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Abstract. In this paper, we will first present some theory about quadratic forms and the
p-adic numbers. We then present the classification of quadratic forms over Qp for all p, both
finite and infinite. We then define the Witt group and Witt ring: algebraic structures on
the set of quadratic forms. Finally, we present the Hasse-Minkowski theorem, which relates
p-adic quadratic forms to rational ones.

Introduction

Quadratic forms play a major role in many different fields. They can be used in order
to generate groups and spaces; their applications range from number theory all the way to
linear regressions. As such, it is important to know about the classification of quadratic
forms over Q. Often, rational numbers are not easy to work with. As a result, we often
prefer to work in the p-adic numbers. The Hasse-Minkowski theorem is the pathway from
the local p-adic case to the global rational case.
In this paper, we introduce a new classification method of p-adic quadratic forms. While

such a classification is well-known, established in texts such as [Ser93], our main theorem is,
to the best of our knowledge, a novel contribution.

We begin by reviewing the theory of quadratic forms in Section 1, including defining
quadratic forms, the notion of equivalence between quadratic forms, and the diagonalization
of quadratic forms. We continue by introducing isotropic and anisotropic quadratic forms;
we review the following standard decomposition of quadratic forms.

Corollary 1.3.7. A quadratic form may be decomposed into the direct sum of copies of H
and a unique anisotropic part, called the anisotropic kernel.

We then define the Value set (Definition 1.4.1), which for an anisotropic quadratic form
is its image mod squares. The Value set will serve to be the heart of our classification.

In Section 2, we introduce the p-adic numbers, alternate completions of Q. The results
about square classes in Subsection 2.5 will serve to be very important in our classification;
specifically, Corollary 2.5.3, which gives the square class representatives over Qp.
In Section 3, we present the classification of p-adic quadratic forms, for p odd and finite.

We rely on Corollary 1.3.7 and Corollary 2.5.3 in order to greatly reduce the problem to that
of classification of anisotropic quadratic forms with entries from a preferred set of square
class representatives. Our main result is the following.

Main Theorem. Two anisotropic quadratic forms over Qp are equivalent if and only if their
images are the same, for p finite.
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The complete classification of p-adic quadratic forms is characterized in Theorem 3.2.1,
Lemma 3.2.2, and Proposition 3.2.3. This classification is summarized by the following
Proposition.

Proposition. The dimension and anisotropic kernel are a complete set of invariants of a
quadratic form over Qp, for p finite.

For p odd, we show that these results hold for any finite degree field extension of Qp.
We then move onto Section 4, where we look at the Witt Ring: an algebraic structure

on the set of quadratic forms. We show that for p odd of finite, the Witt ring, W (F ), is
isomorphic to Z2(x, y)/⟨x2 − 1, y2 − 1⟩ when −1 ∈ F×2 and Z4(x)/⟨x2 − 1⟩ when −1 ̸∈ F×2.

Finally, in Section 5, we complete the classification for the outlying cases, noting that
the only thing that changes is the square classes. For p = 2, we show that the Theorem
and Proposition stated above still hold. Using this complete classification for p both finite
and infinite, we present the Hasse-Minkowski theorem, which we show to imply that two
quadratic forms over Q are equivalent if and only if they are equivalent over all p-adic fields.
With this, we have provided a classification of not only p-adic quadratic forms but also
rational ones.

Notation Used. Most notation presented here is explored in more detail, in order to help
the reader who is not familiar with these concepts, throughout this paper.

We use F to denote a field and V to denote a vector space over F. Sometimes, when the
dimension is important we will write F n to denote F ×F × . . .×F. To denote the invertible
elements of F, we will write F×. Denote by charF the characteristic of a field F.

We denote a quadratic form as Q(x), or simply Q. It might be the case, that in order
to emphasize the relation between a quadratic form and a bilinear form, we write Q(x, x)
or A(x, x) to mean a quadratic form. We will denote the associated bilinear form to a
quadratic form as A(x, y) or simply abbreviate to ⟨x, y⟩ or A when the choice is clear from
the context. The matrix representation of a quadratic form will be denoted as M, or M(f),
where {f1, . . . , fn} is a basis of V. The subscript chosen for M will correspond to the basis;
usually either e or f will be chosen. Often we will use the words, “let M be a quadratic
form,” where M is the associated matrix to a quadratic form Q; it is expected the reader
views this to mean Q(x) = xTMx, as stated after Definition 1.1.6. If two quadratic forms Q
and Q′ are equivalent, we will write Q ∼ Q′.

We use ⊕ to denote the direct sum between two quadratic spaces and ⊗ to denote the
Kronecker product between two quadratic spaces. Moreover, we use u, v, w to denote vectors
and span to denote the spanning set of vectors. Also, we let H represent a hyperbolic plane
and Qaniso denote the anisotropic kernel of a given quadratic form.

In this paper, we use Val(Q) to denote the value set of a quadratic form Q (Defini-
tion 1.4.1). The value set will serve to be the heart of our classification.

We will use Z to denote the set of integers, Q to denote the field of rational numbers, Qp

to denote the field of p-adic numbers, and R to denote the real numbers. We will sometimes
use Q∞ to denote the real numbers in order to keep the notation tighter. In general, when
writing p = ∞, we will be referring to the real numbers or usual absolute value. We write
Zp to denote the ring of p-adic integers. To refer to a sequence of numbers, we write (an)n≥1.
We denote the p-adic valuation as vp(n) and the p-adic norm as |x|p := p−vp(x).
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To denote a quadratic field extension, we write E = F [
√
α], where is α is a non-square

element of F. The associated norm map is denoted by N[E/F ] : E → F . We write F×2 when
referring to square elements in a given field, and so F×/F×2 will be the square classes of F.

Let F be a finite degree field extension of Qp, for p odd. We write ϵ ∈ F to denote a
non-square element of F, with valuation 0. Furthermore, ϖ is an element of F with minimal
positive valuation, formally called a uniformizer of F. Often, to denote arbitrary elements of
F×/F×2, we will use α, β, γ, δ.

If two quadratic forms Q,Q′ are Witt equivalent (Definition 4.1.1), we will write Q ≈ Q′.
Furthermore, we denote by W (F ) the Witt group or ring of a field F . When presenting the
Hasse-Minkowski theorem, given a quadratic form Q over Q, we will write Qp to denote the
quadratic form over the field Qp.

1. Introduction to Quadratic Forms

The study of quadratic forms is both vibrant and widely influential. In this section, we
will present some common facts about quadratic forms, such as defining equivalence and
introducing the concept of diagonalization of quadratic forms. Through this section, F is a
field with charF ̸= 2, A is a bilinear form, and M(e) is the representation of A over a basis
{e1, . . . , en} ∈ F n. In subsequent sections, when the choice of form is clear from context, we
may abbreviate A(x, y) to ⟨x, y⟩. For more details on this section, one may consult [Zie19].

1.1. Equivalence of Bilinear Forms. Bilinear forms act as a stepping stone into quadratic
forms. In understanding the theory of bilinear forms, the theory of quadratic forms will
become more apparent.

Definition 1.1.1. A function A : V × V → F, where V is a vector space over F , of two
vectors x and y is a bilinear form if A is linear in x and y, that is, if

A(
k∑

i=1

αixi,

m∑
j=1

βjyj) =
k∑

i=1

m∑
j=1

αiβjA(xi, xj),

for all αi, βj ∈ F, and xi, yj ∈ V.

Definition 1.1.2. Given a bilinear form A : V × V → F, the matrix representation of A
over a basis {e1, . . . , en} of V is the matrix M = (aij), where aij = A(ei, ej) under that basis.

As stated, we wish to have a strong notion of equivalence between bilinear forms. We
proceed as follows. Suppose {e1, . . . , en} and {f1, . . . , fn} are bases of V, and consider M(e) =
(A(ei, ej)) and M(f) = (A(fi, fj)). Assume that

fi =
n∑

j=1

p
(i)
j ej,
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with P = (p
(i)
j ). Then one can calculate

bik = A(fi, fk) = A(
n∑

j=1

p
(i)
j ej,

n∑
j′=1

p
(k)
j′ ej′)

=
n∑

j,j′=1

p
(i)
j p

(k)
j′ A(ej, ej′)

=
n∑

j,j′=1

p
(i)
j p

(k)
j′ ajj′ .

It is clear that M(f) = P TM(e)P. Furthermore, since P and P T are nonsingular, it follows
that the rank of the matrix representation is independent of the choice of basis. This leads
us to define equivalence between two bilinear forms, which will be very useful.

Definition 1.1.3. Two matrices M and M ′ are said to be congruent if there exists an
invertible matrix P such that P TMP = M ′.

Definition 1.1.4. Two bilinear forms A and A′ are said to be equivalent if they admit
matrix representations M and M ′ such that M and M ′ are congruent. In this case, we write
A ∼ A′.

This will be well defined since all this definition is really saying is that they have the same
matrix up to some change of basis.

Proposition 1.1.5. Suppose A and A′ are equivalent bilinear forms. Then, for every pair of
bases {e1, . . . , en} and {f1, . . . , fn} of V, if M(e) is the matrix representation of A with respect
to {e1, . . . , en} and M ′

(f) is the matrix representation of A′ with respect to {f1, . . . , fn}, then
M(e) and M ′

(f) are congruent. Moreover, detM(e) = x2 detM(f), for some x ∈ F×.

Proof. The first statement is a simple fact of linear algebra. Using standard determinant
rules, one immediately finds detM ′ = (detP )2 · detM = x2 detM. □

We are now ready to define quadratic forms, our object of interest.

Definition 1.1.6. A quadratic form is a function Q : V → F defined by Q(x) = A(x, x),
for a given non-degenerate, symmetric bilinear form A. We sometimes denote Q by A(x, x)
to emphasize this relationship.

We say a bilinear form A is non-degenerate if one (equivalently all) of its matrix repre-
sentations is non-degenerate. We say A is symmetric if A(x, y) = A(y, x) for all x, y ∈ V ,
so that its matrix representations are symmetric matrices. Using this definition, we can say
that if M is the matrix representation of Q, then Q(x) = xTQx. We will add one fact that is
pretty obvious but still extremely beneficial to our cause of classification, reducing the work
needed immensely.

Proposition 1.1.7. For any σ ∈ Sn, we haveα1

. . .
αn

 ∼

ασ(1)

. . .
ασ(n)

 .
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Proof. If we let P = [eσ(1)|eσ(2)| . . . |eσ(n)], then

P T

α1

. . .
αn

P =

ασ(1)

. . .
ασ(n)

 .

□

1.2. Diagonalization of Quadratic Forms. In this section, we show an interesting fact:
any quadratic form over F n may be represented as a diagonal matrix over some basis. The
matrix of a quadratic form relative to this basis, say {f1, . . . , fk}, will be diagonal with

aik = A(fi, fk) = 0 for i ̸= k.

We will call this a diagonal quadratic form. Essentially, all that we are doing is completing
the square many times. It should be noted that even quadratic forms with wildly different
diagonal forms might be equivalent to one another (this will be shown through examples
later in this section).

Proposition 1.2.1. Let A(x, x) be a quadratic form in F n. Then there exists a basis {f1, . . . , fn}

of F n there exist li ∈ F×, such that for any vector x =
n∑

k=1

τkfk over this basis, the value

A(x, x) = l1τ
2
1 + · · ·+ lnτ

2
n. The matrix of A with respect to {f1, . . . , fn} is thus diagonal.

Proof. Take A(x, x) to be a quadratic form in F n. We wish to find a basis {f1, . . . , fn} ∈ F n

such that for x =
n∑

k=1

τkfk we get that A(x, x) = l1τ
2
1+· · ·+lnτ

2
n for some fixed l1, · · · , ln ∈ F×.

That is, we wish to find a basis for which the matrix representation of the quadratic form
A(x, x) is diagonal.

