modulo p, carrying remainders. Notice that
Z ⊂ Zp.

The p-adic integers form an additive group, as additive inverses can be defined for every p-adic integer.
First, we will show

∑∞
i=0(p − 1)pi = −1. This series converges in the p-adic norm as for all n ≥ 0,

| (p−1)pn+1

(p−1)pn | = |p| = 1
p . Now, as 1 = p0,

p0 +

∞∑
i=0

(p− 1)pi = 0.

For any p-adic integer α =
∑∞

i=1 aip
i, define,

σ(α) =

∞∑
i=0

(p− 1− ai)p
i.

Then,

α+ σ(α) =

∞∑
i=0

aip
i +

∞∑
i=0

(p− 1− ai)p
i

=

∞∑
i=0

(p− 1− ai + ai)p
i

= −1.

Hence, −α = σ(α) + 1. Also,
∑∞

i=1 2
i = −1 for p = 2. Notice, for any p,

∑∞
i=0 p

i = 1
1−p .

The sequence
∑∞

i=1 2
i = −1, where p = 2 is Cauchy with respect to | · |p, but diverges in R. The

geometric series identity holds for any p > 1.

Notice the result of the division of the p-adic expansions of two integers is, in general, an infinite series
with finitely many negative p-power terms. Now, suppose we wanted to define a p-adic expansion for
a rational number a

b . If p does not divide the denominator b, then simply represent numerator and
denominator by the p-adic integer expansion and divide the polynomials. If p divides the denominator
b, then we need to use negative powers of p to represent the rational number.

1.4 The completion of Q with respect to the p-adic norm.

Definition 1.9. The completion of a field F with respect to an absolute value | · | is the set,

{[(an)] : (an) is a Cauchy sequence in F},

which is the set of all equivalence classes of Cauchy sequences, where the equivalence relation is,

(an) ≡ (bn) if ∀ ε ∈ R, ε > 0, ∃N ∈ N such that ∀n ≥ N, |an − bn| < ε.

A field is embedded in its completion (consider the sequence (x, x, . . .) for all x ∈ F).
We can form the completion of Q with respect to | · |p.
Definition 1.10. Let Qp be the completion of Q with respect to | · |p. We call Qp the p-adic numbers
and denote the extended absolute value on Qp still by | · |p. For x = [(xn)] ∈ Qp, |x|p = lim |xn|p.
The completion of Q with respect to the p-adic norm is the set of all series of the form

∑∞
i=k aip

i,
where 0 ≤ ai < p and k ∈ Z.
Theorem 1.11. Qp is complete with respect to | · |p.
The proof of the above theorem can be found in [4].

Remark 1.12. We can think of Qp as the set of all Laurent series in p, with the addition and
multiplication inherited from Q as above. Then, Zp is the set of power series, and is the ball of radius
1 centered at 0.
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1.5 The integer ring O and the subgroups Pn

To the p-adic numbers, we can associate an integer ring. Consider the ring given by,

O = Zp = B̄1(0) = {x ∈ Qp : |x| ≤ 1}

Notice |x| ≤ 1 ⇐⇒ val(x) ≥ 0. Equivalently,

O =

{ ∞∑
i=0

aip
i : ai ∈ {0, . . . , p− 1}

}

Proposition 1.13. For O = {x ∈ F : |x| ≤ 1}, P = {x ∈ O : |x| < 1} is a maximal ideal, called the
prime ideal, and every y ∈ O\P is invertible in O.

Proof. To show P is an ideal, let x, y ∈ P. Then, |x+ y| ≤ max{|x|, |y|} ≤ 1, so x+ y ∈ P. Now, let
x ∈ O, y ∈ P, and |xy| = |x||y| < 1 so xy ∈ P. Also, |x| = | − x| and |0| = 0, so for every x ∈ P,
−x ∈ P and 0 ∈ P.

Now, if x1, x2 ∈ O and x1x2 ∈ P, then one of x1 or x2 are in P, as otherwise |x1x2| = 1 ̸∈ P, hence P
is a prime ideal of O.

To show P is maximal, consider O\P = {x ∈ Qp : |x| = 1}. We have x−1 ∈ O\P as |xx−1| = 1, which
implies |x−1| · 1 = 1. Thus, O\P = O×. Since P is prime and everything outside P is invertible, every
ideal of O is contained in P. Thus, P is the unique maximal ideal of O.

The ideal P is also principal, as for a, b ∈ P with maximal norm, ab−1 ∈ O\P = O×. As |ab−1| = 1,
both a and b generate P . In particular, for the p-adic numbers Qp, O = Zp and P = pZp.

Definition 1.14. A generator ϖ of P is called a uniformizer for Qp.

Fix a generator ϖ of P, which has maximal norm. Now, we will prove every element a ∈ Qp can
be written as uϖn for some u ∈ O×, n ∈ Z. Choosing the largest n ∈ Z such that |aϖn| ≤ 1, we
have, |ϖ| < |aϖ−n| ≤ 1. However, ϖ is is the element of P with maximal norm, so |aϖ−n| = 1, and
aϖ−n = u for some u ∈ O×.

Now, we can define a chain of subgroups based on the norm of the p-adic field.

Definition 1.15. Let P0 = O. For any integer n, let Pn denote the set,

Pn = {x ∈ Qp : val(x) ≥ n}.

Every Pn is a group, but Pn is only an ideal of O when n ≥ 0. If n ≤ −1, then Pn is a group, but
not a subset of O.

We obtain the chain,
· · · ⊆ P2 ⊆ P ⊆ O ⊆ P−1 ⊆ P−2 ⊆ · · · .

Definition 1.16. For the integer ring O and the prime ideal P, F = O/P is the residue field of F.

If F = Qp, the residue field is Z/pZ.

2 Field extensions of Qp

In this section, we describe unramified and ramified field extensions. Also, in this section, we can set
F = Qp and O = Zp.

Proposition 2.1. For every prime p and n ∈ N, there exists a unique field of size pn constructed by
Fp[x]/⟨m⟩, where m is an irreducible polynomial of degree n.

Refer to Theorem 9.14 in [6] for the proof of the above proposition.

We can consider two kinds of extensions on the p-adic numbers.
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2.1 Unramified extensions

First, we discuss field extensions of a field F which arise from extensions of the residue field.

Definition 2.2. Suppose p ̸= 2. Let m(x) ∈ O[x] be an irreducible monic polynomial. Let m̄(x) =
m(x) mod p, so the polynomial m̄(x) ∈ F[x]. If m̄(x) is irreducible, then, E = F[x]/⟨m⟩ is an
unramified extension of F.

A consequence of Proposition 2.1 is that any two irreducible polynomials with equal degree in O[x]
whose reduction modulo P is also irreducible will give the same extension E, which is not the case for
all fields.

