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Abstract. In this paper, we explore the birational equivalence between the

elliptic curves in Edwards-Bernstein andWeierstrass forms and when it induces
an isomorphism of the group structures.

1. Introduction

Edwards proposed in [2] a normal form of elliptic curve which is an affine curve
with a group law given by a closed-form formula. He mysteriously referred to Gauss
[3, p. 404] for the origins of the addition formula on this curve. In terms of the
applications in cryptography, the Edwards curve has two advantages over an elliptic
curve in Weierstrass form: 1) it is an affine curve (that is, we do not need the point
at infinity as in the case of the Weierstrass curve) and 2) it has a closed (and
symmetric) formula for addition. In 2007, Bernstein and Lange extended the class
of Edwards curves and verified the validity of the addition formula on the resulting
Edwards-Bernstein curve. Their paper has been cited extensively in the literature
and has found many practical applications in cryptography.

The addition formula in Weierstrass form is given by a geometric argument as
we recall in Section 2.2. We refer the interested reader to [4, Section 2.2] for the
addition algorithm which considers several different cases. In contrast, the addition
formula for Edwards-Bernstein curve has no special cases and has a simple formula
as we recall in Section 5.

Our goal in this project report is to present the mathematical background to bet-
ter understand the correspondence between the Weierstrass and Edwards-Bernstein
curves and also to complete the proof of some results in Bernstein and Lange’s pa-
per. To this end, we define birational equivalence between curves and present
several examples to illustrate the key concepts. One aspect that Bernstein and
Lange pull out is the choice of parameter d that influences the birational equiva-
lence between the curves and the completeness of the addition formula. We have
synthesized this discussion and illustrated it with some examples. Our main original
contribution is to explicitly verify that the addition law on an Edwards-Bernstein
curve corresponds to the standard addition law on a Weierstrass curve.

This document is organised as follows. In Section 2 we recall some definitions:
elliptic curves, Weierstrass equations, birational equivalence and isomorphism. In
Section 3 we present the birational equivalence between an Edwards-Bernstein curve
and an elliptic curve in Weierstrass form. The exceptional points of the birational
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maps are studied in Section 4. We show in Section 5 that the group law of the
Edwards-Bernstein curves corresponds to the standard addition law of the elliptic
curves. We conclude this document with some examples in Section 6.

2. Background

Let K be a field. Denote K an algebraic closure of K. The polynomial p(x, y) ∈
K[x, y] defines an affine curve C over K. C is an algebraic variety and is composed

of points in (x, y) ∈ K2
satisfying the equation p(x, y) = 0. Also, denote by C(K)

the set of K-rational points of C, that is

C(K) = {(x, y) ∈ K2 | p(x, y) = 0}.

Given a homogeneous polynomial q(X,Y, Z) ∈ K[X,Y, Z], a projective curve
C ′ is a projective variety that consists of points (X : Y : Z) ∈ P2(K) such
that q(X,Y, Z) = 0. If q is the projectivization of p, meaning q(X,Y, Z) =
Znp(X/Z, Y/Z) where deg(p) = n, then we can think of C ′ as C together with
zero or more “points at infinity”, corresponding to the intersection of Z = 0 and
C ′. The curve C ′ is called the projective completion of C.

A point P on C (or C ′) is singular if the partial derivatives of the defining
polynomial of C (respectively C ′) vanish at P ; and it is called smooth otherwise.
The curve C (or C ′) is called singular if it has a singular point; otherwise it is called
smooth.

Example 2.1. Let K be a field with char(K) 6= 2, 3. Consider

p(x, y) = x2 + y2 − 1− 3x2y2.

Let C be the affine curve defined by p(x, y) = 0. Its projective completion is the
curve defined by

X2Z2 + Y 2Z2 = Z4 + 3X2Y 2.

If Z = 0 then X2Y 2 = 0. Thus (1 : 0 : 0) and (0 : 1 : 0) are two points at infinity
of C.

The singular points of C are all points (x, y) ∈ K2
such that

p(x, y) = 0 and
∂p

∂x
=
∂p

∂y
= 0,

that is points (x, y) such that{
x2 + y2 = 1 + 3x2y2 and

2x− 6xy2 = 2y − 6x2y = 0.

It follows that there is no such point, so C is a smooth curve. As for C ′ it can be
verified that the points (1 : 0 : 0) and (0 : 1 : 0) satisfy

2XZ2 − 6XY 2 = 0

2Y Z2 − 6X2Y = 0

2X2Z + 2Y 2Z − 4Z3 = 0

so they are both singular. The curve C ′ is a singular curve.
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2.1. Elliptic curves.

Definition 2.2. In this document, an elliptic curve defined over a field K is a
smooth affine curve defined by the polynomial

y2 = x3 + ax+ b(2.1)

where a, b ∈ K and char(K) 6= 2. We add to C a point at infinity denoted ∞.

We will use the term elliptic curve to designate both the affine curve and its
projective completion. The distinction is usually clear from the context.

The equation (2.2) is called the Weierstrass equation of the curve C.

Remark 2.3. The curve defined by (2.1) is singular when char(K) = 2. In this case
(char(K) = 2) we use the following equation, called the generalized Weierstrass
equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where ai ∈ K. It is shown in [4, Section 2.1] that if char(K) 6= 2 then there is a
linear change of variables after which the generalized Weierstrass equation takes the
form (2.1). We also use a the following equation for elliptic curves in this document:

y2 = x3 + a′x2 + b′x.(2.2)

For example, when char(K) 6= 3, the following linear change of variables transforms
(2.2) to (2.1):

x 7→ x− a′

3
y 7→ y.

The reason we use (2.2) is because the point (0, 0) belongs to the curve. This point
helps simplify our calculations of a point of order 4 when considering the group law
acting on C(K) (see Section 2.2). Since the group law is compatible with this linear
change of variables which preserves the x−axis, we have a group homomorphism.