Let {e1, . . . , en} be an arbitrary basis of F n and bik = A(ei, ek). Since (bik) is symmetric,

given x =
n∑

k=1

ξkek, we have that A(x, x) =
n∑

k=1

∑
i≤k

bikξiξk. We thus wish to find ρij such that

(1)


τ1 = ρ11ξ1 + · · ·+ ρ1nξn
τ2 = ρ21ξ1 + · · ·+ ρ2nξn

...

τn = ρn1ξ1 + · · ·+ ρnnξn

gives A(x, x) =
n∑

k=1

lkτ
2
k , for some li.

We will proceed by induction on the number of ξi’s in (1). P (1): If (1) has only one
variable, then clearly A(x, x) = b11ξ

2
i . So, for ρ11 ̸= 0, the induction hypothesis holds.

P (k − 1) =⇒ P (k) : Assume that one of the bii’s is nonzero for i = {1, 2, 3, · · · , k}. Then,
by grouping, and taking bkk ̸= 0, we get

b1kξ1ξk + b2kξ2ξk + · · ·+ bk−1,kξk−1ξk + bkkξ
2
k

= bkk
[ b1k
2bkk

ξ1 +
b2k
2bkk

ξ2 + · · ·+ ξk
]2

+ A′(x, x),
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where A′(x, x) is a quadratic form relying only on ξ1, · · · , ξk−1. Define now, this transforma-
tion from τi to τ ′i as

(2)


1

1
. . .

b1k
2bkk

b2k
2bkk

· · · 1

 .

The determinant of the matrix of transformation has a determinant equal to one. So, it
is nonsingular and we get a new system

A(x, x) = A′′(x, x) + bkkτ
′2
k ,

where A′′(x, x) relies only on τ ′1, . . . , τ
′
k−1. By the induction hypothesis, there must be a

transformation

(3)


η1 = ρ11τ

′
1 + · · ·+ ρ1,k−1τ

′
k−1

...

ηk−1 = ρk−1,1τ
′
1 + · · ·+ ρk−1,k−1τ

′
k−1

which gives A′′(x, x) = l1τ
2
1 + · · ·+ lk−1τ

2
k−1. If to (3) we add ηk = τ ′k, then we are left with

A(x, x) = A′′(x, x) + bkkτ
2
k = l1τ

2
1 + · · ·+ lkτ

2
k .

We note that the matrix of transformation obtained by adding ηk = τ ′k is the product of two
nonsingular matrices (namely those in (1) and (2)) and so, it is nonsingular.

We are now left to consider the case when b11 = . . . = bkk = 0. For the quadratic form
to be nonzero, we must have some term bikξiξk with a nonzero coefficient. Assume b12 ̸= 0.
Thus, we require a new transformation. Namely,1 1

1 −1
Ik−2

 ,

and it has det = −2, thus it is nonsingular. Our transformation changes b12ξ1ξ2 to b12ξ
′2
1 +

b12ξ
′2
2 , so that the previous case applies. As a result, we conclude that any quadratic form

may be diagonalized. □

Example 1.2.2. Consider the following quadratic forms over Q : 4x2 − 3y2 and x2 − 12y2.
These two forms are equivalent since

4x2 − 3y2 ∼ 4(4x2 − 3y2) ∼ (4x)2 − 12y2 ∼ k2 − 12y2.

Example 1.2.3. Let F be a finite field with charF ̸= 2, then x2 − 6xy+8y2 ∼ aX2 − aY 2,
for all a = ±1. Notice that the second form is already in diagonal form. One observes that
x2 − 6xy + 8y2 = (x− 3y)2 − y2.

As a side note, using this factoring in other fields will yield different results. For example,
in R or C the forms x2 − 6xy+8y2 and ax2 − ay2 will be equivalent for all a. In Q, they are
equivalent when

√
a is rational.

Proposition 1.2.4. Suppose A′, A′′ are quadratic forms over F such that A′ ∼ A′′. Let M(e)

be a matrix representation of A′ and M(f) that of A
′′. Then detM(e) = detM(f), in F×/F×2.
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Proof. Since there exists a matrix P such that M(f) = P TM(e)P , we get that detM(f) =
(detP )2 · detM(e) = detM(e), in F×/F×2. □

Definition 1.2.5. Let V ′ and V ′′ be two spaces over a field F , where V ′ is equipped with
the bilinear form A′ and V ′′ is equipped with A′′. We say V ′ and V ′′ are A-isomorphic if

(1) There exists an isomorphism ω between V ′ and V ′′;
(2) A′(x, y) = A′′(ωx, ωy) for all x, y ∈ V ′.

Theorem 1.2.6. Given two finite dimensional linear spaces V ′ and V ′′ over F , equipped
with Q′ and Q′′ respectively. Then, there exists an Q-isomorphism between V ′ and V ′′ if and
only if:

(1) dimV ′ = dimV ′′;
(2) There exists a basis {e′1, . . . , e′n} in V ′ and a basis {e′′1, . . . , e′′n} in V ′′ such that the

matrix representations of Q′ and Q′′ are identical, with respect to their given bases.

Proof. Suppose (V ′, Q′) ∼= (V ′′, Q′′). Then, since V ′ and V ′′ are isomorphic linear spaces, this
means that their dimension is also the same.

If {e′1, . . . , e′n} is a basis for which Q′ is diagonal in V ′, then

Q(e′i, e
′
j) =

{
0, i ̸= j

ξi, else.

Similarly, if {e′′1, . . . , e′′n} ∈ V ′′ corresponds to {e′1, . . . , e′n} such that e′′i = ωe′i, where ω is the
isomorphism between V ′ and V ′′, then

Q(ωe′i, ωe
′
j) = Q(e′′i , e

′′
j ) =

{
0, if i ̸= j

ξi, else.

So, we have that Q′ and Q′′ have the same matrix representations with respect to these
bases.

Conversely, suppose that V ′ and V ′′ have the same dimension, and it is equal to n. Let
{e′1, . . . , e′n} ∈ V ′ and {e′′1, . . . , e′′n} ∈ V ′′ be bases for which the quadratic forms are diagonal
with coefficients ξ1, · · · , ξn such that

Q′ = Q(e′i, e
′
j) = Q(e′′i , e

′′
j ) = Q′′ =

{
0, if i ̸= j

ξi, else.

Thus we can define an isomorphism by sending {e′1, . . . , e′n} to {e′′1, . . . , e′′n}. □

We now proceed to a well-known major result in the classification of quadratic forms:
Witt’s cancellation theorem will serve as a useful tool in moving up dimensions of quadratic
forms as it will help relate lower dimensional cases to higher dimensional ones. The proof of
this well-known theorem may be found in [Zie19].

Theorem 1.2.7 (Witt’s Cancellation Theorem). Let F be a field. Suppose Q1, Q2, Q3 are
three quadratic forms over F . If Q1 ⊕Q2 ∼ Q1 ⊕Q3, then Q2 ∼ Q3.

1.3. Isotropic and Anisotropic Quadratic Forms. In order to fully understand qua-
dratic forms, it is important to introduce the notion of isotropic and anisotropic quadratic
forms.
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Definition 1.3.1. A quadratic form Q over a field F is isotropic if there exists a w ̸= 0 in
V such that Q(w) = 0.

A significant isotropic quadratic form is the hyperbolic plane, which is defined as follows.

Definition 1.3.2. A hyperbolic plane is a 2-dimensional quadratic form such that, with
respect to some basis {u, v}, we have H = span{u, v} such that ⟨u, u⟩ = ⟨v, v⟩ = 0 and
⟨u, v⟩ = ⟨v, u⟩ = 1.

It is immediately clear that this is isotropic. In fact, every 2-dimensional isotropic qua-
dratic form is equivalent. We see that Q(x, y) = xy is a hyperbolic plane. Suppose H is
a hyperbolic plane, and pick some u ∈ H such that Q(u) = 0. Suppose v ∈ H is chosen
such that {u, v} forms a basis for H. If ⟨u, v⟩ = 0 then, since for any w ∈ H we can write
w = αu + βv, this would mean that ⟨u, x⟩ = 0, for all w ∈ H, which means that Q is
degenerate. Thus, ⟨u, v⟩ ̸= 0. We may assume that ⟨u, v⟩ = 1, by scaling. We immediately
see that the matrix associated to Q over {u, v}, is

M =

[
0 1
1 ⟨v, v⟩

]
.

If ⟨v, v⟩ = 0, then we are done.
Suppose now that ⟨v, v⟩ ≠ 0, then Q(−1

2
⟨v, v⟩u+ v) = 0, so that[

1 −1
2
⟨v, v⟩

0 1

] [
0 1
1 ⟨v, v⟩

] [
1 0

−1
2
⟨v, v⟩ 1

]
=

[
0 1
1 0

]
.

Therefore, we have shown that Q and H are equivalent as quadratic spaces and we are done.

As a result, any hyperbolic plane H will be equivalent to

[
0 1
1 0

]
. Starting now, we will write

H =

[
0 1
1 0

]
for any hyperbolic plane and refer to it as the hyperbolic plane.

Proposition 1.3.3. The hyperbolic plane is preserved by multiplication by any non-zero
scalar. That is, H ∼ λ⊗H for any λ ∈ F×.

Proof. If we take B′ = {u′ = 1
λ
u, v} we immediately have ⟨u′, u′⟩ = ⟨v, v⟩ = 0 and ⟨u′, v⟩ =

⟨v, u′⟩ = 1. Which means that

[H]B′ =

[
0 1
1 0

]
.

□

Proposition 1.3.4. The image of H is F.

Proof. If Q =

[
0 1
1 0

]
, then Q(x, y) = 2xy. Thus the values H takes non-trivially are {2xy |

(x, y) ∈ F 2 \ {(0, 0)}} = F. □

Theorem 1.3.5. Let Q be an isotropic quadratic form. Then there exists a quadratic form
Q′ such that

Q ∼ H ⊕Q′.
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Proof. Suppose that Q(u) = 0 for some u ̸= 0. Since Q is non degenerate, there exists a w
such that ⟨u,w⟩ = 1. We will show that there exists a unique α such that Q(αu+ w) = 0.
We compute

Q(αu+ w) = α2Q(u) +Q(w) + 2⟨u,w⟩ = Q(w) + 2α,

which will be zero exactly when α = −Q(w)/2.
Set v = αu+w; then {u, v} span a hyperbolic plane, which means that ⟨u, v⟩ = αQ(u) +

⟨u,w⟩ = 0 + 1 = 1. This implies that

Q(xu+ yv) = xy.

Let Q′ = Q⊥, it is clear that Q ∩Q′ = {0}. So Q = H ⊕Q′. □

Definition 1.3.6. A quadratic form Q over a field F is anisotropic if for all w ̸= 0 in V one
has Q(w) ̸= 0.

It is immediately clear that if Q is an anisotropic quadratic form, then there does not exist
a quadratic form Q′ such that Q = nH ⊕Q′, for n ∈ N≥1. That is, an anisotropic quadratic
form does not contain a hyperbolic plane. Otherwise, Q would have to evaluate to 0 for a
nonzero vector. We present a Corollary of Theorem 1.3.5.

Corollary 1.3.7. Let Q be an isotropic quadratic form. Then Q can be written as Q =
ℓH ⊕ Qaniso for some ℓ ∈ N≥1 where Qaniso is anisotropic. We call Qaniso the anisotropic
kernel of Q. When Q is anisotropic, Q = Qaniso.

1.4. The Value Set of a Quadratic Form. The value set of a quadratic function will
allow us to distinguish between quadratic forms. Though it is not necessarily true that if
two quadratic forms have the same value set then they are equivalent, it is true that forms
with different value sets are certainly different from one another. Note that Q(ax) = a2Q(x),
so the image of Q is always closed under scaling by squares.