Example 2.3. We give an example of an unramified quadratic extension. Let m(x) = x2 − ε be an
irreducible polynomial in O[x], where ε ∈ O is a non-square and suppose m̄(x) = x2 − ε̄, where ε̄ ∈ F
is a non-square. As ε̄ is a non-square, m̄(x) is irreducible. Then,

E = F[
√
ε] = {a+ b

√
ε : a, b ∈ F}

is an unramified extension field of F. As ε̄ ̸= 0 and ε̄ ∈ O/P, val(ε) = 0 and ε ∈ O×. Hence, |
√
ε| = 1.

If E = F[
√
ε], we can define the integer ring and maximal prime ideal of E by,

OE = {a+ b
√
ε : |a+ b

√
ε| ≤ 1} = {a+ b

√
ε : a, b ∈ O},

and,

PE = {a+ b
√
ε : |a+ b

√
ε| < 1} = {a+ b

√
ε : a, b ∈ P}.

The residue field OE/PE
∼= F[

√
ε̄].

2.2 Ramified extensions

Now, we consider a second type of field extension.

Definition 2.4. Any extension field E that is not unramified is called ramified.

Example 2.5. We give an example of a ramified quadratic extension. Let ϖ be a uniformizer of F,
so ϖ has the maximal norm which is strictly less than 1 and |ϖ| < |

√
ϖ| < 1. If F = Qp, then |ϖ| = 1

p

and |
√
ϖ| = 1√

p . Then,

OE = {a+ b
√
ϖ : |a+ b

√
ϖ| ≤ 1} = {a+ b

√
ϖ : a, b ∈ O},

where val(b
√
ϖ) = 1

2 and,

PE = {a+ b
√
ϖ : |a+ b

√
ϖ| < 1} = {a+ b

√
ϖ : a ∈ P, b ∈ O},

as we must have val(a) ≥ 1. One can show that OE/PE
∼= O/P in this case; when this happens, the

extension is called purely ramified.

Every extension of F is either unramified, purely ramified or partially ramified. We give an example
of a partially ramified quartic extension.

Example 2.6. The field extension F[
√
ε,
√
ϖ] is a partially ramified quartic extension. Its residue

field is isomorphic to F[
√
ε̄], and in fact it has exactly three intermediate field extensions: F[

√
ε] which

is unramified, and F[
√
ϖ] and F[

√
εϖ] which are both (purely) ramified.

3 The root system of so(4)

In this section, we will introduce the root space decomposition of the Lie algebra so(4), as presented
in [5].
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3.1 Root systems

Consider a finite-dimensional vector space V over R endowed with a positive-definite symmetric
billinear form ⟨·, ·⟩. Given a ̸= 0 ∈ V , the set

Ha = {λ ∈ V : ⟨λ, a⟩ = 0},

is a hyperplane of V . A reflection on V is a linear operator s on V such that there exists an element
β ∈ V such that s(β) = −β and s fixes the hyperplane perpendicular to Rβ. Evidently, a reflection is
orthogonal, meaning it preserves the inner product on V .

For any β ∈ V , sα(β) = β − 2⟨β, α⟩
⟨α, α⟩

. For c ∈ R and ν ∈ Hα,

sα(α) = −α, sα(cα) = −cα, sα(ν) = ν.

Finally, for any β ∈ V , V = Rα⊕Hα.

Definition 3.1. A subset Φ of the vector space V is a root system in V if the following axioms are
all satisfied:

(i) Φ is finite, Φ does not contain 0 and spans V .

(ii) If α ∈ Φ, −α ∈ Φ and Rα ∩ Φ = {α,−α}.

(iii) For any α ∈ Φ, Φ is invariant under reflection sα.

(iv) 2⟨β,α⟩
⟨α,α⟩ ∈ Z, for all α, β ∈ Φ.

Example 3.2. Consider R3 with the usual dot product, with the usual basis vectors denoted by
{e1, e2, e3} and let V be the plane orthogonal to e1 + e2 + e3. Consider Φ = {±(e1 − e2),±(e1 −
e3),±(e2 − e3)}. Notice,

(e1 + e2 + e3) · (e1 − e2) = 0;

(e1 + e2 + e3) · (e1 − e3) = 0;

(e1 + e2 + e3) · (e2 − e3) = 0.

Now, we verify the invariance of Φ under reflections.

se1−e2(e1 − e3) = −(e1 − e3);

se1−e3(e2 − e3) = −(e2 − e3);

se1−e3(e1 − e2) = −(e1 − e2).

Finally, we give the following example.

2
(e1 − e2) · (e2 − e3)

(e2 − e3) · (e2 − e3)
=

2(−1)

1 + 2
= −1 ∈ Z.

Hence Φ is a root system and V = span(Φ).

Definition 3.3. Let Φ be a root system in V . Denote by W the subgroup of GL(V ) generated by
the reflections sα, α ∈ Φ. W permutes the elements of Φ, so W is a finite subgroup of the symmetric
group of Φ. W is the Weyl group of Φ.

The definition of the Weyl group can be extended to the affine Weyl group. For each α ∈ Φ, define
the coroot of α, denoted by α̌, to be,

α̌ =
2α

(α, α)
.

Definition 3.4. Let W be the Weyl group of the root system Φ. Consider the lattice Λ generated by
the coroots α̌, for α ∈ Φ. The semi-direct product Waf = W ⋉ Λ is the affine Weyl group.
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3.2 The root space decomposition of so(4)

Let g be a nontrivial semisimple finite-dimensional Lie algebra over an algebraically closed field F
of characteristic zero. Given a Cartan subalgebra h and root system Φ of g, we can decompose
g = h ⊕

⊕
α∈Φ gα, where gα is the weight space associated with the root α. Recall the normalizer of

h, denoted by NL(h) is given by, NL(h) = {x ∈ g : [x, h] ∈ h}. The classical Lie algebras satisfy the
above definition, hence a root space decomposition exists for so(4).

We know so(4,F) = {X ∈ gl(4, k) : X⊤J = −JX} where,

J =

[
0 I2
I2 0

]
,

where I2 denotes the 2 × 2 identity matrix. The root system of so(4,F) is is Φ = {±α,±β}, where
α = e1 − e2 and β = e1 + e2.

Consider the Cartan subalgebra,

h =



a 0 0 0
0 b 0 0
0 0 −a 0
0 0 0 −b

 : a, b ∈ F

 .

For the root system Φ of so(4), so(4,F) = h ⊕α∈Φ Lα, where Lα is the root space defined by, Lα =
{x ∈ so(4,F) : ad(H) = α(H)X for all H ∈ h}.

4 The Bruhat-Tits Building

We will introduce the Bruhat-Tits building as described in [7].