Remark 2.4. The following more general definition of an elliptic curve can be found
in [5, Section III.3]:

An elliptic curve (E,O) is a smooth curve of genus one E with a
specific point O ∈ E.

Denote by E(K) the set of points of E having coordinates in K. The point O ∈
E(K) can be chosen arbitrarily, each choice gives rise to an elliptic curve. Using
the Riemann-Roch theorem, it is shown in [5, Section III.3.1] that E is isomorphic
to a curve C defined by the generalized Weierstrass equation. The point O ∈ E
corresponds to the point ∞ of C.

2.2. The group law. The points on an elliptic curve C over K form a group.
When C has the form (2.1) or (2.2), this group law is often described geometrically,
as follows:

Let P,Q be two points on C. Draw a line L through P and Q.
If P = Q then instead let L be the tangent of C at P . Then L
intersects E at a third point R′. Reflect R′ across the x-axis to
give a point R ∈ C. We define

P +Q = R

The point ∞ of C acts as the neutral element of this group.
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Remark 2.5. The proof that this geometric group law is well-defined is given in [4,
Sections 2.2, 2.4]. We will not detail the proof in this document. The non-obvious
part is to prove the associativity of the group operation +.

Remark 2.6. With the more general definition of an elliptic curve (E,O) as a smooth
curve of genus one, the group law is induced by the algebraic group law from the
degree-0 Picard group Pic0(E) as follows:

κ : E−̃→Pic0(E)

which sends P ∈ E to the divisor class of (P ) − (O) in Pic0(E). If the curve E is
given by a Weierstrass equation, then this group law coincides with the geometric
group law acting on the points of the Weierstrass curve. The proof is given in [5,
Section III.3.4].

2.3. Birational equivalence. Recall that a function defined over K on a curve C
is an equivalence class of regular functions f(x, y) ∈ K(x, y) that is defined for at
least one point in C. That is, if f = g

h then h does not vanish on all of C. In fact,
there can only be finitely many points of C where f is not defined. Two regular
functions g1

h1
and g2

h2
on C are equivalent if and only if g1h2 − g2h1 vanishes on all

of C.

Example 2.7. Let C be the curve v2 = u3+6u2+u defined over F13. The functions

f(u, v) =
−2u

v
and g(u, v) = −1 + u

1− u
are defined on C except for finitely many points (called exceptional points), specif-
ically points (u, v) ∈ C such that v = 0 or u = 1. Let us calculate those points:

• If v = 0 then u = 0 or u2 + 6u+ 1 = 0. But u2 + 6u+ 1 = 0 has no roots
in F13, so we have one exceptional point (0, 0).
• If u = 1 then v2 = 8 which is not a square in F13. So there are no exceptional

points with u = 1.

It follows that g is defined everywhere. As for f , notice that u
v = v

u2+6u+1 so

f(0, 0) = 0. Therefore, f can be extended to all of C.

Definition 2.8. Let C1 and C2 be two curves in K
2
. A rational map defined over

K from C1 to C2 is a map of the form

φ : C1 → C2 φ = (f, g)

where f, g are functions defined over K on C1 such that for every point P ∈ C1 at
which both f, g are defined, φ(P ) = (f(P ), g(P )) ∈ C2.

Example 2.9. In example 2.7, we can check that f2 + g2 = 1 + 2f2g2 by directly
verifying the following identity

4u2

v2
+

(
1 + u

1− u

)2

= 1 +
8u2

v2

(
1 + u

1− u

)2

on the curve defined by v2 = u3 + 6u2 + u.
Thus, the map φ = (f, g) is a rational map from the elliptic curve

C : v2 = u3 + 6u2 + u

to the Edwards-Bernstein curve

E : x2 + y2 = 1 + 2x2y2
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defined over F13. To see where the point at infinity ∞ of C is sent, let us look at
the projective completion

C : V 2Z = U3 + 6U2Z + UZ2.

The point at infinity of C is (0 : 1 : 0) on C. Extending the map φ to C gives

φ(U : V : Z) =

(
−2U

V
,
U + Z

U − Z

)
=

(
−2U

V
,

1 + Z/U

1− Z/U

)
.

Since Z
U = U2+6UZ+Z2

V 2 which vanishes at (0 : 1 : 0), we have φ(∞) = (0, 1).

Definition 2.10. A rational map φ : C1 → C2 is called birational if there is a
rational map σ : C2 → C1 such that

σ ◦ φ = idC1 and φ ◦ σ = idC2

in which case C1 and C2 are said to be birationally equivalent. Note that the
equality above is defined up to a finite number of points.

Example 2.11. Continuing with example 2.9. Let σ = (u, v) be defined over the
Edwards curve E : x2 + y2 = 1 + 2x2y2 with

u = −1 + y

1− y
and v =

2(1 + y)

x(1− y)

for all (x, y) ∈ E(F13) \ {(0, 1)} and σ(0, 1) = ∞ ∈ C(F13). This is a rational
map from E to C. The reader can check with the map φ above, that σ induces a
birational equivalence between E and C.

Definition 2.12. A rational map defined over K that is regular everywhere (i.e.
defined everywhere) is called a morphism defined over K. A birational morphism
whose inverse is also a morphism is an isomorphism.

We also use the phrase change of variables to refer to an isomorphism or a
birational equivalence.

Example 2.13. We have seen in example 2.7 that the rational map φ is a mor-
phism. In fact, φ is an isomorphism because its inverse σ is also a morphism.
The only point that remains to check is σ(0,−1) is well-defined in example 2.11.
u(0,−1) is clearly defined. As for v(0,−1), note that

1 + y

x
=
x(1− 2y2)

1− y
.