Definition 1.4.1. If Q is a quadratic form over a field F, we define its value set to be

Val(Q) = VQ :=


{Q(x) | x ∈ V \ {0}}/F×2 if Q is anisotropic,

∅ if Q = 0,

F if Q is isotropic and nonzero.

Based on the definition of equivalence between quadratic forms, the following follows.

Proposition 1.4.2. If Q and Q′ are equivalent quadratic forms, then Val(Q) = Val(Q′).

Proof. If Q and Q′ are equivalent quadratic forms, then by Theorem 1.2.6 the matrices
representing them are congruent. It follows that the images of Q and Q′ in F are equal. □

As mentioned at the start of this section, the converse is not true. We present some
examples to outline this fact.

Example 1.4.3. The following is for the analogous notion over a ring Z, but a worthwhile
example nonetheless. Suppose Q = x2 + xy + y2 and Q′ = x2 + 3y2 over Z. It should
be pretty clear that these quadratic forms are not equivalent. Yet, over Z, suppose that
α = x2 + xy + y2, for x, y ∈ Z, then we wish to show that there exist x′, y′ ∈ Z such that
x2 + xy + y2 = x′2 + 3y′2.
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This is an ellipse, and we wish to show that for set x, y there always exists a lattice
point (x′, y′) on the ellipse. Suppose x = y′ + x′ and y = y′ − x′, then x2 + xy + y2 =
(y′ + x′)2 + (y′ + x′)(y′ − x′) + (y′ − x′)2 = x′2 + 3y′2.
Proving in the other direction is casework on if x′ and y′ are even and odd. Thus, these

have the same value set over Z but, are not equivalent.

We present an example over a field, namely R, that also highlights the notion that Val(Q) =
Val(Q′) ≠⇒ Q ∼ Q′.

Example 1.4.4. Over R, for any dimension, n, there exists an anisotropic form Q that
represents all positive numbers. Take the form Q(x) = x2

1 + . . .+ x2
n, where x ∈ V ⊆ Rn for

example. Clearly, quadratic forms of different dimensions are not equivalent.

In Chapter 3, we will see that in the p-adic numbers, the value set gives a lot of information
about a given anisotropic form: it gives the dimension, and actually uniquely defines the
anisotropic form (Proposition 3.1.8, Lemma 5.1.17), up to equivalence.

Proposition 1.4.5. If Q is anisotropic, then F×2 ⊂ Val(Q) ⊂ F×.

1.5. The Kronecker Product. Before introducing classification and specific methods, it is
important to have a good understanding of how to move between quadratic forms. We have
seen one way of combining quadratic forms on two spaces: the direct sum, whose matrix
is given in block diagonal form. Another way is to take the tensor product of the spaces,
and the resulting operation on matrices is called the Kronecker product. Of course, it is
important to consider the dimension and new basis of this product. As such, we formalize
as follows. Without the loss of generality, we consider diagonal quadratic forms.

We are looking for a way to represent (V,Q) ⊗ (V ′, Q′), and so, if {x1, . . . , xn} ⊆ F is
a basis for V for which Q is diagonal and {y1, . . . , yn} ⊆ F is a basis for V ′ for which Q′

is diagonal, then the basis of their product should be every combination of vectors in {xi}
with those in {yi}. We are now ready to present the Kronecker product, a special case of the
tensor product.

Definition 1.5.1 (The Kronecker Product). Given two diagonal quadratic forms (V,Q) and
(V ′, Q′), where V ⊆ F n, V ′ ⊆ Fm, their Kronecker product is defined to be

(V,Q)⊗ (V ′, Q′) := (V ⊗ V ′, Q⊗Q′),

where V ⊗ V ′ is the tensor product of the spaces and

Q⊗Q′ = (λ1x
2
1 + . . .+ λnx

2
n)⊗ (τ1y

2
1 + . . .+ τmy

2
m)

:= λ1τ1(x1y1)
2 + . . .+ λ1τm(x1ym)

2

+ λ2τ1(x2y1)
2 + . . .+ λ2τm(x2ym)

2

+
...

+ λnτ1(xny1)
2 + . . .+ λnτm(xnym)

2.

It is evident that the Kronecker product of two forms with dimensions m and n will be of
dimension mn.

Example 1.5.2. Suppose Q(x) = ax2, then for any quadratic form Q′, Q⊗Q′ = aQ′.
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2. The p-adic numbers

The real numbers are derived from completing Q with respect to the absolute value.
While completing Q, a real number may be defined to be a set of Cauchy sequences that are
equivalent. Two Cauchy sequences (an)n≥1 and (bn)n≥1 are in this case said to be equivalent
if lim

n→∞
(an − bn) = 0. This process intuitively “fills in the gaps” of rational numbers by

introducing Cauchy sequences. We will proceed in a similar way in Section 2.3.
Of course, the notion of completing Q stems from the notion of closeness which we have

assigned on the set. Since a Cauchy sequence relies heavily on a notion of closeness, when
this changes, drastically different things might occur. Thus, we must look into how we may
define closeness in order to build the p-adic numbers. The answer lies in the norm chosen.
The following argument is our take on a very classical one; the curious reader can see [Gou20,
Chapter 3] for more details.

2.1. Norms.

Definition 2.1.1. Let F be a field. A norm on F is a map |·, ·| : F → [0,∞) that satisfies
the following three properties

(A1). If |x| = 0 then x = 0 (Positive Definiteness);
(A2). |xy| = |x| · |y| (Multiplicativity);
(A3). |x+ y| ≤ |x|+ |y| (The Triangle Inequality).

A norm is particularly useful as it can define the distance between two elements of a set.
That is, any norm induces a metric onto a space.

Definition 2.1.2. Let F be a field. A metric on F is a map d : F × F → R that satisfies,
for all x, y, z ∈ F,

(M1). The distance between a point to itself is 0, d(x, x) = 0;
(M2). If x ̸= y, then d(x, y) > 0 (Positivity);
(M3). d(x, y) = d(y, x) (Symmetry);
(M4). d(x, y) ≤ d(x, z) + d(z, y) (The Triangle Inequality),

A norm will induce a metric of F as follows:

d(x, y) = |x− y|,

for any given norm on F. It is easily verified that d is a metric.

Definition 2.1.3. A norm is said to be non-archimedean if for all x, y ∈ F one has |x+y| ≤
max{|x|, |y|} (Ultrametric Triangle Inequality). A norm is archimedean if it does not satisfy
the ultrametric triangle inequality.

Intuitively this is saying if a norm is non-archimedean, all triangles are isosceles.

Example 2.1.4. The absolute value onQ is archimedean since |1+1| = 2 > max{|1, |1|} = 1.
In fact, this is the only archimedean norm on Q, up to equivalence (see Theorem 2.2.7). The
archimedean norm on Q will be denoted by | · |∞, this notation will be explained after
Theorem 2.2.7.
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2.2. The p-adic valuation.

Definition 2.2.1. Let p be a prime number. The p-adic valuation is a map vp : Z → R
defined on n ∈ N to be

vp(n) := max{k ∈ N | n

pk
∈ N}.

Furthermore, we set vp(0) := ∞ and vp(−n) := vp(n).

Since we are aiming to complete Q, we wish to extend this definition to Q. We will do so
in the obvious way. Let a

b
∈ Q, then we will define

vp(
a

b
) := vp(a)− vp(b).

One may calculate that vp(ab) = vp(a) + vp(b), for a, b ∈ Q. We want the p-adic norm
to be symmetric as we want it to define a norm. We must verify that this extension is

well-defined. We will proceed with a computation. Suppose in Q,
a

b
∼ a′

b′
. Then, ab′ = a′b.

Thus, we have that vp(ab
′) = vp(a) + vp(b

′) = vp(a
′) + vp(b) = vp(a

′b). Rearranging we get
that vp(a) − vp(b) = vp(a

′) − vp(b
′). By our definition of the extension of vp we get that

vp(
a

b
) = vp(

a′

b′
), as desired.

We will now define a p-adic norm. This will be done in terms on the p-adic valuation of
any number in Q.

Definition 2.2.2. The p-adic norm is a map, | · |p : Q → R such that given x ∈ Q

|x|p := p−vp(x).

We are now concerned with the question: is the p-adic norm different from the standard
absolute value, | · |∞? The first step to answering this is to say what it means for two norms
to be the same.

Definition 2.2.3. Two norms are equivalent if they induce the same metric topology on F .

An equivalent formulation to this definition is if |·|1 and |·|2 are norms, they are equivalent
if every open set with respect to | · |1 is also open with respect to | · |2. This condition is
not friendly to check, so we introduce a new criterion. Before doing this, we introduce one
definition and a fact to aid with clarity.

Definition 2.2.4. The trivial norm is a map, | · |0 : Q → {0, 1} such that |x|0 = 1 if x ̸= 0,
and |0|0 = 0.

Proposition 2.2.5. Q is complete with respect to the trivial norm.

Since the trivial norm has no more merit to study, when we refer to a norm on Q, we will
be assuming every norm is nontrivial. We now introduce the alternate criterion.

Proposition 2.2.6. Let | · |1 and | · |2 be nontrivial norms on a field F . The following are
equivalent:

(a) | · |1 is equivalent to | · |2;
(b) for all x ∈ F, if |x|1 < 1 then |x|2 < 1;
(c) there exists α ∈ R>0 such that |x|1 = |x|α2 for all x ∈ F.
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Proof. Suppose that | · |1 is equivalent to | · |2. This means if (xn)n≥1 converges in (F, | · |1)
it must converge in (F, | · |2) and vice versa. Given some x ∈ F, we have lim

n→∞
xn = 0 if and

only if |x| < 1 for either norm. So, for all x ∈ F, if |x|1 < 1 then |x|2 < 1.
To prove that (b) =⇒ (c), there really is no other way to show it other than the

following difficult method. We begin with the assumption, that for all x ∈ F we have
|x|1 < 1 =⇒ |x|2 < 1. Note that for all norms |0| = 0 and |1| = |1| · |1| = 1 (since it cannot
be zero). Suppose x0 ∈ F is such that x0 ̸= 0 and |x0|1 < 1. This implies that |x0|2 < 1. So,
there exists some α > 0 with |x0|1 = |x0|α2 .

Choose some other x ∈ F. We will proceed by cases. If |x|1 = |x0|1, this means that
|x|2 = |x0|2 since otherwise we have that (b) is violated while considering either |x/x0|2 or
|x0/x|2. Thus, |x|1 = |x|α2 .
If |x|1 = 1 if we apply (b) to either x or 1/x we get |x|2 = 1. Thus |x|1 = |x|α2 , trivially.
This leaves us to consider only the case of |x|i ̸= 1 and |x|i ̸= |x0|i for i = 1, 2. Let us

choose β such that |x|1 = |x|β2 . This means that for any n ∈ Z+ one has |xn|1 = |xn|β2 .
Furthermore, we may assume without loss of generality that |x|1 < 1 and |x0| < 1 since
otherwise we operate with 1/x instead. Let m,n ∈ Z+. Then

|x|n1 < |x0|m1 ⇐⇒
∣∣ xn

xm
0

∣∣
1
< 1 ⇐⇒

∣∣ xn

xm
0

|2 < 1 ⇐⇒ |x|n2 < |x0|m2 ,

where the first and last inequalities come by rearranging and the second and third from (b).
We may then use the first and last statements to get

n log |x|1 < m log |x0|1 ⇐⇒ n log |x|2 < m log |x0|2.

Equivalently, for all n,m ∈ N
n

m
>

log |x0|1
log |x|1

⇐⇒ n

m
>

log |x0|2
log |x|2

.

Thus, we clearly see that

log |x0|1
log |x|1

=
log |x0|2
log |x|2

.