4.1 The apartment associated to the maximal torus

Let G be an algebraic group defined over a field F and let G = G(F). Every group G has a maximal
split torus over F, denoted by S.

Example 4.1. The maximal torus of GL(2n) is given by,

t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tn

 : t1, t2, · · · , tn ∈ F

 ,

as shown in [2]. From this, we know the maximal split torus of SO(4,F) is given by,

S =



t1 0 0 0
0 t2 0 0
0 0 t−1

1 0
0 0 0 t−1

2

 : t1, t2 ∈ F


The group of F-points is S = S(F).

To every maximal split torus S over G, we associate an apartment A = (G,S,F). The apartment A
is a real vector space spanned by the coroots of the root system of G with respect to S, Φ(G,S). In
particular, from Section 3, the root system of so(4) is Φ = {±α,±β}. Then, Φ ⊆ A∗ and for every
α ∈ Φ,

α : A → R, x 7→ α(x).

To every point in the apartment, we can assign a parahoric subgroup Gx,0, which depends on action of
the root vectors on the point x, α(x), α ∈ Φ. Apartments are “glued” together through the parahoric
subgroups of G. Parahoric subgroups allow for the study of the affine structure theory of G. First, we
define, for α ∈ Φ,
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xα(t) =


1 t 0 0
0 1 0 0
0 0 1 0
0 0 −t 1

 , x−α(r) =


1 0 0 0
r 1 0 0
0 0 1 −r
0 0 0 1

 , (1)

and similarly, for β ∈ Φ,

xβ(s) =


1 0 0 s
0 1 −s 0
0 0 1 0
0 0 0 1

 , x−β(v) =


1 0 0 0
0 1 0 0
0 −v 1 0
v 0 0 1

 . (2)

As shown in [7],
Gx,0 = ⟨S(R), xγ(t) : γ ∈ Φ, val(t) + γ(x) ≥ 0⟩.

Now, when G is not simply connected, compute the normalizer of x in A under the action of N(F ),
where N = NormG(S). The normalizer acts by affine isometries on the apartment.

For SO(4), the normalizer of a point x is computed by the action on the apartment of the group
generated by the affine Weyl group and translations by any integer linear combination of e1 and e2.
The reader may refer to Appendix A of [7].

Notice that an element of the split torus s ∈ S, s = diag(a, b, a−1, b−1) induces a translation in the
building, t−v(s), where vs = (val(a), val(b)), so S induces translations by Z2, which is greater than the
translations induces by the Weyl group.

Notation 4.2. Let rα,n = rα ◦ t−nα̌ be the reflections in the affine hyperplanes Hα,n, where Hα,n =
{x ∈ A : α(x) = n}

Remark 4.3. Reflections have the following properties:

(i) rα(x, y) = (y, x),

(ii) rβ(x, y) = (y,−x).

Now, we will illustrate a reflection of a point in an apartment. The point (0, 1
2 ) can be reflected by

rα,0, which gives rα(0,
1
2 ) = ( 12 , 0) and translated by t 1

2 ,0
to the point (1, 0). Notice t 1

2 ,0
̸∈ Waf . Also,

(3, 0) can be reflected to (2, 1) by rα,2.

Figure 1: Reflection of points in an apartment

Every element in the affine Weyl group can be realized by the normalizer of the torus, however there
exist elements of the normalier which are not contained in the affine Weyl group.
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Definition 4.4. The Bruhat-Tits building is the set of equivalence classes B(G,F) = (G ⊗ A)/ ∼
where (g, x) ∼ (h, y) if there exists an element n ∈ N such that n · y = x and g−1hn ∈ Gx,0. Then G
acts on B(G,F) by the rule h · (g, x) = (hg, x)

Now, we may determine the stabilizer of a point, for example the point (1, x). The stabilizer is the
element n ∈ N that sends x to x and hn ∈ Gx,0.

4.2 The parahoric subgroups of SO(4)

In this section, will discuss the parahoric subgroups Gx,0. First, we must note some consequences of
the non-simply-connectedness of SO(4).

It is known that SO(4) is not a simply connected algebraic group. One consequence of this is that
we cannot immediately deduce the valuations of all of the matrix entries of the parahoric subgroup
directly from the valuations of the root subgroups.

4.2.1 A formula for the parahoric subgroups

We will introduce some notation. Given an m×m matrix, M = {[ti,j ]1≤i,j≤m : ti,j ∈ Pni,j} for some
ni,j ∈ Z, let M be denoted by, M := [Pni,j ]1≤i,j≤m.

Proposition 4.5. Let x be a point in the standard apartment A. The parahoric subgroup associated
to x is,

Gx,0 =


O P−⌊α(x)⌋ P−⌊α(x)⌋−⌊β(x)⌋ P−⌊β(x)⌋

P⌈α(x)⌉ O P−⌊β(x)⌋ P⌈α(x)⌉−⌊β(x)⌋

P⌈α(x)⌉+⌈β(x)⌉ P⌈β(x)⌉ O P⌈α(x)⌉

P⌈β(x)⌉ P−⌊α(x)⌋+⌈β(x)⌉ P−⌊α(x)⌋ O

 ∩G (3)

Proof. We have Gx,0 = ⟨S(O), xγ(t) | γ ∈ Φ, val(t) + γ(x) ≥ 0⟩. First, consider the following
properties, which will give a formula for the parahoric subgroups of SO(4),

(i) xα(s)xβ(t) has entry −st in the (1,3) matrix position;

(ii) x−α(r)xβ(t) has entry rt in the (2,4) matrix position;

(iii) x−β(v)x−α(r) has entry −vr in the (3,1) matrix position;

(iv) x−β(v)xα(t) has entry tv in the (4,2) matrix position.

From the properties of the root subspaces above, (1) and (2), we can derive the restriction on the
valuations of x.

As we allow only integer vaulations for t,

val(t) ≥ −α(x) =⇒ val(t) ≥ −⌊α(x)⌋
val(s) ≥ −β(x) =⇒ val(s) ≥ −⌊β(x)⌋
val(r) ≥ α(x) =⇒ val(r) ≥ ⌈α(x)⌉
val(v) ≥ β(x) =⇒ val(v) ≥ ⌈β(x)⌉

Consider, xα(t)xβ(s). By fact (i) above,

val(−st) = val(s) + val(t) ≥ −⌊α(x)⌋ − ⌊β(x)⌋

Consider, x−α(r)xβ(s). By fact (ii) above,

val(rs) = val(r) + val(s) ≥ ⌈α(x)⌉ − ⌊β(x)⌋

Consider, x−β(v)x−α(r). By fact (iii) above,

val(vr) = val(v) + val(r) ≥ ⌈α(x)⌉+ ⌈β(x)⌉
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Consider, x−β(v)xα(t). By fact (iv) above,

val(vt) = val(v) + val(t) ≥ −⌊α(x)⌋+ ⌈β(x)⌉

We have solved for the subgroups Pn such that, t ∈ Pn =⇒ val(t) ≥ −γ(x) for every γ ∈ Φ. It
is now routine to show (3) is closed under multiplication, so forms a group. Then, Gx,0 contains
⟨S(O), xγ(t) | γ ∈ Φ, val(t)+γ(x) ≥ 0⟩. It can be shown from Bruhat-Tits theory, as developed in [1],
that equality holds.