So v(0,−1) = 0 and the map σ is regular everywhere.

2.4. Quadratic twists. Some curves may not be isomorphic over some field K
but they are over some extension of K.

Example 2.14. x2 = 1 and x2 = −1 are not isomorphic over R. They are over C
by the change of variable u = ix in C[x].

Definition 2.15. A quadratic twist of an elliptic curve C defined over K is another
elliptic curve C ′ isomorphic to C over some quadratic extension of K.

Example 2.16. Since 2 is a non-square in F13, the curve v2 = u3 + 6u2 + u is
isomorphic to 2v′2 = u′3 + 6u′2 + u′ over the quadratic extension F13(

√
2) via the

change of variables u = u′ and v =
√

2v′.
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Remark 2.17. There is a connection between K̄-isomorphism class of elliptic curves
and their j-invariant. Specifically two elliptic curves are isomorphic over K̄ if and
only if they have the same j-invariant (see proof in [5, Section III.1.4]). We do not
need to calculate the j-invariants in this document since our isomorphisms can be
made explicit by changes of variables.

2.5. Edwards-Bernstein normal form. Elliptic curves can have different forms.
We concern ourselves in this document with the following normal form introduced
by Edwards [2] and expanded by Bernstein and Lange [1]:

(2.3) x2 + y2 = c2(1 + dx2y2)

with c 6= 0 and d /∈ {0, 1}.
We describe in the next section the birational equivalence between Weierstrass

curves and Edwards-Bernstein curves.

3. Birational equivalence between Weierstrass and
Edwards-Bernstein curves

This section reformulates the content of [1, Section 2]. Our objective is to estab-
lish a birational equivalence between a Weierstrass curve and an Edwards-Bernstein
curve over some extension of the base field K. As we will see shortly, the key ingre-
dient to this birational equivalence is a point of order 4 on the Weierstrass curves.
Notice that if point P has order 4 then 2P has order 2. Therefore we will try to
identify points of order 2 to deduce a point of order 4.

Proposition 3.1. Let C be an elliptic curve defined over K. There exists an
extension K ′ of K such that C(K ′) has an element of order 4.

Proof. Let P = (xP , yP ) be a point in C(K) with yP 6= 0. The equation of the
tangent at P is

L : y − yP = (x− xP )λ

where λ = ∂f/∂x
∂f/∂y taken at point (xP , yP ) is the slope of the tangent at P and f is

the defining equation of C. Recall that f has the form (2.1) or (2.2), so any point
(x, 0) ∈ C has order 2. We would like the line L to intersect C at such a point
R = (xR, 0), or equivalently 2P = R to have order 2. Note that there are at most
three candidates for xR in the algebraic closure of K that can satisfy f(xR, 0) = 0.

So we have a system of two equations and two variables xP , yP :{
f(xP , yP ) = 0

yP = (xP − xR)λ

Then K ′ is an extension of K in which the above system has a solution for xP , yP .
�

Example 3.2. Consider the curve C : y2 = x3 + 4x2 + x defined over F13. Let
P = (xP , yP ) ∈ C. The tangent of C at P is

y − yP = (x− xP )
3x2P + 8xP + 1

2yP

Suppose that L intersects C at point (0, 0) ∈ C, meaning

(3.1) 2y2P = 3x3P + 8x2P + xP .
6



Since P ∈ C,

(3.2) y2P = x3P + 4x2P + xP .

Subtracting (3.1) by twice (3.2) gives

x3P − xP = 0.

It follows that xP = 0, yP = 0 or xP = 1, y2P = 6 or xP = −1, y2P = 2. Since 2 and
6 are non-square in F13 the curve C(F13) has no points of order 4. If C is defined

over F13(
√

2) ' F169 then the group C(F169) has a point of order 4.

For the rest of this section, we assume that the group C(K) has an element P of
order 4. The following proposition shows that we can always make a linear change
of variables such that 2P = (0, 0).

Proposition 3.3. Let C0 be an elliptic curve defined over K such that the group
C0(K) has a point P0 of order 4. Then C0 is isomorphic over K to an elliptic
curve C of the form

C : s2 = r3 + ar2 + br

with a, b ∈ K. The corresponding point P ∈ C(K) of P0 has order 4 and satisfies
2P = (0, 0).

Proof. Let f(x, y) = 0 be the Weierstrass equation for C0. Since P0 = (x0, y0)
has order 4, 2P0 has order 2. So 2P0 = (x1, 0) for some x1 ∈ K. Applying the
translation r = x − x1 and s = y on C0 gives the curve C : s2 = r3 + ar2 + br
isomorphic to C0, for some a, b ∈ K. The point P = (x0−x1, y0) ∈ C(K) has order
4 by this isomorphism. We also have 2P = (0, 0). �

Proposition 3.4. In the setting of Proposition 3.3, if P = (r1, s1) then

a =
2r1(1 + d)

1− d
and

b = r21

where d = 1− 4r31
s21

.

Proof. Since P ∈ C, we have

(3.3) s21 = r31 + ar21 + br1

We have s1 6= 0 because P has order 4 and not 2. It follows that r1 6= 0. The line
tangent to C at P is

y − s1 = (x− r1)
3r21 + 2ar1 + b

2s1
Suppose that this line goes through point (x′, y′) ∈ C. We then have 2P = (x′,−y′)
by the standard addition law. But 2P = (0, 0) by Proposition 3.3. So (x′, y′) =
(0, 0), meaning

(3.4) 2s21 = 3r31 + 2ar21 + br1

Combining (3.3) and (3.4) yields

a =
s21
r21
− 2r1, and

b = r21
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Put d = 1− 4r31
s21

, then a = 2r1(1+d)
1−d . �

Note that d 6= 1 because r1 6= 0. Also d 6= 0, otherwise the Weierstrass equation
defining C would be y2 = x(x+ r1)2 which is singular at (−r1, 0).