If we substitute in |x0|1 = |x0|α2 and |x|1 = |x|β2 , then it is evident that α = β.
Finally, suppose that there exists an α ∈ R such that |x|1 = |x|α2 for all x ∈ F. Then it

is immediately clear that |x − a|1 < r if and only if |x − a|2 < r1/α. So, any open ball in
(F, | · |1) is also open in (F, | · |2).
We have shown that (a) =⇒ (b) =⇒ (c) =⇒ (a). Thus, all three statements are

equivalent, as desired. □

We are now ready to present the main theorem concerning what kinds of norms can be
put on Q.

Theorem 2.2.7 (Ostrowski’s Theorem). Every non-trivial norm on Q is equivalent to one
of the norms | · |p where p is prime or p = ∞.

Sketch of proof. There are two cases to check: when the norm is archimedean and when it is
not. In the first case, one should first show that if n = a0+a1n0+ . . .+akn

k
0 is the expansion

of n in n0, then |n| ≤ nkα
0

nα
0

nα
0−1

, where α is the unique integer such that |n0| = nα
0 .
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Set c = nα
0/(n

α
0 − 1). This is a constant, which implies that for an integer of the form nN

|nN | ≤ cnNα.

Replicating the computation done above will yield that | · | is equivalent to | · |∞.
When | · | is non-archimedean, the trick lies in observing that |n| ≤ 1 for all integers. Since

| · | is non-trivial, it will then follow that there is a smallest integer with |n0| < 1. One should
then show that n0 is going to be prime by considering n0 = a · b, for a, b integers smaller
than n0 and conclude quickly that |a| = |b| = 1 but since |n0| < 1 this is an absurdity. Next,
one should prove that if n0 does not divide n then |n| = 1. Then it should be clear that | · |
is equivalent to | · |n0 . □

Ostrowki’s Theorem is the main reason for using the notation | · |∞ for the usual absolute
value. The point is that then every norm on Q comes from a prime (whether it be finite or
infinite). There are many times when it is helpful to work with all of the primes, such as
the Hasse-Minkowski theorem (see Section 5.1). We will present an example of the use of
working with all the primes before constructing the field Qp.

Proposition 2.2.8. For any x ∈ Q×, we have∏
p prime ≤∞

|x|p = 1.

Proof. Let x be a positive integer, which has factorization x = pa11 · . . . · pann , for pi distinct
primes, and ai ∈ N. One computes

|x|p =


1, if p is not a factor of x,

p−ai
i , if p = pi for some i,

x, if p = ∞.

The result follows immediately since |x|p = | − x|p. □

This formula allows us to compute |x|p, given all other valuations of x. It establishes a
close relationship between all the norms on Q.

2.3. Construction of Qp. We have now covered the tools required in order to build the p-
adic fields. In building these fields, we will highlight the idea that all norms of Q are equally
important and should be treated as such. Much like the reals were built using Cauchy
sequences, we will proceed in the same way.

Definition 2.3.1. Let F be a field and let | · | be a norm on F.

(1) A sequence (an)n≥1 is said to be Cauchy if for all ε > 0 there exists an N0 such that
for all m,n > N0 one has |am − an| < ε.

(2) A field F is complete with respect to a norm | · | if every Cauchy sequence in F has
a limit.

(3) A subset S ⊆ F is dense if for all a ∈ F and all ε > 0 we have that B(a, ε) ∩ S ̸= ∅,
where B(a, ε) := {x | |x− a| < ε}.

Intuitively, a Cauchy sequence is something that should have a limit since its terms are
crowded into smaller and smaller balls. So, a field is complete if the sequences that should
have a limit do.

The archimedean norm is different than the rest since there exists an inclusion of Q into
R such that | · |∞ extends to R, R is complete with respect to this metric, and Q is dense in
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R. We have explained how to build R at the start of this section. Our goal is to now build a
completion, with respect to each of the other norms of Q that is analogous to R. That is, we
want to find a field that extends a p-adic norm, which is complete, and in which Q is dense.
The existence of such an object is a general theorem about metric spaces.

Proposition 2.3.2. Q is not complete with respect to any non-trivial norm.

Proof. [Gou20, Section 3.1]. □

Since Q is not complete, we must construct a completion. The simplest way to do this
is to add all the values that the Cauchy sequences should converge to into Q, as what was
explained for R. Since they do not literally exist, we will let the set of all Cauchy sequences
that should converge to a value be the value itself.

Definition 2.3.3. Let | · |p be a non-archimedean norm on Q. Define

C = Cp(Q) := {(an)n≥1 | (an)n≥1 is Cauchy with respect to | · |p}.

Proposition 2.3.4. C is a commutative ring with unity if we define

(an)n≥1 + (bn)n≥1 = (an + bn)n≥1

(an)n≥1 · (bn)n≥1 = (anbn)n≥1

Proof. Since the sequences on the right are Cauchy, this immediately follows. □

The issue with C is that different Cauchy sequences (an)n≥1 and (bn)n≥1 might have
lim
n→∞

(an − bn) = 0. As such, they should converge to the same value. Despite this, they are

different objects in C. We thus look for a way to identify two sequences that should have the
same limit. It is here that the structure of a ring helps us out.

Definition 2.3.5. Let N ⊂ C be the ideal

N := {(an)n≥1 | lim
n→∞

|an|p = 0}.

It can be shown that N is a maximal ideal of C.

Definition 2.3.6. The field of p-adic numbers is defined to be the quotient

Qp := C/N .

Since two constant sequences never differ by an element of N their difference will be
another constant sequence. And so, we have an inclusion of Q in Qp as we can send a
to the equivalence class of sequences converging to a. We may construct this class as the
equivalence class to (a)n≥1. We are now left to check the other two properties. The first of
which is that | · |p extends to Qp.
We introduce the following lemma to make sense of the definition of the extension of | · |p

to Qp that will follow.

Lemma 2.3.7. Let (an)n≥1 ∈ C such that (an)n≥1 ̸∈ N . There exists some N such for all
m,n > N, |am|p = |an|p.

Proof. Since (an)n≥1 is Cauchy such that an ̸→ 0, there must exist some ε > 0 and n0 such
that for all n ≥ n0 |an|p ≥ ε. Furthermore, since this is a Cauchy sequence, there exists
some n′

0 such for all m,n ≥ n′
0, |an − am|p < ε. Thus, for N = max{n0, n

′
0} every term must

have |an|p = |am|p, by the non archimedean property. □
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Definition 2.3.8. If λ ∈ Qp is an element represented by a Cauchy sequence (an)n≥1, we
define

|λ|p = lim
n→∞

|an|p.

Proposition 2.3.9. Q is a dense subset of Qp.

This is a very standard proof in which one shows any open ball around a given λ ∈ Qp

contains an element (of the image) of Q.

Proposition 2.3.10. Qp is complete with respect to | · |p.
Proof. Let (λn)n≥1 be a Cauchy sequence of elements of Qp. Since Q is dense in Qp, it
immediately follows that there exist rational numbers (an)n≥1 such that

lim
n→∞

|λn − an|p = 0.

The sequence (an)n≥1 must be Cauchy due to the above. So, we let λ denote the element of
Qp corresponding to this sequence. It immediately follows that

lim
n→∞

λn = λ,

which means that Qp is complete. □

Proposition 2.3.11. For every prime p ∈ Z the field Qp is unique up to isomorphisms
preserving norms.

2.4. Field Extensions of Qp. We are interested in extending Qp. That is, we want a field
F containing Qp. Suppose β is a non-square element of Qp, then we would want to extend F
by adjoining the root of some irreducible polynomial, such as x2−β. We could also consider
the field Qp(x) := {f(x)/g(x) | f, g ∈ Qp[x]}; but, for our purposes, we need only consider
finite field extensions.

Definition 2.4.1. Let F be a field containing Qp. Then F is a vector space over Qp. We
say that the degree of F, [F : Qp] = dimQp F, is finite if the dimension of F over Qp is finite.

We would like to consider norms of F, but in order to keep things interesting, we want it
to act as an extension of the p-adic norm. Thus, we are looking for a norm | · | : F → [0,∞)
such that |λ| = |λ|p for λ ∈ Qp.

Any such norm will be a norm on F as a vector space over Qp. Furthermore, it will need
to be non-archimedean since this truly only depends on values of Z which are in Qp. This
norm has really nice properties that we will be highlighting, and then we will show that what
we are looking for is unique and does exist.

Proposition 2.4.2. Let F be a finite extension of Qp. Suppose that there exists | · | that
extends the p-adic norm to F. Then

(a) F is complete with respect to | · | and,
(b) we can take limits of a sequence in F by taking limits of coefficients with respect to a

given basis {x1, . . . , xn} of F as a Qp−vector space.

In particular the topology of F induced by | · | is independent of the choice of | · |.
Proof. Since all norms of a finite-dimensional vector space are equivalent (a) follows. (b)
is saying that any norm is equivalent to the sup-norm for any given basis. And the final
point is true since the topology is simply the unique topology of F as a normed Qp-vector
space. □
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An important, and probably pretty clear, in light of Proposition 2.2.6, corollary follows.

Corollary 2.4.3. There is at most one norm on F extending the absolute value the p-adic
norm on Qp.

We know now that there is at most one extension of | · |p to F, and that F is complete
with respect to that completion. However, we do not know that such an extension must
exist. We will give a construction. One consequence of the above is that the norm does not
depend on the context.

Let E and F be fields, and assume that [E : F ] is finite. We will say that E/F is a
finite extension. Normal extensions are a nice thing: given any extension E/F, there exists
a normal extension of F containing E. The smallest such extension is the normal closure
E/F. The crucial fact is that there exists a function

N[E/F ] : E → F,

which is called the norm from E to F (it is certainly unfortunate that this is called a norm
too, but it is separate from norms as above). This will allow us to “go down” from elements
of the larger field E to the smaller field F. The norm map can be defined in many ways; the
following will be beneficial in our exploration.

Definition 2.4.4. Let a ∈ E. If E is a finite-dimensional F -vector space, consider the F -
linear map from E to E by multiplication by x. Let M be the matrix corresponding to this
map. Define N[E/F ](α) to be the determinant of this matrix.

For a quadratic extension, this definition will serve to be very useful since N[E/F ](α) = αα.
Concretely, N[E/F ](x+ y

√
β) = x2 − y2β, for β ∈ F× \ F×2, where E = F [

√
β].

Proposition 2.4.5. F×2 ⊆ N[E/F ](E
×) ⊆ F×.

2.5. Squares in Qp.. We are looking to tell a story about non-square elements in Qp. They
are important both when talking about field extensions and for the study of quadratic forms.
Thus, a strong understanding of them is important. We are interested not in F× but rather
in equivalence classes of a field by its group of squares. So, we investigate F×/F×2. We
proceed by looking at isomorphisms of Q×

p . We adapt F from Section 2.4. To start, we
introduce the following results.

Proposition 2.5.1. For p ̸= 2, (Q×
p , ·) ∼= (Z,+)× (Z/(p− 1)Z, ·)× (Zp,+), where this is a

group isomorphism.

This isomorphism comes from the fact that Qp contains µp−1, the group of p− 1th roots
of unity {ξn}. We can obtain the last term by sending (m,n, x) → pmξn exp(px).

Proposition 2.5.2. Suppose F has residual characteristic not equal to 2. Then (F×, ·) ∼=
(Z,+)× (F, ·)× ∪1, where ∪1 := {1 + x | x ∈ P}.

Hensel’s Lemma (Theorem 5.1.1) guarantees that elements of ∪1 are squares.

Corollary 2.5.3. Suppose F has residual characteristic p ̸= 2. Let ϵ ∈ F be a non-square
element with valuation 0 and ϖ be an element with minimal, positive valuation, formally
called a uniformizer of F. Then F×/F×2 = {1, ϵ,ϖ, ϵϖ}.
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Proof. We will show a proof for F = Qp; a similar argument holds for any F, using Propo-
sition 2.5.2 instead. Since char(Qp) = 0, we may fruitfully apply Proposition 2.5.1. By the
proposition,

(Q×
p , ·) ∼= (Z,+)× (Z/(p− 1)Z,+)× (Zp,+).

