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Abstract
For local non-archimedean fields k of sufficiently large residual characteristic, we explicitly
parametrize and count the rational nilpotent adjoint orbits in each algebraic orbit of orthog-
onal and special orthogonal groups. We separately give an explicit algorithmic construction
for representatives of each orbit. We then, in the general setting of groups GLn(D), SLn(D)

(where D is a central division algebra over k) or classical groups, give a new characterisa-
tion of the “building set” (defined by DeBacker) of an sl2(k)-triple in terms of the building
of its centralizer. Using this, we prove our construction realizes DeBacker’s parametrization
of rational nilpotent orbits via elements of the Bruhat-Tits building.
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1 Introduction

Rational, or arithmetic, nilpotent adjoint orbits of algebraic groups over a local field k arise
in representation theory in several contexts. For example, the Harish-Chandra–Howe char-
acter formula locally expresses a character of a representation as a linear combination of
(Fourier transforms of) nilpotent orbital integrals. As another example, the orbit method
would parametrize representations by admissible coadjoint orbits, with the admissible
nilpotent orbits corresponding to core singular cases.

Algebraic, or geometric, nilpotent adjoint orbits can be thought of as those under
the algebraic group over the algebraic closure of the local field. These orbits can be
parameterized in multiple ways, including the Bala-Carter classification (extended to low
characteristic by McNinch and others), weighted Dynkin diagrams, and partition-type
classifications (for classical groups).

The rational points of an algebraic orbit form zero or more rational orbits, and these can
in principle be counted using Galois cohomology; yet it remained an open combinatorial
problem to count these orbits for orthogonal groups. Solving this is the first goal of this
paper, in Section 4.

Our second goal is to present an algorithm for generating representatives for all rational
nilpotent orbits of orthogonal and special orthogonal groups over k, in the spirit of the
one presented by Collingwood and McGovern in [9] over R; our solution is presented in
Section 5.

Our third and most important goal is to offer insight into the geometric parametrization
of rational nilpotent orbits by elements of the Bruhat-Tits building of G that was proposed
by DeBacker in [10]. To this end we prove, in the more general setting of G = GLn(D),
SLn(D) (for D a central division algebra over k) and classical groups, that DeBacker’s
“building set” attached to a Lie triple can be identified with the building of the centralizer
of that Lie triple. This kind of “functoriality result” gives a coherent interpretation of the
geometry of the DeBacker parametrization, and is presented in Section 6.

Finally, combining these results, we attach a representative of each nilpotent orbit to
a facet of the building in our standard apartment, and prove that this gives an explicit
realization of the DeBacker correspondence, in Section 7.

Let us now summarize the results of this paper in more detail.
For symplectic, orthogonal or special orthogonal groups the algebraic nilpotent orbits

can be parametrized by partitions. Let λ be a partition of n in which even parts occur with
even multiplicity and letOλ denote the corresponding nilpotent adjoint orbit of the algebraic
group On. For i ∈ N let χi be the number of odd parts of λ whose multiplicity is exactly i.
Set χ3+ := ∑

i≥3 χi .
Let (q, V ) be a quadratic space; then O(q) is a fixed k-form of On with respect to which

we take the k-points of this orbit. Assume the characteristic of k is either zero or sufficiently
large (see Section 3) and that p �= 2. Then it is known that the rational orbits occurring
Oλ(k) are parametrized by certain tuples q of quadratic forms (Theorem 3.2). Our first
result is to compute their number.

Theorem (Theorem 4.3). Let (q, V ) be a nondegenerate n-dimensional quadratic space of
anisotropic dimension n◦ ≤ n. Then the number of k-rational orbits under O(q) inOλ(k) is

T(q)χ1,χ2,χ3+ =

⎧
⎪⎨

⎪⎩

1
84

χ17χ28χ3+ if χ3+ ≥ 1;
1
84

χ17χ2 + (2 − n◦)2χ1−2 if χ3+ = 0, χ1 ≥ 1;
� 1
87

χ2� + εn◦,χ2 if χ1 = χ3+ = 0,
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where εn◦,χ2 = 0 unless either n◦ = 0 and χ2 is even, or n◦ = 4 and χ2 is odd, in which
cases εn◦,χ2 = (−1)χ2 . The number of k-rational orbits in Oλ(k) under SO(q) is the same
unless χ1 = χ2 = χ3+ = n◦ = 0, when there are two.