Each subgroup Gx,0 is compact and open with respect to the induced topology on G as a group of
p-adic matrices.

4.2.2 The group Gx

Let rα denote the reflection which fixes the hyperplane Hα. Every affine reflection is the product of a
linear reflection and a translation. For example,

re1−e2,1 =


0 ϖ−1 0 0
ϖ 0 0 0
0 0 0 ϖ
0 0 ϖ−1 0

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



ϖ 0 0 0
0 ϖ−1 0 0
0 0 ϖ 0
0 0 0 ϖ−1

 = re1−e2t(−1,1)

We wish to identify the points x ∈ A for which there exists n ∈ Nx, n ̸∈ Gx,0 which fixes x. This
corresponds to the points x = (a, b) for which there exists a vector v such that v(s) = (c, d) for some
s ∈ S(F), where (c, d) ∈ Nx and t(c,d) ̸∈ W such that rαrβt(c,d)(a, b) = (a, b).

The translations from the torus are by elements of Z2, but the translations by elements of the affine
Weyl group are just those generated by the coroots α̌ = (1,−1) and β̌ = (1, 1) so they span a sublattice
consisting of all (a, b) such that a+ b is even.

Proposition 4.6. If there exists v ∈ Z2\spanZΦ∨ such that rαrβtv(a, b) = (a, b), then exactly one of
a or b are contained in 1

2Z.

Proof. We identify all the points (a, b) such that there exists v ∈ Z2 such rαrβtv(a, b) = (a, b). Suppose
rαrβtv(a, b) = (a, b) for some v = (c, d), where c+ d = 2k + 1, k ∈ Z.

rαrβtv(a, b) = (a, b) =⇒ rαrβ(−d+ 2k + 1 + a, d+ b) = (a, b)

=⇒ (−(a− d+ 2k + 1),−(b+ d)) = (a, b)

=⇒ −a+ d− 2k + 1 = a

− b− d = b

The points (a, b) which satisfy rαrβtv(a, b) = (a, b) must satisfy,

−2k + 1 = 2a+ 2b,

which implies a ∈ Z and b ∈ 1
2Z or a ∈ 1

2Z and b ∈ Z.

Remark 4.7. Notice that t(c,d)rαrβ = rαrβt(−c,−d).

Now, consider the following lemma, which will allow us to identify points fixed by tori of SO(4).

Lemma 4.8. If rαrβt(c,d) fixes a point x, then there exists an element n ∈ Nx that acts by rαrβt(c,d).
In fact, Gx = ⟨n,Gx,0⟩.

Proof. If rαrβt(c,d) fixes a point x, then it is realized by,

nc,d =


0 0 ϖ−c 0
0 0 0 ϖ−d

ϖc 0 0 0
0 ϖd 0 0


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Suppose the matrix associated to the parahoric subgroup Gx,0 is, [Gx,0]ij =
[
Pkij

]
, where kij ∈ Z,

1 ≤ i, j ≤ 4. Thus, as Gx = ⟨nc,dS, Gx,0⟩, we have,

n =


0 0 ϖ−c 0
0 0 0 ϖ−d

ϖc 0 0 0
0 ϖd 0 0


As shown in Appendix A of [7], Gx is generated by n and Gx,0.

We will illustrate this fact explicitly with a class of tori.

5 Elliptic tori in SO(4)

In this section, we will consider three classes of tori of SO(4), compute their matrices, and determine
the point associated to a subgroup of SO(4) associated to each torus.

5.1 Matrix representations of elliptic tori

As presented in [3], we consider three classes of tori in SO(4), all arising from the field E = F [
√
ε,
√
ϖ],

but arising from different subfields.

Extension fields Witt basis {e1, e2, f1, f2}

F (
√
ε) ⊂ F (

√
ε,ϖ) {1,

√
ϖ,

√
ε
−1

,−
√
εϖ

−1}

F (
√
ϖ) ⊂ F (

√
ε,ϖ) {1,

√
ε,
√
ϖ

−1
,−

√
εϖ

−1}

F (
√
εϖ) ⊂ F (

√
ε,ϖ) {1,

√
ε
−1

,
√
εϖ

−1
,−

√
ϖ

−1}

Table 1: Three classes of tori in SO(4)

We begin with the second and third bases. Consider the basis B2 = {e1, e2, f1, f2} = {1,
√
ε,
√
ϖ

−1
,−

√
εϖ

−1}
of E over F . We can write any element of OE as,

u = u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1

where u1, u2 ∈ O, and u3, u4 ∈ P. We compute the matrix,

M[u]B2
=


u1 u2 u3ϖ

−1 u4(εϖ)−1

u2 u1 −u4ϖ
−1 −u3ϖ

−1

u3 −u4 u1 −u2

u4 −u3ε −u2ε u1

 .

Then, according to the shorthand presented in Section 4.2,

M[u]B2
⊂


O O O O
O O O O
P P O O
P P O O

 .

this matrix M[u]B2
is contained in the parahoric subgroup G(1/4,1/4),0.

Consider the basis B3 = {e1, e2, f1, f2} = {1,
√
ε
−1

,
√
εϖ

−1
,−

√
ϖ

−1} of E over F . We can write any
element of OE as,

u = u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1

where u1, u2 ∈ O, and u3, u4 ∈ P.
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M[u]B3
i =


u1 u2ε

−1 u3(εϖ)−1 u4ϖ
−1

u2 u1 −u4ϖ
−1 −u3ϖ

−1

u3 −u4 u1 −u2

u4 −u3ε
−1 −u2ε

−1 u1


Then, according to the shorthand presented in Section 4.2,

M[u]B3
⊂


O O O O
O O O O
P P O O
P P O O


The matrix M[u]B3

is contained in the parahoric subgroup G(1/4,1/4),0.

Now, consider the first basis, B1 = {e1, e2, f1, f2} = {1,
√
ϖ,

√
ε
−1

,
√
εϖ

−1} of E over F . We can write
any element of OE as,

u = u1 + u2

√
ϖ + u3

√
ε
−1 − u4

√
εϖ

−1
,

where u1, u2, u3 ∈ O, and u4 ∈ P. The intermediate field is F (
√
ε). The reader may refer to Appendix

A for the detailed computation of the tori. We compute the matrix of the multiplication of an element
of E by the element u relative to this basis, which is given by,

M[u]B1
=


u1 u2ϖ u3ε

−1 u4(εϖ)−1

u2 u1 −u4(εϖ)−1 −u3(εϖ)−1

u3 −u4 u1 −u2

u4 −u3ϖ −u2ϖ u1

 .