So,

Q×2
p

∼= 2(Z,+)× (Z/(p− 1)Z,+)2 × (Zp,+)2.

If we quotient these groups it is clear that

Q×
p /Q×2

p
∼= (Z/2Z)2.

It immediately follows that Q×
p /Q×2

p = {1, ϵ,ϖ, ϵϖ}. □

3. Classifying Quadratic forms in Qp, p odd.

Throughout this section, F is a finite degree algebraic field extension of Qp with p odd,
and all quadratic forms are over F .
Corollary 2.5.3 will serve as the foundation for our classification of quadratic forms in F.

We will note that when −1 ̸∈ F×2, we may freely choose ϵ to be −1. Notice that because
every quadratic form is equivalent to a diagonal quadratic form, it is true that for the
purposes of classification, we need only consider the diagonal quadratic forms with entries
from our preferred list of square class representatives {1, ϵ,ϖ, ϵϖ}. Our end goal would be
to have a set of invariants that completely classify all quadratic forms of any dimension up
to equivalence. We will show that such a set of invariants exists in F . Recall, we work with
nondegenerate quadratic forms.

Depending on whether or not −1 ∈ F×2, the diagonalization on H becomes very different.

When −1 ∈ F×2, we have that H =

[
1 0
0 1

]
, while when −1 ̸∈ F×2, we have that H =[

1 0
0 ϵ

]
.

Even though the hyperbolic plane is very different in each case, we may still recover a
joint way to write it, independent of whether or not −1 is a square. This comes from the
fact that we are using −1 as ϵ when −1 ̸∈ F×2.

We will proceed by referring to the following table.

−1 −ϵ −ϖ −ϵϖ
−1 ∈ F×2 1 ϵ ϖ ϵϖ
−1 ̸∈ F×2 ϵ 1 ϵϖ ϖ

3.1. The Norm Map and Value Set as a Classification Method. Throughout this
section, we will only be considering the anisotropic quadratic forms. We can do this thanks
to Corollary 1.3.7, which asserts if we have found every anisotropic kernel up to equivalence,
then we may construct every quadratic form up to equivalence, using this decomposition.

We will be using norm maps and value sets of quadratic forms as a way to distinguish
anisotropic kernels. Thus, we want to build machinery to allow us to simply look at a
quadratic form and say if it is anisotropic or not and if it is equivalent to another given
quadratic form.

We are really interested in the question: in Qp if two anisotropic quadratic forms of the
same dimension have the same value set, are they equivalent? We will present an answer to
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this and see how it is possible to view the value set of a two-dimensional quadratic form as
the image of a norm map. And so, we begin with some basic properties about the value set
of a quadratic form.

Proposition 3.1.1. Let Q = [α] and Q′ be quadratic forms, where α ∈ {1, ϵ,ϖ, ϵϖ}.Then
Val(Q⊗Q′) = α× Val(Q′).

Proof. Suppose that Q′ = {α1x
2
1 + . . . + αnx

2
n | (x1, . . . , xn) ∈ V }. When Q′ is anisotropic,

applying the Kronecker product shows that

Val([α]⊗Q′) = {α · α1x
2
1 + . . .+ α · αnx

2
n : x ∈ V \ {0}}/F×2

= α× {α1x
2
1 + . . .+ αnx

2
n : x ∈ V \ {0}}/F×2 = α× Val(Q′),

as desired. The case that Q′ is isotropic is trivial since α×F = F and H is preserved under
multiplication by α ∈ F×. □

We may now use Proposition 3.1.1 to show a very important result.

Proposition 3.1.2. Let α, β ∈ {1, ϵ,ϖ, ϵϖ} = F×/F×2. Then,

Val(

[
α

−β

]
) =

{
{α,−β} if αβ ̸= 1

F if αβ = 1.
.

Proof. It can be observed that if αβ = 1, then by Propositon 1.3.3 it follows that

[
α

−β

]
is the hyperbolic plane. It is also true that Val

[
1

α

]
= {x2 + αy2 | (x, y) ̸= (0, 0)}/F×2 =

NE/F (x + y
√
−α)/F×2. That is, the value set of a 2-dimensional diagonal quadratic form

with a 1 in its diagonal will be the image of a norm map will. We now compute

Val(

[
α

−β

]
) = Val([α]⊗

[
1

−αβ

]
)

= Val([α])× Val(

[
1

−αβ

]
)

= α×

{
{1,−αβ} if α ̸= β

F if α = −β.
=

{
{α,−β} if α ̸= β

F if α = −β.

□

Proposition 3.1.3. When −1 ∈ F×2, an anisotropic quadratic form cannot have repeated
value in its diagonal. When −1 ̸∈ F×2 an anisotropic quadratic form cannot have {1, ϵ} or
{ϖ, ϵϖ} in its diagonal simultaneously. Moreover, in this case, the diagonal cannot have
more than two repetitions of values.

Example 3.1.4. Suppose we are in the case that −1 ∈ F×2 and that we are looking for a
quadratic form Q whose value set is {1,−ϵ}. Then, we can link the norm map with the value
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set in the following way.

{1,−ϵ} = {1, ϵ} = {NE/F (x+ y
√
ϵ) | x, y ∈ F×}

= {x2 + ϵy2 | x, y ∈ F×}

= Val(

[
1

ϵ

]
)

We are led to a lemma.

Lemma 3.1.5. For any anisotropic quadratic form Q, the value set of Q cannot be smaller
than the dimension of Q.

Proof. Evidently if Q =

α β
γ

 then Val(Q) contains {α, β, γ}, but we have seen it can

be larger by now. If −1 ∈ F×2, and the value set is smaller than the dimension of Q, this
implies there are repeated values on the diagonal, which contradict Proposition 3.1.3. If

−1 ̸∈ F×2, we have already seen that Val

[
1

1

]
= {1, ϵ}, which implies by Proposition 3.1.1

that Val

[
ϖ

ϵϖ

]
= {ϖ, ϵϖ}. The result follows. □

Corollary 3.1.6. There are no anisotropic quadratic forms of dimension 5 or higher.

Proof. This immediately follows from Lemma 3.1.5 □

We have one more proposition to get to until we will are able to develop the machinery be-
hind the classification of quadratic forms. This proposition will allow us to see the dimension
of a quadratic form based solely on its value set, given that it is anisotropic.

Proposition 3.1.7. For n ≤ 4, if Q is anisotropic and |Val(Q)| = n, then |Val(Q)| = dimQ.

Proof. We know that a quadratic form of dimension 1 has at most Val([α]) = {αx2 | x ∈
F×}/F×2 = {α}. If we were to add another element to the diagonal, by Proposition 3.1.2,
we will have either the image of a norm map or the coset of the image of a norm map both
of which have only 2 elements. A quadratic form, Q′ of dimension 4 must have Val(Q′) =
{1, ϵ,ϖ, ϵϖ} by Lemma 3.1.5.

Suppose now we have Q =

α β
γ

 .We are interested in the values that αx2+βy2+γz2

can take, where α, β, γ ∈ {1, ϵ,ϖ, ϵϖ}. Suppose, without the loss of generality, that |α|p =

|β|p. Then, if |α|p = |β|p = 1, then one must have that α ̸= −β, since otherwise

[
1

−1

]
∼ H.

As a result, 1, ϵ ∈ Val(Q). Furthermore, the value that γ is not mustn’t be in Val(Q) since
there are no other components of the same norm to produce it. Since all that can be made
with x2 + ϵy2 is again, 1 and ϵ, in F×/F×2.

□

It turns out that in F all of our problems are solved: if two anisotropic forms have the
same value set, they are equivalent. This is outlined in the next result.
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Proposition 3.1.8. Let Q and Q′ be anisotropic quadratic forms over F. Then

Q ∼ Q′ ⇐⇒ Val(Q) = Val(Q′).

Proof. ( =⇒ ). This direction is obvious, it has been shown in Proposition 1.4.2.
( ⇐= ). This is where the real battle begins since this does not come for free. Suppose

Q and Q′ are anisotropic quadratic forms of dimension less than 5 and that Val(Q) =
Val(Q′). We automatically get the dimQ = dimQ′ by Proposition 3.1.7. and so, the cases
of dimensions 1, 2, and 4 come for free as in dimension 1, the value set is the one square
class representative in the form, and in dimension 2, since each quadratic extension has a
unique image, this too holds. Finally, in dimension 4 there is only one anisotropic form, up
to equivalence, so this too comes for free.

We are now left to puzzle over the case of dimension 3. One can immediately notice that if
we find a unique family with a value set {1, ϵ,ϖ}, then we have shown this for every possible
subset since

1× {1, ϵ,ϖ} = {1, ϵ,ϖ}
ϵ× {1, ϵ,ϖ} = {ϵ, 1, ϵϖ}
ϖ × {1, ϵ,ϖ} = {ϖ, ϵϖ, 1}
ϵϖ × {1, ϵ,ϖ} = {ϵϖ,ϖ, ϵ}.

Thus, if P := {Q | Q is a quadratic form with Val(Q) = {1, ϵ,ϖ}}/ ∼, then you may
generate the other sets by taking [α]⊗P := {[α]⊗Q | Q is a quadratic form with Val(Q) =
{1, ϵ,ϖ}}/ ∼, by Proposition 3.1.1. As such, we split this problem into cases. Suppose
−1 ∈ F×2, then we may compute P since −α = α as far as square classes go and we need
values in F×2 ∪ ϵF×2 ∪ϖF×2 we get than

P =


±1

±ϵ
±ϖ


/

∼ =


1 ϵ

ϖ

 ,

up to permutations of the diagonal.
The case when −1 ̸∈ F×2 is slightly more complicated. Suppose that {αx2 + βy2 + γz2 :

x, y, z ∈ F×} = {1, ϵ,ϖ}, without the loss of generality we can assume that α = 1 (the case
when α = ϵ is almost identical). We note that this means that β, γ ̸= −1 = ϵ. We compute

x2 + βy2 + γz2 ∈ F×2 ∪ ϵF×2 ∪ϖF×2

= F×2 ∪ −F×2 ∪ϖF×2

= N(E/F )(Ex) ∪ϖF×2

so one gets that

P =


1 1

ϖ

 ,

ϵ ϵ
ϖ


/

∼ .
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Since

[
1

1

]
and

[
ϵ

ϵ

]
have the same value set, they are equivalent, and it follows that the

two three-dimensional forms we have found are equivalent. Which means P =


1 1

ϖ

.

Thus, the proposition is proven. □

One can notice that ϵ can be written as a sum of squares so, by using 1, 1 or ϖ,ϖ,
respectively in the diagonal we managed to overcome the issue of {1, ϵ}, {ϖ, ϵϖ} ⊆ Val(Q),
when −1 ̸∈ F×2.
The proof of Proposition 3.1.8 gives an algorithm for the construction of a set of repre-

sentatives of the distinct classes of quadratic forms. The general method that we will follow
is as follows.

• Take the set of square class representatives, {1, ϵ,ϖ, ϵϖ}.
• Take all subsets of size 0 through 4 of {1, ϵ,ϖ, ϵϖ}, since Val(Q) ⊆ {1, ϵ,ϖ, ϵϖ}.
• Given a subset, compute all quadratic forms that are anisotropic and whose value
set is your subset. (This will not prove to be difficult since we know the dimension
based on the size of the subset already)

– If −1 ∈ F×2, one can immediately take the entries of the diagonal to be the
square class representatives.

– If −1 ̸∈ F×2, once {1, ϵ} ⊆ Val(Q) or {ϖ, ϵϖ} ⊆ Val(Q) we can use 1, 1 or ϖ,ϖ,
respectively in the diagonal to solve this issue. Otherwise, take entries of Q from
Val(Q) directly.

• Repeat for all subsets and you will get 1 anisotropic quadratic form of dimension 0,
4 of dimension 1, 6 of dimension 2, 4 of dimension 3, and 1 of dimension 4.