Corollary 3.5. C is isomorphic over K to the curve

C∗ :
1

1− d
v2 = u3 +

2(1 + d)

1− d
u2 + u

Proof. Putting u = r
r1

and v = 2s
s1

in Proposition 3.4 yields the desired result. �

Theorem 3.6. Let K be a non-binary field. Let C be an elliptic curve over K such
that the group C(K) has an element of order 4. Then there exists d ∈ K − {0, 1}
such that the curve E : x2 + y2 = 1 + dx2y2 is birationally equivalent over K to C.

Proof. By Proposition 3.3, let P = (r1, s1) ∈ C(K) be the point of order 4 and

satisfy 2P = (0, 0). Put d = 1− 4r31
s21
∈ K − {0, 1}.

On the other hand, the rational map

(x, y) 7→ (u, v) =

(
1 + y

1− y
,

2(1 + y)

x(1− y)

)
transforms the curve

E : x2 + y2 = 1 + dx2y2

into the curve

C∗ :
1

1− d
v2 = u3 +

2(1 + d)

1− d
u2 + u

It is well-defined except for finitely many points (x, y) with x(y − 1) = 0.
Its inverse is the rational map

(u, v) 7→ (x, y) =

(
2u

v
,
u− 1

u+ 1

)
This map is also well-defined except for finitely many points (u, v) such that v(u+
1) = 0.

These two rational maps establish the birational equivalence over K between the
curves E and C∗. The theorem follows from Corollary 3.5. �

Note that in general the curve C∗ defined over K is not necessarily an elliptic
curve over K for parameter d ∈ K chosen arbitrarily. Therefore, Theorem 3.6 does
not imply a bijection between the sets of Edwards-Bernstein curves E defined over
K and elliptic curves C defined over K birational equivalent to E. The next result
states that if d is a non-square in a non-binary finite field K then the Edwards-
Bernstein curve E : x2 + y2 = 1 + dx2y2 is birationally equivalent to an elliptic
curve C over K.

Corollary 3.7. Let K = Fp where p is an odd prime. If d is a quadratic nonresidue
in K then the curve E : x2 + y2 = 1 + dx2y2 is birationally equivalent to an elliptic
curve C over K.

Proof. We have seen in Theorem 3.6 that E is birationally equivalent over K to
the curve

C∗ :
1

1− d
v2 = u3 +

2(1 + d)

1− d
u2 + u
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If 1− d is a square in K then this curve is isomorphic over K to the elliptic curve

C : v′2 = u3 +
2(1 + d)

1− d
u2 + u

by the change of variables u 7→ u, v 7→ v√
1−d .

If 1−d is a non-square in K then d
1−d is a square because d is also a non-square.

Replace d by 1
d and u by −u in C∗ shows that E is birationally equivalent over K

to the curve
d

1− d
v2 = u3 +

2(1 + d)

1− d
u2 + u

which is an elliptic curve defined over K by the change of variables u 7→ u, v 7→√
d

1−dv. �

We will discuss in the next section the exceptional points of the birational maps
between the Edwards-Bernstein curve E and the curve C∗.

4. Exceptional points of the birational maps

As described in the previous section, Bernstein has introduced the birational
maps between the Edwards-Bernstein curve

E : x2 + y2 = 1 + dx2y2

and the curve

C∗ :
1

1− d
v2 = u3 +

2(1 + d)

1− d
u2 + u

for d 6= 0, 1, as follows:

φ : E → C∗

(x, y) 7→
(

1+y
1−y ,

2(1+y)
x(1−y)

)
σ : C∗ → E

(u, v) 7→
(

2u
v ,

u−1
u+1

)
We now try to identify the exceptional points of E (resp. C∗) where the map

φ (resp. σ) is not defined. We will refer to the result in [5, Proposition 2.1] which
says that every rational map can be extended to all smooth points.

First, let us consider the map φ. It is defined everywhere except at points
(x, y) ∈ E(K) such that x(1 − y) = 0. There are only two such points: (0, 1) and
(0,−1). Both points are smooth by the test

P is singular⇔ ∂f

∂x
(P ) =

∂f

∂y
(P ) = 0

where f(x, y) = x2 + y2 − 1 − dx2y2 is the defining equation of E. So, the map φ
is also defined at these 2 points.

We would like to know which points on C∗ they correspond to. We notice that

1 + y

x
=
x(1− dy2)

1− y
.

So in fact an alternate expression for φ is

φ(x, y) =

(
1 + y

1− y
,

2x(1− dy2)

(1− y)2

)
.
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It follows that φ(0,−1) = (0, 0), a smooth point. As for the point (0, 1), denote by
C the projective completion of C∗:

C :
1

1− d
V 2T = U3 +

2(1 + d)

1− d
U2T + UT 2

Extending the map φ gives

φ(x, y) =

(
1 + y

1− y
:

2(1 + y)

x(1− y)
: 1

)
= (x(1 + y) : 2(1 + y) : x(1− y)).

So φ(0, 1) = (0 : 1 : 0) is the point at infinity of the curve C∗, which is also smooth.
It follows that φ is a morphism.

We now consider the inverse map σ. It is defined everywhere except at points
(u, v) such that v(u+ 1) = 0. We obtain 5 points:

P1 = (0, 0),

P2 =

(√
d− 1√
d+ 1

, 0

)
, P3 =

(√
d+ 1√
d− 1

, 0

)
,

P4 = (−1, 2
√
d), P5 = (−1,−2

√
d).

Notice that points P2, P3, P4 and P5 only exist if d is a square in K. We can check
that all these points are smooth on C∗ using the partial derivative test as above.
So the map σ is also defined at these 5 points.