Then, according to the shorthand presented in Section 4.2,

M[u]B1
⊂


O P O O
O O O P−1

O P O O
P P P O

 .

Now, M[u]B1
̸⊆ Gx,0 for any points in the standard apartment, but in the next section we find x such

that M[u]B1
⊂ Gx.

5.2 Points of the standard apartment fixed by the tori

From M[u]B1
, applying Proposition 4.5, we obtain the following restrictions on α(x), β(x),

⌈α(x)⌉ = 0;

−⌊α(x)⌋ = 1;

⌈β(x)⌉ = 1;

−⌊β(x)⌋ = 0;

which implies −1 ≤ α(x) ≤ 0 and 0 ≤ β(x) ≤ 1. We will show the point x = (0, 1
2 ) will generate Gx

such that M[u]B1
⊆ Gx. We know t(0,1)rαrβ(0,

1
2 ) = (0, 1

2 ) and, let

n = t(0,1)rαrβ

(
0,

1

2

)
=


1 0 0 0
0 ϖ−1 0 0
0 0 1 0
0 0 0 ϖ

 =


0 0 1 0
0 0 0 ϖ−1

1 0 0 0
0 ϖ 0 0

 .

The parahoric subgroup Gx,0 associates with x = (0, 1
2 ), according to Proposition 4.5, is,

Gx,0 =


O P P O
O O O O
P P O O
P P2 P O

 .
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Making use of Lemma 4.8 and Gx = ⟨n,Gx,0⟩, with the shorthand presented above, we have,

Gx =


O P O O
O O O P−1

O P O O
P P P O

 ,

Hence, for x = (0, 1
2 ), M[u]B1

⊆ Gx. The point in the standard apartment fixed by the torus M[u]B1
is

x = (0, 1
2 ).
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A Computation of the tori

In this appendix, we will give the explicit computation of the matrices of the tori from Section 5, which
are introduced in [3], along with their eigenvalues. The eigenvalues of the tori can identify the points
of the building attached to each torus.

A.1 The matrix of the torus with respect toWitt basis B1 = {1,
√
ϖ,

√
ε
−1
,
√
εϖ

−1}

Consider the basis B1 = {e1, e2, f1, f2} = {1,
√
ϖ,

√
ε
−1

,
√
εϖ

−1}. We can write,

u = u1 + u2

√
ϖ + u3

√
ε
−1 − u4

√
εϖ

−1

where u1, u2, u3 ∈ O, and u4 ∈ P. The intermediate field is F (
√
ε). The second column of the matrix

is given by multiplying u by the second element of the basis B1, and writing out the result with respect
to B1. We will show this computation as follows,

u
√
ϖ = u1

√
ϖ + u2ϖ + u3

√
ϖ
√
ε
−1 − u4

√
ε
−1

= u1(
√
ϖ) + u2ϖ(1) + u4(−1)(

√
ε
−1

) + u3(−ϖ)(−
√
εϖ

−1
).

The third column of the matrix is given by multiplying u by the third element of the basis B1, and
writing out the result with respect to B1. We will show this computation as follows,

u
√
ε
−1

= u1

√
ε
−1

+ u2

√
ϖ
√
ε
−1

+ u3ε
−1 − u4ε

−1
√
ϖ

−1

= u1(
√
ε
−1

) + u2(−ϖ)(−
√
εϖ

−1
) + u3ε

−1(1) + u4(−εϖ)−1(
√
ϖ).

The fourth column of the matrix of the matrix is given by multiplying u by the fourth element of the
basis B1, and writing out the result with respect to B1. We will show this computation as follows,

−u
√
εϖ

−1
= −u1

√
εϖ

−1 − u2

√
ε
−1 − u3ε

−1
√
ϖ

−1
+ u4ε

−1ϖ−1

= u1(−
√
εϖ

−1
)− u2(

√
ε
−1

)− u3(ε
−1ϖ−1)(

√
ϖ) + u4(εϖ)−1.
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The matrix of of the torus given by the Witt basis B1 is,

M[u]B1
=


u1 u2ϖ u3ε

−1 u4(εϖ)−1

u2 u1 −u4(εϖ)−1 −u3(εϖ)−1

u3 −u4 u1 −u2

u4 −u3ϖ −u2ϖ u1

 .

Then,

M[u]B1
⊆


O P O O
O O O P−1

O P O O
P P P O

 .

Remark A.1. Since the matrices in Section 5.1 give a torus, they are simultaneously diagonalizable
over the field E. The eigenvectors can be deduced from the intermediate extension field. If t ∈ T is
the element of a torus corresponding to the field element,

ut = ae1 + be2 + cf1 + df2

with the basis B = {e1, e2, f1, f2}, then the eigenvalues of t will be exactly {σ(zt) : zt ∈ Gal(E′/F )}.

Now, we find an eigenvector for λ1 = u1 + u2
√
ϖ + u3

√
ε
−1 − u4

√
εϖ

−1
.

[
u1 u2ϖ u3ε

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 + u2

√
ϖ + u3

√
ε
−1 − u4

√
εϖ

−1

=⇒ u1 + au2ϖ + bu3ε
−1 + cu4(εϖ)−1 = u1 + u2

√
ϖ + u3

√
ε
−1

+ u4

√
εϖ

−1
,

and since this holds for all ui, this implies a =
√
ϖ

−1
, b =

√
ε, c = −

√
εϖ. Now, we verify the product

of the eigenvector with the second row of M[u]B1
.

[
u2 u1 −u4(εϖ)−1 −u3(εϖ)−1

] 
1√
ϖ

−1

√
ε

−
√
εϖ

 = u1

√
ϖ

−1
+ u2 + u3

√
εϖ

−1 − u4ϖ
−1

√
ε
−1

=⇒ u2 + u1

√
ϖ

−1 − u4

√
ε
−1

ϖ−1 + u3

√
εϖ

−1
= u1

√
ϖ

−1
+ u2 + u3

√
εϖ

−1 − u4ϖ
−1

√
ε
−1

,

as required. Now, we check the product of the eigenvector with the third row of M[u]B1
.

[
u3 −u4 u1 −u2

] 
1√
ϖ

−1

√
ε

−
√
εϖ

 = u1

√
ε+ u2

√
εϖ + u3 − u4

√
ϖ

−1

=⇒ u3 − u4

√
ϖ

−1
+ u1

√
ε+ u2

√
εϖ = u1

√
ε+ u2

√
εϖ + u3 − u4

√
ϖ

−1
,

as required. Now, we check the product of the eigenvector with the fourth row of M[u]B1
.