• From here, reversing the decomposition that Q = nH⊕Qaniso, you can generate every
quadratic form, up to equivalence.

3.2. Classification of Quadratic forms. We will follow the algorithm listed above. The
computations are not all that riveting, as such, I will not present any more than what has
been seen in Section 3.1. Suppose we are looking for all subsets of {1, ϵ,ϖ, ϵϖ}, this is
encoded in the following table.

Dimension Subsets Number of Forms
0 ∅ 1
1 {1}, {ϵ}, {ϖ}, {ϵϖ} 4
2 {1, ϵ}, {1, ϖ}, {1, ϵϖ}, {ϵ,ϖ}, {ϵ, ϵϖ}, {ϖ, ϵϖ} 6
3 {1, ϵ,ϖ}, {1, ϵ, ϵϖ}, {1, ϖ, ϵϖ}, {ϵ,ϖ, ϵϖ} 4
4 {1, ϵ,ϖ, ϵϖ} 1

With this in mind, we may now present the complete classification of anisotropic forms
over a non-archimedean field F with charF ̸= 2. The following theorem is a summary of the
results in Section 3.1.

Theorem 3.2.1. The complete characterization of every anisotropic form over F over is

Val(Q) −1 ∈ F×2 −1 ̸∈ F×2 Joint

∅ [0] [0] [0]
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{1} [1] [1] [1]
{ϵ} [ϵ] [ϵ] [ϵ]
{ϖ} [ϖ] [ϖ] [ϖ]
{ϵϖ} [ϵϖ] [ϵϖ] [ϵϖ]

{1, ϵ}
[
1

ϵ

] [
1

1

] [
1

−ϵ

]
{1, ϖ}

[
1

ϖ

] [
1

ϖ

] [
1

ϖ

]
{1, ϵϖ}

[
1

ϵϖ

] [
1

ϵϖ

] [
1

ϵϖ

]
{ϵ,ϖ}

[
ϵ

ϖ

] [
ϵ

ϖ

] [
ϵ

ϖ

]
{ϵ, ϵϖ}

[
ϵ

ϵϖ

] [
ϵ

ϵϖ

] [
ϵ

ϵϖ

]
{ϖ, ϵϖ}

[
ϖ

ϵϖ

] [
ϖ

ϖ

] [
ϖ

−ϖ

]

{1, ϵ,ϖ}

1 ϵ
ϖ

 1 1
ϖ

 1 −ϵ
ϖ


{1, ϵ, ϵϖ}

1 ϵ
ϵϖ

 1 1
ϵϖ

 1 −ϵ
ϵϖ


{1, ϖ, ϵϖ}

1 ϖ
ϵϖ

 1 ϖ
ϖ

 1 ϖ
−ϵϖ


{ϵ,ϖ, ϵϖ}

ϵ ϖ
ϵϖ

 ϵ ϖ
ϖ

 ϵ ϖ
−ϵϖ



{1, ϵ,ϖ, ϵϖ}


1

ϵ
ϖ

ϵϖ



1

1
ϖ

ϖ



1

−ϵ
ϖ

−ϵϖ

.

Notice that Q = 0 is anisotropic since the only vector it can take in is the zero vector.

With this, we have characterized the quadratic forms over F with charF ̸= 2. Two corol-
laries arise due to this classification and completely capture the results from Theorem 3.2.1.

Lemma 3.2.2. The map Val is a bijection

Val : {Q | Q is an anisotropic quadratic form}/ ∼
∼=−−→ P({1, ϵ,ϖ, ϵϖ}),
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where P({1, ϵ,ϖ, ϵϖ}) is the power set of the set of square class representatives. This bijec-
tion preserves dimension: dim Val(S) = |S|.

In fact, something stronger can be said.

Proposition 3.2.3. The dimension of a quadratic form and the value set of its anisotropic
kernel is a complete set of invariants.

Proof. This result follows. □

4. The Witt Ring

Now that we have a complete classification of quadratic forms, finding a structure on them
would be beneficial. This can be done in both a group and ring structure. It would make
sense that any group of quadratic forms would be Abelian since Q⊕Q′ = Q′⊕Q. As a result,
one would hope that some ring structure, equipped with a tensor product, would in fact be
possible. Throughout this section, we will explore these and show how the hyperbolic plane
being different in each case affects how the anisotropic forms, which act as representatives,
interact with each other. Throughout this section, F is a finite degree algebraic extension
of Qp, for p odd and finite.

4.1. The Witt Group. The direct sum of two quadratic forms is again a quadratic form,
but this only gives us the structure of a commutative monoid. It turns out that it has a
natural quotient group, called the Witt group, whose elements are represented by the distinct
anisotropic forms.

Definition 4.1.1. Two quadratic forms Q and Q′ are Witt equivalent if and only if their
anisotropic kernels are equivalent. In this case, we write Q ≈ Q′.

Now, it should be clear that is it in fact possible to create a finite group, with equivalence
classes characterized by our preferred set of anisotropic representatives.

Proposition 4.1.2 (The Witt Group). The Witt Group, defined to be

W (F ) := {Q : Q is a quadratic form over F}/ ≈,

equipped with the direct sum is an abelian group.

Proof. We begin by checking the group axioms. Let Q be a quadratic form, then Q⊕H ≈ Q.
As a result, the hyperbolic plane represents the identity element of the Witt Group. It is true
that (Q⊕Q′)⊕Q′′ = Q⊕(Q′⊕Q′′), by the direct sum. Finally, if −1 ∈ F×2, then Q⊕Q ≈ H,

since

[
α

α

]
∼ H ∼ λH. If −1 ̸∈ F×2, then Q⊕ ϵQ ≈ H, since

[
α

αϵ

]
∼ H ∼ λH, for all

α in F×. As a result, every element has an inverse, which means that W (F ) is an abelian
group. □

We are now able to present the structure of the Witt group for F.

Proposition 4.1.3. The structure of the Witt group of F is

W (F ) ∼=

{
(Z/2Z)4 if −1 ∈ F×2

(Z/4Z)2 if −1 ̸∈ F×2.
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Proof. One might notice that W (F ) can always be generated by ⟨[1], [ϵ], [ϖ], [ϵϖ]⟩, and from
Theorem 3.2.1, it has order 16. When −1 ∈ F×2, we have seen that Q ⊕ Q ≈ H, with 4
generators of order 2. Evidently, in this case, W (F ) ∼= (Z/2Z)4.

Suppose the −1 ̸∈ F×2. Then, [1] ⊕ [1] ⊕ [1]⊕ ∼

1 ϵ
ϵ

 ≈ [ϵ]. Thus, our set of

generators, in this case, can be reduced to ⟨[1], [ϖ]⟩. In fact, [1] ⊕ [1] =

[
1

1

]
̸≈ H.

But, [1] ⊕ [1] ⊕ [1] ⊕ [1] ≈ H. Thus, we have have 2 generators of order 4, which implies
W (F ) ∼= (Z/4Z)2. □

4.2. The Witt Ring. Our goal is to induce the Kronecker product onto the Witt groups
which we already have in order to create a ring. Of course, we will follow through with the
routine of separating into the standard two cases. Before this, we will show that such a ring
actually does exist. The Witt groups have a natural ring structure, but it is not that of the
Witt ring.

Proposition 4.2.1. W (F ) = ({Q | Q is a quadratic form over F}/ ≈,⊕,⊗) is a ring.

Proof. We already know the quadratic forms mod Witt equivalence form an Abelian group,
thus we check ring axioms. First, there is an identity for the tensor product since [1]⊗Q =
Q. Since we can use solely diagonal quadratic forms, the tensor product is the analog of
multiplication, which means it preserves finite sums. All that is left to verify is that the
tensor product is associative. Since we are using the Kronecker product, this is too not hard
to see since multiplication is associative. □

4.2.1. The Witt Ring if −1 ∈ F×2. We begin by looking at idempotent elements.

Proposition 4.2.2. There are no non-trivial idempotent elements in the Witt ring when
−1 ∈ F×2. In fact, if x is an element of the Witt ring, then x2 = 0 or x2 = 1, where
x2 = x⊗ x, 0 = H, and 1 = [1].

Proof. Since the hyperbolic plane is

[
1

1

]
, it follows that if we have two quadratic forms,

Q and Q′, of dimension m and n respectively if mn is even then since the definition of this
is symmetric, there will be mn/2 pairs of equal values in the diagonal. If mn is odd, there
will be (mn− 1)/2 pairs of equal terms in the diagonal and a 1 left over. □

Since there are no idempotents that are not 0 or 1, it is not the case that the ring structure
is (Z/2Z)4. Before figuring out the structure of the Witt group, we will simplify the case
that only involves ϵ. If x = [ϵ], then in fact the subgroup generated by [1] and [ϵ] is closed
under the Kronecker product and we have the following multiplication table.

⊗ 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 1 + x

1 + x 0 1 + x 1 + x 0
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Proposition 4.2.3. When −1 ∈ F×2, ϕ : Z2[x, y]/⟨x2 − 1, y2 − 1⟩ → W (F ) is a ring
isomorphism given by

ϕ(a+ bx+ cy + dxy) =


a

bϵ
cϖ

dϵϖ

 ,

where a zero means that row and column are omitted.

Proof. The main idea of this isomorphism is that we are taking advantage of the fact that
any quadratic form, Q, can be expressed Q = Q′ + ϖQ′′, for Q′, Q′′ in Fq. For example, if
a = 0 ∈ (Z/2Z)4, then [a] means H in the Witt group. Furthermore, [1] + [1] = [0] ≈ H.

By Theorem 3.2.1, this is a bijection of sets. Now, we must check the structure. We
compute

(a+ bx+ cy + dxy) + (a′ + b′x+ c′y + d′xy) = (a+ a′) + (b+ b′)x+ (c+ c′)y + (d+ d′)xy
a

bϵ
cϖ

dϵϖ

⊕


a′

b′ϵ
c′ϖ

dϵϖ

 =


a+ a′

(b+ b′)ϵ
(c+ c′)ϖ

(d+ d′)ϵϖ

 .

Where the last equality holds since working with the direct sum over F×2 is equivalent to
addition in Z/2Z. We proceed to multiplication. This will hold since we have already seen
that the Kronecker product for diagonal matrices is the analogue of polynomial multiplica-
tion. As we have stated before, working over F×2 is the same as working over Z/2Z, so we
conclude that this is a ring isomorphism.

□

4.2.2. The Witt Ring if −1 ̸∈ F×2. If −1 ̸∈ F×2, the square class representatives are
{1,−1, ϖ,−ϖ}, which means that the ring structure should not be as complicated as that
of when −1 ∈ F×2. In fact, in this case, there is an element that does not square to 0 or 1.

Proposition 4.2.4. When −1 ̸∈ F×2,

[
1

ϖ

]2
=


1

1
ϖ

ϖ

 .

In fact, since our coset representatives are {1,−1, ϖ,−ϖ}, the Witt ring will not be
isomorphic to a polynomial ring of two variables, but rather, one.

Proposition 4.2.5. When −1 ̸∈ F×2, ϕ : Z4[x]/⟨x2 − 1⟩ → W (F ) is a ring isomorphism
given by

ϕ(a+ bx+ cx2 + dx3) =


a

bϖ
cϖ2

dϖ3

 =


a

bϖ
c

dϖ

 ,

where again a zero means that a row and column ought to be omitted.
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Proof. Once again, it is clear that we have a bijection from sets. We now need to check the
operations, which hold by similar logic to Proposition 4.2.3. We know that [x] is a generator

since

1 ϖ
ϖ

 ∼

−1
−ϖ

ϖ

 ≈ [−1]. □

The Witt ring is a peculiar thing. The structure of the Witt ring is not what is expected
from a ring with such a simple abelian group. The reason why −1 ∈ F×2 was more simple
in the classification of anisotropic quadratic forms is due to the Witt ring already separating
{1, ϵ} and {ϖ, ϵϖ}, while −1 ̸∈ F×2 does not, so we had to manually divide them.