The arithmetic complexity of this answer stands in sharp contrast to the cases of SL(n)

and Sp(2n). The number of SL(n, k)-orbits in one algebraic nilpotent orbit of SL(n) is
|k×/(k×)g| where g is the gcd of the parts of the corresponding partition. The number of
Sp(2n, k) orbits in the algebraic orbit of Sp(2n) corresponding to a partition λ is simply
4χ17χ28χ3+ where now χi counts the number of even parts of λ with multiplicity exactly i

[19].
Next, for each pair (λ, q) parametrizing a rational nilpotent orbit of SO(q), we choose,

following Proposition 5.1, a partition � of the set Iλ := {(i, j) | i ∈ λ, 1 ≤ j ≤ mi},
where mi denotes the multiplicity of i in λ. We construct an explicit orbit representative
and associated Jacobson-Morozov triple dφ by constructing subspaces of V for each part
of � in Sections 5.3 to 5.9. This kind of explicit parametrization has many uses in repre-
sentation theory, including: computing Fourier coefficients of automorphic forms as in [1]
and [14]; geometrizing invariant distributions coming from nilpotent orbits [8]; and prov-
ing the motivic nature of Shalika germs as in [13], building on work of [11]. Note that
although determining a complete set of representatives in the case of special linear and sym-
plectic groups is a direct generalization of the real case (see [19]), orthogonal and special
orthogonal groups present a special challenge, and this result is not straightforward.

Using a “generalized Bala-Carter” philosophy, DeBacker parametrized the rational nilpo-
tent orbits of groups over, among others, local non-archimedean fields (with restrictions on
residual characteristic) using the Bruhat-Tits building of the corresponding group. The key
construction is of a “building set” of a Lie triple {Y,H, X}, denoted B(Y,H,X). Namely,
the DeBacker parametrization attaches to each rational nilpotent orbitO one or more degen-
erate pairs, which for our purposes we may take to be pairs (F , X), whereF ⊂ B(Y,H, X)

where F is a facet and {Y,H, X} is a Lie triple extending a representative X of O (see
Section 7). WhenF is maximal in B(Y,H,X), the pair is called distinguished; associativity
classes of distinguished pairs are in bijection with rational nilpotent orbits [10]. The chal-
lenge inherent in this description is that it does not suffice to work within a single apartment:
a facet F of the building may be maximal in B(Y,H,X) ∩ A without being distinguished!

We prove the following general result in Section 6. Here D denotes a central division
algebra over k,R denotes the integer ring of k, and p is sufficiently large (see Section 3).

Theorem (Theorem 6.1). SupposeG isGLn(D), SLn(D) or a classical group, and suppose
dφ = {Y,H,X} is a Lie triple in g, with corresponding homomorphism φ : SL2(k) → G.
Let Gφ be the centralizer of φ(SL2(k)) in G. Then B(Y,H, X) = B(G)φ(SL2(R)) and there
is a Gφ-equivariant identification

B(G)φ(SL2(R)) = B(Gφ).

An immediate consequence is a formula for the dimension of all the maximal facets
in B(Y,H,X), whence it suffices to produce a pair (F , X) attached to O of the correct
dimension in order to deduce that it is distinguished. We apply this approach to prove
the correctness of our parametrization for orthogonal and special orthogonal groups in
Proposition 7.1 and Theorem 7.2.

DeBacker’s parametrization has only been explored in a handful of cases, including [19]
for the special linear and symplectic groups, where the dimensions of the maximal facets
were established via combinatorial arguments.
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The current paper initially arose from an NSERC USRA project of T. Bernstein, work-
ing under the supervision of M. Nevins, on counting the number of rational nilpotent orbits
for orthogonal groups. M. Nevins complemented this with a parametrization of these orbits
and circulated a preprint, whereupon the J.-J. Ma and J.W. Yap shared their report [22]. In
it, J.W. Yap, working under the supervision of J.-J. Ma, constructs distinguished represen-
tatives of rational nilpotent orbits of split even orthogonal groups (correcting an error in the
proof of [19, Theorem 4]). They had also gone on to prove Theorem 6.1 as it appears here.
J.-J. Ma would like to thank Jiu-Kang Yu for helpful discussions.

Several interesting questions remain open.
For one, although the proof of Theorem 4.3 is currently restricted to particular groups, J.-

J. Ma has shown separately the existence of the map R : B(G)φ(SL2(R)) → B(Gφ) Eq. 6.1
for any connected semisimpleG of adjoint type over k, and conjectures that there should be
a natural inverse map E .

For another, it is an open question to determine known invariants of rational nilpotent
orbits in terms of the data of their DeBacker parametrization. Together with [19], we now
have the complete parametrization for all split classical groups, which opens the possibil-
ities for study. Part of the problem would be to give a combinatorial description of the
associativity classes of facets in B, and more particularly of the r-associativity classes for
each r ∈ R, which are greater in number and offer a finer parametrization.

Our counting results rely on Jacobson-Morozov theory to describe the nilpotent orbits,
and thus entail a restriction on the characteristic of k. It would be interesting to count rational
orbits, and give explicit representatives, in these missing cases.

This paper is organized as follows. In Section 2 we establish our notation and some
necessary results about quadratic forms. In Section 3 we give the constraints on the charac-
teristic and residual characteristic for the union of the results in this paper, and review key
facts about nilpotent orbits and the orthogonal groups. Section 4 is devoted to the proof of
Theorem 4.3, counting the number of rational orbits. In Section 5, we present an algorithm
for generating representatives of each orbit. To do so explicitly, we set the notation for root
vectors in Section 5.1 and describe the overall strategy in Section 5.2, with details for each
of the subcases in Sections 5.3 to 5.9. In Section 6 we revert to the case of general G and
briefly recall the DeBacker parametrization, before proving Theorem 6.1. In Section 7 we
attach to each of our orbit representatives a distinguished pair, thus establishing a new dic-
tionary from the partition-based to the building-based parametrizations of rational nilpotent
orbits for orthogonal and special orthogonal groups.