We would like to know which points on E they correspond to. For P1 = (0, 0),
we notice that

u

v
=

(
1

1− d

)
v

u2 + 2
(

1+d
1−d

)
u+ 1

So an alternate expression for σ is

σ(u, v) =

( 2

1− d

)
v

u2 + 2
(

1+d
1−d

)
u+ 1

,
u− 1

u+ 1


It follows that σ(0, 0) = (0,−1) which is a smooth point. We conclude that if d is
not a square in K then σ is a morphism.

Suppose now that d is a square in K. Let us consider the remaining 4 points.
Let E be the projective completion of E:

E : X2Z2 + Y 2Z2 = Z4 + dX2Y 2

Extending the map σ gives

σ(u, v) =

(
2u

v
:
u− 1

u+ 1
: 1

)
= (2u(u+ 1) : v(u− 1) : v(u+ 1)).

It follows that σ(P2) = σ(P3) = (1 : 0 : 0) and σ(P4) = σ(P5) = (0 : 1 : 0) which
are the two points at infinity of E.

Notice that those two points (1 : 0 : 0), (0 : 1 : 0) ∈ E are singular and their
inverse images are 4 smooth points.

In summary, we have an isomorphism between the affine curve E and the pro-
jective curve C over K if and only if d is a non-square in K.

10



5. The group law on an Edwards-Bernstein curve

5.1. The statement of the group law. In [1, Section 3], the authors state that
the group law on the points of an Edwards-Bernstein curve (2.3)

E : x2 + y2 = c2(1 + dx2y2)

can be expressed as

(5.1) (x1, y1) + (x2, y2) 7→
(

x1y2 + y1x2
c(1 + dx1x2y1y2)

,
y1y2 − x1x2

c(1− dx1x2y1y2)

)
for any pair of points (x1, y1), (x2, y2) on the curves where the above addition is
defined. The point (0, c) is the neutral element.

More specifically, Bernstein and Lange show that the group law (5.1) is well-
defined, meaning:

(1) It is complete when d is a non-square in K (stated here in Theorem 5.1).
(2) It produces a point on the curve (Theorem 5.2 which we prove in Section

5.2).
(3) It corresponds to the standard addition law on the birationally equivalent

Weierstrass curve (Theorem 5.3 in Section 5.3 where we complete the proof
of [1, Theorem 3.2]).

A benefit of Edwards-Bernstein curves compared to its Weierstrass counterparts
is the same formula works for the addition of two different points as well as for the
point doubling.

In general the addition law (5.1) is not defined for all pairs of points on the
curve (2.3). For example the addition is not defined for points (x1, y1), (x2, y2)
with dx1x2y1y2 = ±1. As we will see later in this section, if d is a non-square in K
then (5.1) is complete, meaning it is defined for all pairs of points on the curve.

Note that the curve Ē : x̄2 + ȳ2 = c2(1 + d̄x̄2ȳ2) is isomorphic to the curve
E : x2 +y2 = 1+dx2y2 when d = d̄c4 by the change of variables x̄ = cx and ȳ = cy.
We assume that the Edwards-Bernstein curve takes the form of E (i.e. c = 1) to
simplify the calculations in the rest of this section.

We start by quoting a theorem by Bernstein and Lange that says if d is a non-
square in K then the addition law (5.1) is well-defined for all pairs of points on the
Edwards-Bernstein curve. The addition law is then said complete. This result is
due to Bernstein and Lange [1, Theorem 3.3].

Theorem 5.1. Let d be a non-square in a non-binary field K. Define the Edwards-
Bernstein curve over K

E : x2 + y2 = 1 + dx2y2.

Let x1, y1, x2, y2 ∈ K such that (x1, y1), (x2, y2) ∈ E. Then

dx1x2y1y2 6= 1 and dx1x2y1y2 6= −1.

Proof. The proof is given in [1, Proof of Theorem 3.3]. It is a proof by contradiction.
The main idea is to show that the following identities hold, when ε = dx1x2y1y2 ∈
{−1, 1}:

(x1 + εy1)2 = dx21y
2
1(x2 + y2)2

and similarly

(x1 − εy1)2 = dx21y
2
1(x2 − y2)2.

Therefore d must be a square, a contradiction. �
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5.2. Closure of the group law. The next theorem shows that the addition law
(5.1) produces a point on the curve E. This result is due to Bernstein and Lange
[1, Theorem 3.1].

Theorem 5.2. Let d 6= 0, 1 in a non-binary field K. Let P = (x1, y1) and Q =
(x2, y2) be two points on the curve

E : x2 + y2 = 1 + dx2y2

such that dx1x2y1y2 6= ±1. Define

x3 =
x1y2 + x2y1

1 + dx1y2x2y1
and y3 =

y1y2 − x1x2
1− dx1x2y1y2

Then R = (x3, y3) ∈ E.

Proof. The proof consists of verifying the following identity:

x23 + y23 − dx23y23 = 1.

or equivalently, upon clearing denominators and noting that (1 + dx1x2y1y2)2(1−
dx1x2y1y2)2 = (1− d2x21x22y21y22)2, that

(x1y2 + x2y1)2(1− dx1x2y1y2)2 + (y1y2 − x1x2)2(1 + dx1x2y1y2)2

− d(x1y2 + x2y1)2(y1y2 − x1x2)2

= (1− d2x21x22y21y22)2.

Let LHS (resp. RHS) be the left-hand (resp. right-hand) side expression. Expand-
ing LHS gives

LHS =x21y
2
2 + x22y

2
1 + d2x41x

2
2y

2
1y

4
2 + d2x21x

4
2y

4
1y

2
2 − 4dx21x

2
2y

2
1y

2
2

+ x21x
2
2 + y21y

2
2 + d2x41x

4
2y

2
1y

2
2 + d2x21x

2
2y

4
1y

4
2 − dx41x22y22(5.2)

− dx21x42y21 − dx21y21y42 − dx22y41y22 .