5. Quadratic Forms over Q

In this chapter, we will be using a local-global property to give a classification of quadratic
forms over Q. In Sections 5.1 and 5.2 we complete the classification over p-adic fields in order
to be able to use a local-global property, the Hasse-Minkowski Theorem, presented in 5.3
which gives a classification over Q.

5.1. Quadratic forms over Q2. When we completed the classification of quadratic forms
over Qp, for p odd and finite, the only result that we relied on was the fact Q×

p /Q×2
p

∼=
(Z/2Z)2. This means that the theory we have about diagonal forms, isotropic forms, the
hyperbolic plane, and anisotropic forms are all independent of this fact. As a result, we will
explore how different the square classes are in this case and how this affects the results we
have seen when p is odd and finite. Before we may say what exactly goes wrong, it will be
important to see why the other case was so much nicer. Throughout this section, we will
use results from Section 3 in the case that F = Qp, and we will write ϵ = −1, ϵ′ = 5, ϖ = 2.

Theorem 5.1.1 (Hensel’s Lemma.). Let f(x) ∈ Zp[x] and a ∈ Z satisfy |f(a)|p < |f ′(a)|2p.
Then there exists a unique α ∈ Zp such that f(α) ≡ 0 mod p and |α− a|p < |f ′(a)|p.
Proof. [Gou20, Section 3.4]. □

Hensel’s Lemma tells us that if we can find an approximate root satisfying the desirable
conditions, then there is an actual root congruent to the approximate root modulo the
conditions.

Proposition 5.1.2. Let b ∈ Z2. Then b is a square if and only if b ≡ 1 mod 8.

Proof. Notice that for all x ∈ Z×
2 we have that x = 1 + 2y, where y ∈ Z2, so x + x2 ∈ 2Z2.

Suppose b = a2 is a unit and a square. Then a = 1 + 2x, for some x ∈ Z2, and so
a2 = 1 + 4x+ 4x2. Since x+ x2 ∈ 2Z2, it follows that a

2 ≡ 1 mod 8.
Conversely, if b ≡ 1 mod 8, then set f(x) = x2−b. For each a ≡ ±1 mod 4, the conditions

for Hensel’s Lemma are satisfied, hence there is a unique root b satisfying the condition. □

Proposition 5.1.3. Q×
2 /Q×2

2
∼= {1,−1, 2,−2, 5,−5, 10,−10}.

This means that we have a group generated by ϵ = −1, ϖ = 2 but also ϵ′ = 5. As such, we
need to rethink how exactly it is that we should proceed with the classification. To begin,
we will look at what possible value sets we can get. We will consider the two-dimensional
quadratic forms x2 + αy2, where α ∈ {1,−1, 2,−2, 5,−5, 10,−10}. Immediately, it is clear
that x2 − y2 ∼ H, so there are really 7 options to check. In fact, there are 7 order two
subgroups of (Z/2Z)3, each of which corresponds to one of these as can be seen in the
following Lemma.
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Lemma 5.1.4. The Value sets of 2-dimensional quadratic forms

[
1

α

]
are as follows.

α Val(

[
1

α

]
)

1 {1, 2, 5, 10}
−1 isotropic
2 {1, 2,−5,−10}
−2 {1,−1, 2,−2}
5 {1,−2, 5,−10}
−5 {1,−1, 5,−5}
10 {1,−2,−5, 10}
−10 {1,−1, 10,−10}.

How to Compute this table. The computations of this table come from Hensel’s Lemma.

Suppose we wish to compute Val

[
1

1

]
= {x2 + y2 | (x, y) ̸= (0, 0)}/Q2

2. Immediately it is

clear, all 1, 2, 5, 10 are the sum of two squares. Thus, the value set will contain {1, 2, 5, 10}.
One can show that other values are not obtainable with Hensel’s Lemma. □

Suppose that we have a quadratic form Q for which Val(Q) = {1, α, β, αβ}, then if we’d
like γ ⊗ Q ∼ Q, then it ought to be true that γ · {1, α, β, αβ} ∼= {1, α, β, αβ}. That is,
Val(Q) = Val(γ ⊗ Q). As a result, if our hope that an analog of Lemma 3.2.2 would hold,
the following should hold.

Proposition 5.1.5. Let Q be a quadratic form of dimension two. Then for any γ that
permutes Val(Q) upon multiplication, γ ⊗Q ∼ Q.

Proof. We may assume that Val(Q) is a group, since otherwise Val(γ ⊗Q) will be a group,

and this case is exactly similar. Suppose that Val(Q) = {1, α, β, αβ}, such that Q =

[
1

α

]
.

Then, by Proposition 3.1.1 it follows that Val(γ ⊗Q) = {γ, αγ, βγ, αβγ}. Since Val(Q) is a
group, the only γ that satisfy our hypothesis are those in Val(Q). The result is obvious for
γ ∈ {1, α}, consider β ⊗Q. As such, we wish to check whether or not[

1
α

]
∼

[
β

αβ

]
.

We search for a, b, c, d such that[
a b
c d

] [
1

α

] [
a c
b d

]
=

[
a2 + b2α ac+ bdα
ac+ bdα c2 + d2α

]
=

[
β

αβ

]
.

By our assumption, there exists a vector (a, b) such that Q(a, b) = β, then Q(−bα, a) =
b2α2 +αa2 = α(a2 +αb2) = αβ, which would imply that there exists a matrix such that this
is true. □

Thus, we are sure that when Q is of dimension 2 and anisotropic, Q ∼ Q′ ⇐⇒ Val(Q) =
Val(Q′). We may conclude that there are 14 anisotropic, and 1 isotropic quadratic forms of
dimension 2.
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Proposition 5.1.6. The complete classification of 2-dimensional anisotropic quadratic forms
over Q2 is

Value Set Anisotropic Quadratic Forms

{1, 2, 5, 10}
[
1

1

]
∼

[
2

2

]
∼

[
5

5

]
∼

[
10

10

]
{1, 2,−5,−10}

[
1

2

]
∼

[
2

1

]
∼

[
−5

−10

]
∼

[
−10

−5

]
{1,−2, 5,−10}

[
1

5

]
∼

[
−2

−10

]
∼

[
5

1

]
∼

[
−10

−2

]
{1,−2,−5, 10}

[
1

10

]
∼

[
−2

−5

]
∼

[
−5

−2

]
∼

[
10

1

]
{1, 2,−1,−2}

[
1

−2

]
∼

[
2

−1

]
∼

[
−1

2

]
∼

[
−2

1

]
{1, 5,−1,−5}

[
1

−5

]
∼

[
−5

1

]
∼

[
−1

5

]
∼

[
5

−1

]
{1, 10,−1,−10}

[
1

−10

]
∼

[
−10

1

]
∼

[
−1

10

]
∼

[
10

−1

]
{−1,−2,−5,−10}

[
−1

−1

]
∼

[
−2

−2

]
∼

[
−5

−5

]
∼

[
−10

−10

]
{−1,−2, 5, 10}

[
−1

−2

]
∼

[
−2

−1

]
∼

[
5

10

]
∼

[
10

5

]
{−1, 2,−5, 10}

[
−1

−5

]
∼

[
−5

−1

]
∼

[
2

10

]
∼

[
10

2

]
{−1, 2, 5,−10}

[
−1

−10

]
∼

[
−10

−1

]
∼

[
2

5

]
∼

[
5

2

]
{5, 10,−5,−10}

[
5

−10

]
∼

[
10

−5

]
∼

[
−5

10

]
∼

[
−10

5

]
{2, 10,−2,−10}

[
2

−10

]
∼

[
−10

2

]
∼

[
−2

10

]
∼

[
10

−2

]
{2, 5,−2,−5}

[
2

−5

]
∼

[
−5

2

]
∼

[
−2

5

]
∼

[
5

−2

]
.

When considering dimension three, we must be more careful than when p was odd. Since
every two-dimensional quadratic form is equivalent to a quadratic form that is not a permu-
tation of its entries, there will be many opportunities for the hyperbolic plane to hide. For

example,

1 2
5

 is isotropic since 1+2+5 = 8 ≡ 0 mod 8. The underlying issue is that

since −5 is in the value set of

[
1

2

]
, once one adds 5, it is possible to get 0 non-trivially.

In general, once α ∈ Val(Q), one has that Q ⊕ [−α] is isotropic. This turns out to be
helpful since there are clear patterns that can be seen in the value sets of two-dimensional
anisotropic forms. In fact, the converse of this is true
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Proposition 5.1.7. Q+ [−α] is isotropic if and only if α ∈ Val(Q).

Proof. ( =⇒ ) Suppose Q + [−α] is isotropic. Then, there exists a vector x = (x0, x1) such
that (Q + [−α])(x) = Q(x0) − αx2

1 = 0. This would mean that Q(x0) = αx2
1, which means

that α ∈ Val(Q).
(⇐=) If α ∈ Val(Q), obviously Q+ [−α] is isotropic. □

Example 5.1.8. Val(

1 2
−5

) = {1,−1, 2,−2, 5,−5,−10}. One may compute this by

taking ⋃
1≤i≤3

⋃
α∈Val( ξj 0

0 ξk
)

[i,j,k]=[1,2,3]

Val(

[
ξi

α

]
).

It is shocking as to why there is no 10 in this value set.

Proposition 5.1.9. Let Q ∼

ξ1 ξ2
ξ3

 . Then

Val(Q) =
⋃

α∈Val( ξj 0
0 ξk

)

[i,j,k]=[1,2,3]

Val(

[
ξ1

α

]
).

Proof. If α ∈ Val(

[
ξ2

ξ3

]
), then α = ξ2v

2 + ξ3w
2, for (v, w) ̸= 0. So, the union of

Val(

[
ξ1

α

]
), for all such α will be the set.

⋃
α∈Val( ξi 0

0 ξj
)

[i,j,k]=[1,2,3]

Val(

[
ξ1

α

]
) = {ξ1x2 + αy2 : (x, y) ∈ V \ {0}}/F×2

= {ξ1x2 + (ξ2v
2 + ξ3w

2)y2 : (x, yv, yw) ∈ V \ {0}}/F×2

= {ξ1x2 + ξ2(yv)
2 + ξ3(yw)

2 : (x, yv, yw) ∈ V \ {0}}/F×2

= Val(Q).

□

Proposition 5.1.10. If β, γ ̸= 1 and β, γ ∈ {2, 5, 10}, then Q =

[
1

β

]
∼

[
−γ

−βγ

]
.

Proof. We know that Val(Q) = {1, β,−γ,−βγ}. Thus, there exists a vector v such that
Q(v) = −γ. If we look at w ∈ {v}⊥ then Q(w) ∈ Val(Q). We then consider the following
quadratic forms for equivalence.[

1
−γ

]
,

[
β

−γ

]
,

[
−γ

−γ

]
,

[
−γ

−βγ

]
.
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Witt’s cancellation theorem rejects the first two candidates. We have that−1 ∈Val(

[
−γ

−γ

]
),

but not in Val(Q), which rejects it as a candidate for equivalence. As a result, Q =

[
1

β

]
∼[

−γ
−βγ

]
. □

Lemma 5.1.11. Let {α, β, γ} ⊂ {1, 2, 5, 10} or {α, β, γ} ⊂ {−1,−2,−5,−10} be distinct

square class representatives. Then

α β
γ

 is isotropic.