[
u4 −u3ϖ −u2ϖ u1

] 
1√
ϖ

−1

√
ε

−
√
εϖ

 = −u1

√
εϖ − u2

√
εϖ − u3

√
ϖ + u4

=⇒ u4 − u3

√
ϖ − u2ϖ

√
ε− u1

√
εϖ = −u1

√
εϖ − u2

√
εϖ − u3

√
ϖ + u4,

as required. The eigenvector associated to λ1 = u1 + u2
√
ϖ+ u3

√
ε
−1 − u4

√
εϖ

−1
is


1√
ϖ

−1

√
ε

−
√
εϖ

. Now,

we consider the next 3 eigenvectors of M[u]B1
.
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The intermediate field for B1 is F (
√
ε), hence,

σ1 : 1 7→ 1
√
ϖ 7→ −

√
ϖ

√
ε 7→

√
ε

√
εϖ 7→ −

√
εϖ

The second eigenvector is λ2 = σ1(u1+u2
√
ϖ+u3

√
ε
−1−u4

√
εϖ

−1
) = u1−u2

√
ϖ+u3

√
ε
−1

+u4
√
εϖ

−1
.

[
u1 u2ϖ u3ε

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 − u2

√
ϖ + u3

√
ε
−1

+ u4

√
εϖ

−1

=⇒ u1 + au2ϖ + bu3ε
−1 + cu4(εϖ)−1 = u1 − u2

√
ϖ + u3

√
ε
−1

+ u4

√
εϖ

−1
,

and since this holds for all ui, this implies a = −
√
ϖ

−1
, b =

√
ε, c =

√
εϖ. Now, we verify the product

of the eigenvector with the second row of M[u]B1
.

[
u2 u1 −u4(εϖ)−1 −u3(εϖ)−1

] 
1

−
√
ϖ

−1

√
ε√
εϖ

 = −
√
ϖ

−1
(u1 − u2

√
ϖ + u3

√
ε
−1

+ u4

√
εϖ

−1
)

=⇒ u2 − u1

√
ϖ

−1 − u4

√
ε
−1

ϖ−1 − u3

√
εϖ

−1
= −u1

√
ϖ

−1
+ u2 − u3

√
εϖ

−1 − u4

√
ε
−1

ϖ−1,

as required. Now, we check the product of the eigenvector with the third row of M[u]B1
.

[
u3 −u4 u1 −u2

] 
1

−
√
ϖ

−1

√
ε√
εϖ

 =
√
ε(u1 − u2

√
ϖ + u3

√
ε
−1

+ u4

√
εϖ

−1
)

=⇒ u3 + u4

√
ϖ

−1
+ u1

√
ε− u2

√
εϖ = u1

√
ε− u2

√
εϖ + u3 + u4

√
ϖ

−1
,

as required. We can do this similarly for the fourth row of M[u]B1
.

Now, consider σ2.

σ2 : 1 7→ 1
√
ϖ 7→

√
ϖ

√
ε 7→ −

√
ε

√
εϖ 7→ −

√
εϖ

The third eigenvector is λ3 = σ2(u1+u2
√
ϖ+u3

√
ε
−1−u4

√
εϖ

−1
) = u1+u2

√
ϖ−u3

√
ε
−1

+u4
√
εϖ

−1
.

[
u1 u2ϖ u3ε

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 + u2

√
ϖ − u3

√
ε
−1

+ u4

√
εϖ

−1

=⇒ u1 + au2ϖ + bu3ε
−1 + cu4(εϖ)−1 = u1 + u2

√
ϖ − u3

√
ε
−1

+ u4

√
εϖ

−1
,

and since this holds for all ui, this implies a =
√
ϖ

−1
, b = −

√
ε, c =

√
εϖ. Now, consider σ3.

σ3 :
√
ε 7→ −

√
ε

√
ϖ 7→ −

√
ϖ
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The fourth eigenvector is λ4 = σ3(u1+u2
√
ϖ+u3

√
ε
−1−u4

√
εϖ

−1
) = u1−u2

√
ϖ−u3

√
ε
−1−u4

√
εϖ

−1
.

[
u1 u2ϖ u3ε

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 − u2

√
ϖ − u3

√
ε
−1 − u4

√
εϖ

−1

=⇒ u1 + au2ϖ + bu3ε
−1 + cu4(εϖ)−1 = u1 − u2

√
ϖ − u3

√
ε
−1 − u4

√
εϖ

−1
,

and since this holds for all ui, this implies a = −
√
ϖ

−1
, b = −

√
ε, c = −

√
εϖ.

The eigenvectors and eigenvalues are,

λ1 = u1 + u2

√
ϖ + u3

√
ε
−1 − u4

√
εϖ

−1
v1 =


1√
ϖ

−1

√
ε

−
√
εϖ

 ;

λ2 = u1 − u2

√
ϖ + u3

√
ε
−1

+ u4

√
εϖ

−1
v2 =


1

−
√
ϖ

−1

√
ε√
εϖ

 ;

λ3 = u1 + u2

√
ϖ − u3

√
ε
−1

+ u4

√
εϖ

−1
v3 =


1√
ϖ

−1

−
√
ε√

εϖ

 ;

λ4 = u1 − u2

√
ϖ − u3

√
ε
−1 − u4

√
εϖ

−1
v4 =


1

−
√
ϖ

−1

−
√
ε

−
√
εϖ

 .

These vectors are linearly independent.

A.2 The matrix of the torus with respect toWitt basis Basis B2 = {1,
√
ε,
√
ϖ

−1
,−

√
εϖ

−1}

Consider the basis B2 = {e1, e2, f1, f2} = {1,
√
ε,
√
ϖ

−1
,−

√
εϖ

−1}. We can write,

u = u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1

where u1, u2 ∈ O, and u3, u4 ∈ P. The intermediate field is E = F (
√
ϖ). The second column of the

matrix is given by multiplying u by the second element of the basis B2, and writing out the result with
respect to B2. We will show this computation as follows,

√
ε(u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1
) = u1

√
ε+ u2ε+ u3

√
ε ·

√
ϖ

−1 − u4

√
ϖ

−1

= u2ε(1) + u1

√
ε+ u4(−1)(

√
ϖ

−1
) + u3(−ε)(−

√
εϖ

−1
).

The third column of the matrix is given by multiplying u by the third element of the basis B2, and
writing out the result with respect to B2. We will show this computation as follows,

√
ϖ

−1
(u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1
) = u1

√
ϖ

−1
+ u2

√
ε ·

√
ϖ

−1
+ u3ϖ

−1 − u4

√
εϖ−1

= u3ϖ
−1 + u4(−ϖ−1)(

√
ε) + u1

√
ϖ

−1
+ u2(−ε)(−

√
εϖ

−1
).