We now expand RHS and check that they are equal. First, since the points P,Q
are on the curve, we have

x21 + y21 = 1 + dx21y
2
1

= 1 + (x22 + y22 − dx22y22)dx21y
2
1

= (x22 + y22)dx21y
2
1 + 1− d2x21x22y21y22 .

So

1− d2x21x22y21y22 = x21 + y21 − (x22 + y22)dx21y
2
1

and similarly

1− d2x21x22y21y22 = x22 + y22 − (x21 + y21)dx22y
2
2 .

Thus,

RHS = (x21 + y21 − (x22 + y22)dx21y
2
1)(x22 + y22 − (x21 + y21)dx22y

2
2).

Expanding RHS gives an expression identical to (5.2), as claimed. �

The result presented in the next section will allow to conclude that the addition
law (5.1) on the Edwards-Bernstein curve is well-defined.

12



5.3. Equivalence with the standard addition law. We begin by recalling some
notations. Let d 6= 0, 1 in a non-binary field K such that the curve

C∗ :
1

1− d
v2 = u3 +

2(1 + d)

1− d
u2 + u

is elliptic over K. Recall that the Edwards-Bernstein curve

E : x2 + y2 = 1 + dx2y2

is birationally equivalent to C∗ via the map φ(x, y) = (u, v) with

(5.3) u =
1 + y

1− y
and v =

2(1 + y)

x(1− y)
.

Let x1, y1, x2, y2 ∈ K such that (x1, y1) ∈ E, (x2, y2) ∈ E and dx1x2y1y2 6= ±1.
Let

(5.4) x3 =
x1y2 + x2y1

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2
1− dx1x2y1y2

.

For i ∈ {1, 2, 3}, define Pi as follows:

• Pi =∞ if (xi, yi) = (0, 1).
• Pi = (0, 0) if (xi, yi) = (0,−1).
• Pi = (ui, vi) = φ(xi, yi) otherwise. Note that Pi is well-defined because

(xi, yi) ∈ E by the choice of x1, x2, y1, y2 and by Theorem 5.2 for x3, y3.

It follows that Pi ∈ C∗(K).
The next theorem says that the group law (5.1) on the Edwards-Bernstein curve

corresponds to the standard addition law on the Weierstrass curve. This implies
that the group law is associative, has an identity element and the inverse elements
exist. Hence the group law is well-defined.

Theorem 5.3. P1 +P2 = P3 according to the standard addition law on the elliptic
curve C∗.

There are several cases to consider. In [1, Proof of Theorem 3.2] the authors
explicitly prove the following cases:

• x1 = 0 or
• x2 = 0 or
• P1, P2 ∈ {∞, (0, 0)} or
• P1 = −P2.

They refer to a SageMath script to verify the remaining two cases:

(a) P1 = P2, i.e. doubling a point.
(b) P1 6= ±P2, i.e. adding two different (and non-opposite) points.

We present here a direct verification of Cases (a) and (b). Note that x1 6= 0 and
x2 6= 0 in both cases.

Proof of Case (a). Since P1 = P2 in this case and P1 6= −P2, we have v1 6= 0 and
P3 is a finite point. The standard addition law on C∗ states that the point −P3

must be on the tangent line to C∗ at P1. Therefore, we must show that

(5.5) −v3 − v1 = (u3 − u1)λ
13



holds, where λ is the slope of the tangent to C∗ at P1, given by

(5.6) λ =
3u21 + 4

(
1+d
1−d

)
u1 + 1(

2
1−d

)
v1

.

We will now find u1, v1, u3, v3 and check that equation (5.5) holds.
Since x1 = x2 and y1 = y2, (5.4) gives

(5.7) (x3, y3) =

(
2x1y1

1 + dx21y
2
1

,
y21 − x21

1− dx21y21

)
=

(
2x1y1
x21 + y21

,
y21 − x21

2− (x21 + y21)

)
.

We now consider separately the case y1 = 0 (which produces an exceptional
point (x3, y3)) and the case y1 6= 0.

Case y1 = 0: Then x21 = 1, which implies u1 = 1 and v21 = 4 by (5.3). Also,
(x3, y3) = (0,−1) by (5.7). So (u3, v3) = (0, 0) (see exceptional points in Section
4). Equation (5.6) gives λ = 4

v1
.

Since v21 = 4, (u3 − u1)λ = − 4
v1

= −v1 = v3 − v1, so (5.5) holds.

Case y1 6= 0: Using (5.3) and (5.7) we write the coordinates of the points P1, P3

as follows:

(5.8) u1 =
1 + y1
1− y1

, v1 =
2(1 + y1)

x1(1− y1)
,

(5.9) u3 =
1 + y3
1− y3

=
1− x21
1− y21

, v3 =
2u3
x3

=

(
x21 + y21
x1y1

)(
1− x21
1− y21

)
.

Denote by LHS (resp. RHS) the left-hand (resp. right-hand) side expression of
(5.5); we will show they are equal. Substituting v1, v3 from (5.8) and (5.9) in LHS
gives

(5.10) LHS =
−x21 − 5y21 + x41 − 2y1 + x21y

2
1 − 2y31

x1y1(1− y21)
.

Using u1, u3 from (5.8) and (5.9) we have

(5.11) u3 − u1 = −x
2
1 + y21 + 2y1

1− y21
.

Also, substituting u1, u3 in (5.6) gives

(5.12) λ =
2x1 + x1y1 − dx1y1 − 2dx1y

2
1

1− y21
.