Proof. We consider

1 β′

γ′

 , since we can simply tensor by α and recover the origi-

nal form as a form remains isotropic under scaling. But, we also have that

[
β′

γ′

]
∼[

−1
α′

]
, by Proposition 5.1.10. Thus, we have shown what we desire. The case of

α, β, γ ⊂ {−1,−2,−5,−10} follows since a form remains isotropic under scaling. □

Proposition 5.1.12. There are 8 anisotropic quadratic forms of dimension 3 over Q2, up
to equivalence. Their classification, up to representatives, is as follows

Value Set Anisotropic Quadratic Form

{1, 2, 5, 10,−2,−5,−10}

1 1
1


{1, 2, 5, 10,−1,−5,−10}

1 1
2


{1, 2, 5, 10,−1,−2,−10}

1 1
5


{1, 2, 5, 10,−1,−2,−5}

1 1
10


{2, 5, 10,−1,−2,−5,−10}

−1
−1

−1


{1, 5, 10,−1,−2,−5,−10}

−1
−1

−2


{1, 2, 10,−1,−2,−5,−10}

−1
−1

−5


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{1, 2, 5,−1,−2,−5,−10}

−1
−1

−10



Proof. To generate the eight 3-dimensional forms, we used Proposition 5.1.7 and added to[
1

1

]
and

[
−1

−1

]
, elements whose negatives are not in the respective value sets. We

are sure that each of these is non-equivalent since they have distinct value sets. What is left
to show is that any other 3-dimensional anisotropic quadratic form over Q2, is equivalent to
one of these 8 forms.

We will show this combinatorially. Suppose that α, β, γ ∈ {1, 2, 5, 10}. Then we have the
following three cases to consider.

(i) Two are equal. Immediately, Q will either be isotropic or equivalent to one of the
above, depending on whether or not the signs agree.

(ii) All distinct, but signs are the same. This is Lemma 5.1.11.

(iii) All distinct, with two of the same sign and one of the opposite. In this case, we

want to consider Q =

α β
−γ

 . Note that Q = [α]⊗Q′ = [α]⊗

1 αβ
−αγ

 .

By Proposition 5.1.10, we have that Q′ =

1 αβ
−αγ

 ∼

−αγ
−β

−αγ

 ∼−1
−1

−αβ

 ∼

−α
−α

−αβ

 ; thus Q = α⊗Q′ is on our list, as desired.

□

Corollary 5.1.13. Every 3-dimensional anisotropic quadratic form Q has |Val(Q)| = 7.
Moreover,

Val(Q) = Val(

α β
γ

) = {1,−1, 2,−2, 5,−5, 10,−10} \ {−αβγ}.

Proof. This follows from Proposition 5.1.12 as tensoring will scale the determinant, up to
squares, the same as the value set. □

Proposition 5.1.14. There is one 4-dimensional anisotropic quadratic form, up to equiva-
lence.

Proof. We considerQ =


α

β
γ

δ

 .Wemust have that δ = 1, (all−1’s will be equivalent

to this form, by the table in Proposition 5.1.12, so we omit that case) otherwise we run out
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of representatives that keep Q anisotropic. As a result, we consider


1

α
β

γ

 . Since

α β
γ

 is anisotropic, we can write

Q =


1

1
1

δ

 ,

as any other form when choosing from our preferred list from Proposition 5.1.12 will lead to a

copy of the hyperbolic plane. Furthermore, we know that Val

1 1
1

 = {1, 2, 5, 10,−2,−5,−10},

which implies, by Proposition 5.1.7, that δ = 1. □

With this, we can now conclude the final results about the classification over a finite degree
field extension of Q2.

Proposition 5.1.15. There are no anisotropic quadratic forms of dimension 5 or higher
over Q2

Proof. Suppose such a form, Q exists. Then it must be of the form Q4+[α], where Q4 is the
4-dimentional anisotropic quadratic form. Since

Val(


1

1
1

1

) = {1,−1, 2,−2, 5,−5, 10,−10},

any α such that Q = Q′ ⊕ [α] will be isotropic by Proposition 5.1.7, where Q′ is the 4-
dimensional anisotropic form. □

Finally, we may give a characterization over any p, not just odd or even. The following
two results will hold for any finite p.

Proposition 5.1.16. The size of the value set of an anisotropic quadratic form uniquely
defines its dimension over a p-adic field.

Lemma 5.1.17 (The Classification of Anisotropic Forms over Qp). Let F = Qp for a finite
prime p. Suppose that Q and Q′ are anisotropic quadratic forms over F. Then

Q ∼ Q′ ⇐⇒ Val(Q) = Val(Q′).

5.2. Quadratic forms over R. The theory of quadratic forms over R is more rigid than
that of Qp, for finite p. This is largely due to how positive and negative numbers play out
in this case. In Proposition 1.2.1, we showed that any non-degenerate quadratic form Q(x)
can be reduced to the diagonal form

Q(x) = l1τ
2
1 + . . .+ lnτ

2
n,
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with li ∈ F×. It turns out that changing that basis of Q(x) does not affect the number of
positive and negative coefficients.

Theorem 5.2.1 (Sylvester’s Law of Inertia). If a quadratic form Q(x) in a real space is
written in diagonal form, the number of positive and negative entries is an invariant of the
form.

In fact, due to this theorem and one more result, it will be immediately apparent how
every anisotropic quadratic form ought to be classified. Since we are once again concerned
with square classes, R×/R×2 will serve to be very useful.

Proposition 5.2.2. R×/R×2 ∼= {1,−1}.

Since the only entries in the diagonal we really have to care about are 1 and −1 and the
number of positives and negatives is an invariant for any quadratic form, it is immediately
apparent what the anisotropic quadratic forms over R are.

Proposition 5.2.3. Over R, there are two anisotropic forms of dimension n ≥ 1, for each
n. They are

In =


1

1
. . .

1

 and − In =


−1

−1
. . .

−1

 .

Proof. We begin by showing these two are anisotropic (it is clear they are not equivalent by
Theorem 5.2.1). Suppose that x ∈ F×n is a real vector. Then In(x) = x2

1+ . . .+x2
n > 0 since

we are excluding the zero vector. Similarly, −In(x) = −(x2
1 + . . .+ x2

n) < 0. Thus, there are
no nonzero vectors, x, for which these forms are 0.
Suppose Q is a quadratic form of n dimensions and that its diagonal form has li = 1 and

lj = −1 for i ̸= j ∈ {1, . . . , n}, then Q(ei + ej) = 0, which means that Q is isotropic. □

In fact, every isotropic form can be characterized by the number of positive and negative
entries in its diagonal. In order to aid us we define the following.

Definition 5.2.4. Let Qk,n with 0 ≤ k ≤ n, be the non degenerate n-dimensional quadratic
form

Qk,n := Ik ⊕−I(n−k).

Then, by Proposition 5.2.3, the anisotropic forms are all of the forms Q0,n or Qn,n for
n ∈ N, and all the other quadratic forms over a real linear space will be anisotropic. In fact,

(4) Qk,n =


kH ⊕Q0,n−k if k < n/2,

(n− k)H ⊕Qk,0 if k > n/2,

kH if k = n/2,

which mimics the decomposition discussed in Corollary 1.3.7. This formula comes from the

fact that since H =

[
1

−1

]
, as soon as we can “find a pair (1,−1)” in the diagonal of Q, it

can be replaced with a copy of H. The interesting thing about R is that we now have found
an explicit way to compute the anisotropic kernel of any quadratic form, as seen in (4).
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Definition 5.2.5. We define the signum for a real quadratic form Q to be sgn(Q) =
Tr(Qaniso), where Qaniso is the anisotropic kernel of Q.

Proposition 5.2.6. sgn : W (R) → Z is an isomorphism from the Witt group over the real
numbers to the integers.

5.3. Classification over Q: The Hasse-Minkowski Theorem. Since the p-adic numbers
(for p finite of infinite) are derived from Q, it is only natural that there exists a local-global
property between them: a property which connects every Qp to Q. In this case, such a
property is called the Hasse-Minkowski theorem. In this section, we briefly introduce the
theorem and the uses we have for it.

The heart of the Hasse-Minkowski theorem lies in the notion that, given a quadratic form
Q, over Q, by looking at all Qp, one can conclude whether or not Q is isotropic over Q. To
learn about this mysterious theorem, the interested reader may consult [Gam06].

Theorem 5.3.1 (Hasse-Minkowski 1). A quadratic form Q is isotropic over Q if and only
if it is isotropic over all Qp for p finite and infinite.

Proof. [Gam06, Section 4] □

Since we have the classification of quadratic forms over Qp, using the Hasse-Minkowski
theorem, we may immediately determine if a quadratic form is isotropic or not. In fact, with
a few more results other forms of this theorem will serve as our classification over Q.

Theorem 5.3.2 (Hasse-Minkowski 2). Let α ∈ Q and Q be a quadratic form over Q. Then
α ∈ Val(Q) if and only if α ∈ Val(Q) over Qp for all p both finite and infinite.

Proof. By Proposition 5.1.7, Q + [−α] is isotropic if and only if α ∈ Val(Q). If Q + [−α] is
isotropic over all Qp, then by Theorem 5.3.1, Q + [−α] is isotropic. Thus, α ∈ Val(Q) over
Q. □

The most powerful version of the Hasse-Minkowski theorem is yet to come. It will truly
give us a classification over Q for free, now that we have found the classifications over Q2

and R, as well as Qp, p odd.

Theorem 5.3.3 (Hasse-Minkowski 3). Let Q and W be quadratic forms over Q. Then
Q ∼ W if and only if Q ∼ W over Qp for all p both finite and infinite.

Proof. ( =⇒ ) Suppose there exists a matrix P such that P TQP = W, then the p-adic matrix
of P will satisfy P T

p QpPp = Wp, for all p, as Q is contained in Qp.
(⇐=) Suppose that Qp ∼ Wp for all p and that Q over Q has α ∈ Val(Q). Then,

Q+ [−α] = H +Q′.

Since Q + [−α] is isotropic and Qp ∼ Wp if follows that W + [−α] is also isotropic. By
Hasse-Minkowski 1, it then follows that W + [−α] is isotropic over Q. Which means that
W + [−α] = H +W ′.
We finish the proof by induction on dimension. Suppose that dimQ − dimQ′ = 1 and

dimW −dimW ′ = 1. Since Qp ∼ Wp and Qp+[−α] ∼ Wp+[−α], it is clear by the induction
hypothesis that Q′

p ∼ W ′
p, by Witt’s cancellation theorem. But this would mean Q′ ∼ W ′

over Q. Hence, by Witt’s cancellation theorem, Q+ [−α] ∼ H +Q′ ∼ H +W ′ ∼ W + [−α],
which would mean Q ∼ W over Q. □
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Example 5.3.4. The Hasse-Minkowski theorem really only works for quadratic forms. The
most famous example is the Selmer example that shows 3x3 + 4y3 + 5z3 represents zero
non-trivially over every Qp, for p both finite and infinite, but not over Q.

With this, we have a complete classification of not only the p-adic quadratic forms but
also the ones over Q. This concludes our classification of p-adic and rational quadratic forms.

Acknowledgements

First and foremost, I’d like to thank Dr. Monica Nevins for her guidance throughout
this project. Monica, this term has been a pleasure. Your kind, supportive, and all-around
pleasant approach to mathematics has no doubt been one of the reasons why I have enjoyed
working with you so much. My deepest thanks go out to you for everything you have done
for me. It was a privilege to have a supervisor as caring as you.

I would also like to thank Dr. Nevins’ two graduate students Ekta and Serine for helping
me get up to speed with all the material. It has been a pleasure working with both of you.

I am extremely grateful for my ninth-grade math teacher, Ms. Anas. Thank you, Ms.
Anas, for supporting me for the past few years, and helping me throughout my journey to
get here. I could not have gotten here without your guidance and persistent help.

Finally, I’d like to thank my parents for letting me take my own path in my education
and supporting all the choices and ambitions I have had throughout my life. Thank you,
everyone.



p-ADIC QUADRATIC FORMS 37

References

[Gam06] Adam Gamzon, The Hasse-Minkowski Theorem, Honors Scholar Theses, 2006.
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