The fourth column of the matrix is given by multiplying u by the fourth element of the basis B2, and
writing out the result with respect to B2. We will show this computation as follows,

−
√
εϖ

−1
(u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1
) = −u1

√
εϖ

−1 − u2

√
ϖ

−1 − u3

√
εϖ−1 + u4ε

−1ϖ−1

= u4(εϖ)−1 + u3(−ϖ−1)(
√
ε) + u2(−1)(

√
ϖ

−1
) + u1(

√
εϖ

−1
).
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The matrix of of the torus given by the Witt basis B2 is,

M[u]B2
=


u1 u2 u3ϖ

−1 u4(εϖ)−1

u2 u1 −u4ϖ
−1 −u3ϖ

−1

u3 −u4 u1 −u2

u4 −u3ε −u2ε u1

 .

Then,

M[u]B2
⊆


O O O O
O O O O
P P O O
P P O O

 .

To compute the eigenvalues and eigenvectors of M[u]B2
, we proceed according to Remark A.1. We find

an eigenvector for λ1 = u1 + u2
√
ε+ u3

√
ϖ

−1 − u4
√
εϖ

−1
.

[
u1 u2 u3ϖ

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1

=⇒ u1 + au2 + bu3ϖ
−1 + cu4(εϖ)−1 = u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1
,

which implies a =
√
ε, b =

√
ϖ, c = −

√
εϖ. Hence, the first eigenvector and eigenvalue of M[u]B2

are,

λ1 = u1 + u2

√
ε+ u3

√
ϖ

−1 − u4

√
εϖ

−1
, v1 =


1√
ε√
ϖ

−
√
εϖ

 .

Now, we find an eigenvector for λ2 = σ1(u1+u2
√
ε+u3

√
ϖ

−1−u4
√
εϖ

−1
) = u1+u2

√
ε−u3

√
ϖ

−1
+

u4
√
εϖ

−1
.

[
u1 u2 u3ϖ

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 + u2

√
ε− u3

√
ϖ

−1
+ u4

√
εϖ

−1

=⇒ u1 + au2 + bu3ϖ
−1 + cu4(εϖ)−1 = u1 + u2

√
ε− u3

√
ϖ

−1
+ u4

√
εϖ

−1
,

which implies a =
√
ε, b = −

√
ϖ, c =

√
εϖ. Hence, the second eigenvector and eigenvalue of M[u]B2

are,

λ2 = u1 + u2

√
ε− u3

√
ϖ

−1
+ u4

√
εϖ

−1
, v2 =


1√
ε

−
√
ϖ√

εϖ

 .

Now, we find an eigenvector for λ3 = σ2(u1+u2
√
ε+u3

√
ϖ

−1−u4
√
εϖ

−1
) = u1−u2

√
ε+u3

√
ϖ

−1
+

u4
√
εϖ

−1
.

[
u1 u2 u3ϖ

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 − u2

√
ε+ u3

√
ϖ

−1
+ u4

√
εϖ

−1

=⇒ u1 + au2 + bu3ϖ
−1 + cu4(εϖ)−1 = u1 − u2

√
ε+ u3

√
ϖ

−1
+ u4

√
εϖ

−1
,

which implies a = −
√
ε, b =

√
ϖ, c =

√
εϖ. Hence,

λ3 = u1 − u2

√
ε+ u3

√
ϖ

−1
+ u4

√
εϖ

−1
, v3 =


1

−
√
ε√

ϖ√
εϖ

 .
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Now, we find an eigenvector for λ4 = σ3(u1+u2
√
ε+u3

√
ϖ

−1−u4
√
εϖ

−1
) = u1−u2

√
ε−u3

√
ϖ

−1−
u4

√
εϖ

−1
.

[
u1 u2 u3ϖ

−1 u4(εϖ)−1
] 

1
a
b
c

 = u1 − u2

√
ε− u3

√
ϖ

−1 − u4

√
εϖ

−1

=⇒ u1 + au2 + bu3ϖ
−1 + cu4(εϖ)−1 = u1 − u2

√
ε− u3

√
ϖ

−1 − u4

√
εϖ

−1

which implies a = −
√
ε, b = −

√
ϖ, c = −

√
εϖ. Hence,

λ4 = u1 − u2

√
ε− u3

√
ϖ

−1 − u4

√
εϖ

−1
, v4 =


1

−
√
ε

−
√
ϖ

−
√
εϖ

 .

The matrix M[u]B2
is contained in the parahoric subgroup of G0,(1/4,1/4).

A.3 The matrix of the torus with respect toWitt basis Basis B3 = {1,
√
ε
−1
,
√
εϖ

−1
,−

√
ϖ

−1}

We pick the basis B3 = {e1, e2, f1, f2} = {1,
√
ε
−1

,
√
εϖ

−1
,−

√
ϖ

−1}. We can write

u = u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1

where u1, u2 ∈ O, and u3, u4 ∈ P. The intermediate field is F (
√
εϖ). The second column of the

matrix is given by multiplying u by the second element of the basis B3, and writing out the result with
respect to B3. We will show this computation as follows,

√
ε
−1

(u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1
) = u1

√
ε
−1

+ u2ε
−1 + u3ε

−1
√
ϖ

−1 − u4

√
εϖ

−1

= u2(ε
−1) + u1(

√
ε
−1

) + u4(−1)(
√
εϖ

−1
) + u3(−ε−1)

√
ϖ

−1
.

The third column of the matrix is given by multiplying u by the third element of the basis B3, and
writing out the result with respect to B3. We will show this computation as follows,

√
εϖ

−1
(u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1
) = u1

√
εϖ

−1
+ u2ε

−1
√
ϖ

−1
+ u3ε

−1ϖ−1 − u4

√
ε
−1

ϖ−1

= u3(εϖ)−1 − u4(ϖ
−1)(

√
ε
−1

) + u1

√
εϖ

−1
+ u2(−ε−1)(−

√
ϖ

−1
).

The fourth column of the matrix is given by multiplying u by the fourth element of the basis B3, and
writing out the result with respect to B3. We will show this computation as follows,

−
√
ϖ

−1
(u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1
) = −u1

√
ϖ

−1 − u2

√
εϖ

−1 − u3

√
ε
−1

ϖ−1 + u4ϖ
−1

= u4ϖ
−1 + u3(−ϖ−1)(

√
ε
−1

) + u2(−1)
√
εϖ

−1 − u1

√
ϖ

−1
.

M[u]B3
=


u1 u2ε

−1 u3(εϖ)−1 u4ϖ
−1

u2 u1 −u4ϖ
−1 −u3ϖ

−1

u3 −u4 u1 −u2

u4 −u3ε
−1 −u2ε

−1 u1

 .