Multiplying the numerator and denominator of λ in (5.12) by x1y1 6= 0 and replacing
dx21y

2
1 = x21 + y21 − 1 give

(5.13) λ =
1 + 2y1 − x21 − y21 − 2y31 + x21y

2
1

x1y1(1− y21)
.

It follows that from (5.11) and (5.13) that

(5.14) RHS = (u3 − u1)λ =
(−x21 − 5y21 + x41 + x21y

2
1 − 2y1 − 2y31)(1− y21)

x1y1(1− y21)2
.

Thus, LHS = RHS as claimed. �
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We have just shown that doubling a point (of order different than 2) on the
Edwards-Bernstein curve E corresponds to doubling the image point by φ on the
elliptic curve C∗.

We now show that adding two different points (non-inverse of one another) on
the Edwards-Bernstein curve E corresponds to adding the image points by φ on the
elliptic curve C∗. More specifically, since Pi i ∈ {1, 2, 3} denotes the image point
on C∗ for i ∈ {1, 2, 3}, showing P3 = P1 + P2 amounts to show that the points
P1, P2 and −P3 are collinear.

Recall the following assumptions from the beginning of the section for this case:

• x1 6= 0, x2 6= 0.
• P1, P2 6∈ {(0, 0),∞}.
• P1 6= ±P2.

Proof of Case (b). First, note that P1, P2 and −P3 will be collinear if and only if
the following equation holds:

(5.15)
v2 − v1
u2 − u1

=
−v3 − v1
u3 − u1

which says that the slope of the line going through points P1, P2 must be the same
as that of the line going through P1,−P3. Since vi = 2ui

xi
, we can rewrite (5.15) as

(u3 − u1)

(
v2 − v1
u2 − u1

)
= −2u3

x3
− 2u1

x1

which gives

(5.16) u1

(
λ− 2

x1

)
= u3

(
λ+

2

x3

)
where

λ =
v2 − v1
u2 − u1

=

2
x2

(
1+y2

1−y2

)
− 2

x1

(
1+y1

1−y1

)
(

1+y2

1−y2

)
−
(

1+y1

1−y1

)
=
x1(1− y1)(1 + y2)− x2(1 + y1)(1− y2)

x1x2(y2 − y1)
(5.17)

Denote by LHS (resp. RHS) the left-hand (resp. right-hand) side expression of
(5.16). Our goal is to show that they are equal. We first expand the LHS expression:

LHS =

(
1 + y1
1− y1

)(
λ− 2

x1

)
=

(
1 + y1
1− y1

)(
x1(1− y1)(1 + y2)− x2(1 + y1)(1− y2)− 2x2(y2 − y1)

x1x2(y2 − y1)

)
=

(
1 + y1
1− y1

)
(x1 − x2)(1− y1)(1 + y2)

x1x2(y2 − y1)

=
(x1 − x2)(1 + y1)(1 + y2)

x1x2(y2 − y1)

15



Since the LHS expression does not contain any term with coefficient d, we will
expand the RHS expression and use the equation of the curve E to eliminate any
terms with coefficient d.

Before we fully expand the RHS expression, let us calculate

x1x2(y2 − y1)(1 + dx1x2y1y2) = x1x2(y2 − y1) + dx21x
2
2y1y

2
2 − dx21x22y21y2

= x1x2(y2 − y1) + x21y1(1− x22 − y22)− x22y2(1− x21 − y21)

Thus by using the expression of λ in (5.17) and that of x3 in (5.4), we have:

λ+
2

x3
=
x1(1− y1)(1 + y2)− x2(1− y2)(1 + y1)

x1x2(y2 − y1)
+ 2

1 + dx1x2y1y2
x1y2 + x2y1

=
A

x1x2(y2 − y1)(x1y2 + x2y1)

where

A = x21y2 − x22y1 + x21y
2
2 − x22y21 − x1x2y1 + x1x2y2 + x21y1y

2
2 − x22y21y2

− x21y1y2 − x1x2y21 + x1x2y
2
2 + x22y1y2 − x1x2y21y2 + x1x2y1y

2
2

− 2x21y1 + 2x22y2 + 2x21x
2
2y1 − 2x21x

2
2y2.

The RHS expression of (5.16) becomes

RHS =
u3A

x1x2(y2 − y1)(x1y2 + x2y1)

where

u3 =
1 +

(
y1y2−x1x2

1−dx1x2y1y2

)
1−

(
y1y2−x1x2

1−dx1x2y1y2

)
=

1− dx1x2y1y2 + y1y2 − x1x2
1− dx1x2y1y2 − y1y2 + x1x2

.(5.18)

Notice that both LHS and RHS expressions have the common factor x1x2(y2 −
y1) 6= 0, it follows that the identity LHS = RHS is equivalent to

(5.19) (x1y2 + x2y1)Numerator(LHS)Denominator(u3)−Numerator(u3)A = 0

Case y1 = 0: Then x21 = 1. We substitute this in LHS, u3 and A. Notice that
x1y2(x1 − x2) = y2(1− x1x2). The left-hand side of (5.19) becomes

x1y2(x1 − x2)(1 + y2)(1 + x1x2)− (1− x1x2)y2(1 + x1x2)(1 + y2)

= (1 + y2)(1 + x1x2)(x1y2(x1 − x2)− (1− x1x2)y2)

= 0.

So LHS = RHS, as claimed.
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Case y1 6= 0: Multiplying both numerator and denominator of u3 in (5.18) by
x1y1 6= 0 gives

u3 =
x1y1 − dx21y21x2y2 + x1y

2
1y2 − x21x2y1

x1y1 − dx21y21x2y2 − x1y21y2 + x21x2y1

=
x1y1 − x2y2(x21 + y21 − 1) + x1y

2
1y2 − x21x2y1

x1y1 − x2y2(x21 + y21 − 1)− x1y21y2 + x21x2y1
.