Then,

M[u]B3
⊆


O O O O
O O O O
P P O O
P P O O

 .
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To compute the eigenvalues and eigenvectors of M[u]B3
, we proceed according to Remark A.1. We find

an eigenvector for λ1 = u1 + u2
√
ε
−1

+ u3
√
εϖ

−1 − u4
√
ϖ

−1
.

[
u1 u2ε

−1 u3(εϖ)−1 u4ϖ
−1

] 
1
a
b
c

 = u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1
,

which implies a =
√
ε, b =

√
εϖ, c = −

√
ϖ. Hence, the first eigenvector and eigenvalue of M[u]B3

are,

λ1 = u1 + u2

√
ε
−1

+ u3

√
εϖ

−1 − u4

√
ϖ

−1
, v1 =


1√
ε√
εϖ

−
√
ϖ

 .

Now, we find an eigenvector for λ2 = σ1(u1 + u2
√
ε
−1

+ u3
√
εϖ

−1 − u4
√
ϖ

−1
) = u1 + u2

√
ε
−1 −

u3
√
εϖ

−1
+ u4

√
ϖ

−1
.

[
u1 u2ε

−1 u3(εϖ)−1 u4ϖ
−1

] 
1
a
b
c

 = u1 + u2

√
ε
−1 − u3

√
εϖ

−1
+ u4

√
ϖ

−1

which implies a =
√
ε, b = −

√
εϖ, c =

√
ϖ. Hence,

λ2 = u1 + u2

√
ε
−1 − u3

√
εϖ

−1
+ u4

√
ϖ

−1
, v2 =


1√
ε

−
√
εϖ√
ϖ

 .

Now, we find an eigenvector for λ3 = σ2(u1 + u2
√
ε
−1

+ u3
√
εϖ

−1 − u4
√
ϖ

−1
) = u1 − u2

√
ε
−1 −

u3
√
εϖ

−1 − u4
√
ϖ

−1
.

[
u1 u2ε

−1 u3(εϖ)−1 u4ϖ
−1

] 
1
a
b
c

 = u1 − u2

√
ε
−1 − u3

√
εϖ

−1 − u4

√
ϖ

−1

which implies a = −
√
ε, b = −

√
εϖ, c =

√
ϖ. Hence,

λ3 = u1 − u2

√
ε
−1 − u3

√
εϖ

−1 − u4

√
ϖ

−1
, v3 =


1

−
√
ε

−
√
εϖ√
ϖ

 .

Finally, we find an eigenvector for λ4 = σ3(u1 + u2
√
ε
−1

+ u3
√
εϖ

−1 − u4
√
ϖ

−1
) = u1 − u2

√
ε
−1

+

u3
√
εϖ

−1
+ u4

√
ϖ

−1
.

[
u1 u2ε

−1 u3(εϖ)−1 u4ϖ
−1

] 
1
a
b
c

 = u1 − u2

√
ε
−1

+ u3

√
εϖ

−1
+ u4

√
ϖ

−1

which implies a = −
√
ε, b =

√
εϖ, c =

√
ϖ. Hence,

λ4 = u1 − u2

√
ε
−1

+ u3

√
εϖ

−1
+ u4

√
ϖ

−1
, v4 =


1

−
√
ε√

εϖ√
ϖ

 .

The matrix M[u]B3
is contained in the parahoric subgroup of G0,(1/4,1/4).
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B Computation the parahoric subgroups

In this appendix, we give a detailed calculation showing the reader how to compute the parahoric
subgroups in Section 5. We find the parahoric subgroups for 9 points in the standard apartment.

Point in standard apartment: x = (0, 0). The matrix is, Gx,0 = [O]4×4.

Point in standard apartment: x = (1/2, 0). We compute,

α(x) = (e1 − e2)(x) =
1

2
;

β(x) = (e1 + e2)(x) =
1

2
;

−α(x) = −1

2
;

−β(x) = −1

2
.

The parahoric subgroup associated to x is,

Gx,0 =


O O O O
P O O P
P2 P O P
P P O O

 .

Point in standard apartment: x = (1/4, 1/4). We compute,

α(x) = (e1 − e2)(x) = 0;

β(x) = (e1 + e2)(x) = 1/2;

−α(x) = 0;

−β(x) = −1/2.

The parahoric subgroup associated to x is,

Gx,0 =


O O O O
O O O O
P P O O
P P O O

 .

Point in standard apartment: x = (1/2, 1/2). We compute,

α(x) = (e1 − e2)(x) = 0;

β(x) = (e1 + e2)(x) = 1;

−α(x) = 0;

−β(x) = −1.

The parahoric subgroup associated to x is,

Gx,0 =


O O P−1 P−1

O O P−1 P−1

P P O O
P P O O

 .

We have G(1/4,1/4),0 ⊆ G(1/2,1/2),0.
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Point in standard apartment: x = (3/4, 1/4). We compute,

α(x) = (e1 − e2)(x) = 1/2;

β(x) = (e1 + e2)(x) = 1;

−α(x) = −1/2;

−β(x) = −1.

The parahoric subgroup associated to x is,

Gx,0 =


O O P−1 P−1

P O P−1 O
P2 P O P
P P O O

 .

However, G(3,4,1/4) ̸⊆ G(1,0)

Point in standard apartment: x = (1, 0). We compute,

α(x) = (e1 − e2)(x) = 1;

β(x) = (e1 + e2)(x) = 1;

−α(x) = −1;

−β(x) = −1.

The parahoric subgroup associated to x is,

Gx,0 =


O P−1 P−2 P−1

P O P−1 O
P2 P O P
P O P−1 O

 .

Point in standard apartment: x = (3/4,−1/4). We compute,

α(x) = (e1 − e2)(x) = 1/2;

β(x) = (e1 + e2)(x) = 1;

−α(x) = −1/2;

−β(x) = −1.

The parahoric subgroup associated to x is,

Gx,0 =


O O P−1 P−1

P O P−1 O
P2 P O P
P P O O

 .

Point in standard apartment: x = (1/2,−1/2). We compute,

α(x) = (e1 − e2)(x) = 1;

β(x) = (e1 + e2)(x) = 0;

−α(x) = −1;

−β(x) = 0.

The parahoric subgroup associated to x is,

Gx,0 =


O P−1 P−1 O
P O O P
P O O P
O P−1 P−1 O

 .
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Point in standard apartment: x = (1/4,−1/4). We compute,

α(x) = (e1 − e2)(x) = 1/2;

β(x) = (e1 + e2)(x) = 0;

−α(x) = −1/2;

−β(x) = 0.

The parahoric subgroup associated to x is,

Gx,0 =


O O O O
P O O P
P O O P
O O O O

 .
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