Making this substitution, we see that the left-hand side of (5.19) is a polynomial
in x1, x2, y1, y2 and does not contain the coefficient d. After expanding, we notice
that it is equal to

(x21x2 − x2 − x1 − x2y1 − x1y2 − x1y1y2)B

with

B = x21x
2
2y

2
1 + x21y

2
1y

2
2 − x21x22y22 − x22y21y22 + x22y

2
2 − x21y21

= x21y
2
1(x22 + y22 − 1)− x22y22(x21 + y21 − 1)

= dx21y
2
1x

2
2y

2
2 − dx22y22x21y21

= 0.

So LHS = RHS as claimed. �

In conclusion, P1 +P2 = P3 in every case. The group law (5.1) on the Edwards-
Bernstein curve corresponds to the standard addition law on the birationally equiv-
alent elliptic curve. Therefore, we conclude that if d is not a square in K, we have
an isomorphism of groups.

6. Examples

We conclude this document with two examples of Edwards-Bernstein curves de-
fined over a non-binary finite field. In the first example (Section 6.1), the coefficient
d is chosen to be a non-square. Therefore we have an isomorphism between the
Edwards-Bernstein curve and the elliptic curve. Also, the addition law (5.1) is
defined everywhere in this example.

In the second example (Section 6.2), the coefficient d is chosen to be a square. We
will see that the group law (5.1) is not defined for all pairs of points on the Edwards-
Bernstein curve. Interestingly, it is still birationally equivalent to an elliptic curve
defined over the base field.

6.1. An example with d non-square. Let K = F7. The curve

E : x2 + y2 = 1 + 3x2y2

is smooth since dc4 = 3 6= 1(7). Note that d = 3 is a non-square in K.
E is birationally equivalent to the elliptic curve

C : v2 = u3 + 4u2 + u

via the maps

σ : (x, y) 7→
(
−1 + y

1− y
,

4(1 + y)

x(1− y)

)
φ : (u, v) 7→

(
−4u

v
,−1 + u

1− u

)
17



There are four K-rational points on each of E and C. The correspondence
between E(K) and C(K) is

(x, y) (u, v)
(0,1) ∞
(0,-1) (0,0)
(1,0) (-1,-3)
(-1,0) (-1,3)

The map σ is actually an isomorphism following the results from Section 4. The
following table shows that the group law (5.1) in E (which is defined for all pairs
of points in C and denoted P +Q) corresponds to the standard addition law in C
(denoted by σ(P ) + σ(Q)):

P Q P +Q σ(P ) σ(Q) σ(P ) + σ(Q)
(0, 1) (0, 1) (0, 1) ∞ ∞ ∞
(0, 1) (0, -1) (0, -1) ∞ (0,0) (0,0)
(0, 1) (1, 0) (1, 0) ∞ (-1,-3) (-1,-3)
(0, 1) (-1, 0) (-1, 0) ∞ (-1,3) (-1,3)
(0, -1) (0, -1) (0, 1) (0,0) (0,0) ∞
(0, -1) (1, 0) (-1, 0) (0,0) (-1,-3) (-1,3)
(0, -1) (-1, 0) (1, 0) (0,0) (-1,3) (-1,-3)
(1, 0) (1, 0) (0, -1) (-1,-3) (-1,-3) (0,0)
(1, 0) (-1, 0) (0, 1) (-1,-3) (-1,3) ∞
(-1, 0) (-1, 0) (0, -1) (-1, 3) (-1, 3) (0,0)

Point (0, 0) ∈ C(K) is the unique point of order 2.

6.2. An example with d square. Let K = F11, the curve

E : x2 + y2 = 1 + 4x2y2

is smooth because dc4 = 4 6= 1(11).
E is birational equivalent to

C : v2 = u3 − 4u2 + u

via the maps:

σ : (x, y) 7→
(
−1 + y

1− y
,

4(1 + y)

x(1− y)

)
φ : (u, v) 7→

(
−4u

v
,−1 + u

1− u

)

There are 12 K-rational points on E and 14 on E whereas C has 16 K-rational
points. The correspondence between E(K) and C(K) is:
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(x, y) (u, v)
(0,1) ∞
(0,-1) (0,0)
(1,0) (-1,4)
(-1,0) (-1,-4)
(2,3) (2,-4)
(-2,3) (2,4)
(2,-3) (-5,-1)
(-2,-3) (-5,1)
(3,2) (3,-4)
(-3,2) (3,4)
(3,-2) (4,2)
(-3,-2) (4,-2)
∞1 (1,3)
∞1 (1,-3)
∞2 (-4,0)
∞2 (-3,0)

Note that∞1 and∞2 are the two points at infinity of E, as described in Section
4.

Most pairs of points in E(K) are not addable using (5.1) because 4x1x2y1y2 =
±1. For the addable pairs (P,Q) ∈ E(K) × E(K), the sum R = P + Q is also a
point in E(K), for example:

(1, 0) + (3, 2) = (2,−3).

For every pair of point (P,Q) ∈ E(K) × E(K), the addition of the corresponding
pair (σ(P ), σ(Q)) ∈ C(K) × C(K) is always defined (using the standard addition
law). Whenever the group law (5.1) is defined for (P,Q), it produces a point that
corresponds via the map σ to the sum of the corresponding points in C(K), that is

σ(P +Q) = σ(P ) + σ(Q).

The left ‘+’ sign denotes the group law (5.1). The right ‘+’ sign denotes the
standard addition law in C(K). For example:

σ(1, 0) + σ(3, 2) = (−1, 4) + (3,−4) = (−5,−1) = σ(2,−3).

Note however that the addition (5.1) does not make σ a group homomorphism
between E(K) and C(K), because it is not defined on many pairs of points. For
example: doubling (2,−3) in E(K) cannot be done by (5.1).
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