2 Notation and theWitt Group

Let k be a local non-archimedean field of residual characteristic p �= 2, with integer ringR
and maximal ideal P generated by a uniformizer � . Denote by f the residue field of k. Let
ρ be a fixed nonsquare inR× with image ρf in f×.

The following theory is concisely presented in [2] and based on [15, Chapter 1]. A
quadratic space (q, V ) over a field F such that char(F ) �= 2 is a finite-dimensional vec-
tor space V over F equipped with a regular quadratic form q; when needed, its associated
(nondegenerate) bilinear form is denoted Bq , a matrix form is Mq , and the dimension of V

is deg(q), the degree of q. Denote byH the quadratic hyperbolic plane.
If (q, V ) and (q ′, V ′) are two quadratic spaces we write q ∼= q ′ if they are isometric and

q � q ′ if the isometry classes of the quadratic forms q and q ′ differ by a sum of hyperbolic
planes. Then � defines an equivalence relation on the monoid of nondegenerate quadratic
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forms, and the resulting quotient is the Witt group WF of F with trivial element denoted
0 or H. Write q for the image of q in WF , which we can identify up to isometry with the
anisotropic kernel q◦ of q. Then dim q := deg(q◦) = n◦ is the anisotropic dimension of q.

Each quadratic space (q, V ) admits a basis relative to which q is diagonalized; in this
case we write q = 〈a1, · · · , an〉 for some ai ∈ F× but even up to permuting and scaling
each coordinate by elements of (F×)2 this representation of q is not necessarily unique.

If F = f, then since p > 2 we have Wf = {H, 〈1〉, 〈ρf〉, 〈1,−ρf〉}, which has the
structure ofW−

f
∼= (Z/2Z)2 if −1 ∈ k2 (that is, if p is congruent to 1 mod 4) and ofW+

f
∼=

Z/4Z otherwise. The identification of sets ι : W−
f

→ W+
f
is thus not a homomorphism but

it is easy to check that it satisfies the very useful property that for all u, u′ ∈ W−
f
,

dim(ι(u) − ι(u′)) = dim(ι(u − u′)). (2.1)

If F = k, then the map ρf �→ ρ induces a well-defined injection i : Wf → Wk . In fact,
the map which sends (u, u′) ∈ W2

f
to the class of i(u) ⊕ �i(u′) defines an isomorphism

Wk
∼= W2

f
. (We may writeW±

k when we want to specify the group structure.)
We list the distinct elements of Wk in the second and third columns of Table 1,

in terms of the favoured representatives {1, ρ, �, ρ� } for k×/(k×)2, and grouped by
their anisotropic dimension (given in the first column). Write Q4 for the unique class of
anisotropic dimension 4, which is the quaternionic class. We now collect some facts needed
for Section 4.

Lemma 2.1. Let k be a local non-archimedean field of odd residual characteristic.

Table 1 Representatives of elements ofWk (in two forms: simple ones dependent on the sign of −1 in k, and
more complex ones which are independent thereof), together with the number of choices of distinct diagonal
representatives of each up to (k×)2

dim q Representative for q Number of Common

−1 ∈ k2 −1 /∈ k2 choices representative

0 〈a, a〉 〈1, ρ〉 = 〈�,ρ� 〉 4 H = 〈a,−a〉
1 〈1〉 〈1〉 1 〈1〉

〈ρ〉 〈ρ〉 1 〈ρ〉
〈� 〉 〈� 〉 1 〈� 〉
〈ρ� 〉 〈ρ� 〉 1 〈ρ� 〉

2 〈1, ρ〉 〈1, 1〉=〈ρ, ρ〉 2 〈1,−ρ〉
〈1,� 〉 〈1,� 〉 2 〈1,� 〉
〈1, ρ� 〉 〈1, ρ� 〉 2 〈1, ρ� 〉
〈ρ,� 〉 〈ρ,� 〉 2 〈ρ,� 〉
〈ρ, ρ� 〉 〈ρ, ρ� 〉 2 〈ρ, ρ� 〉
〈�,ρ� 〉 〈�,� 〉=〈ρ�, ρ� 〉 2 〈�,−ρ� 〉

3 〈1, ρ,� 〉 〈1, 1,� 〉 6 〈1,−ρ,� 〉
〈1, ρ, ρ� 〉 〈1, 1, ρ� 〉 6 〈1,−ρ, ρ� 〉
〈1,�, ρ� 〉 〈1,�,� 〉 6 〈1,�,−ρ� 〉
〈ρ,�, ρ� 〉 〈ρ,�,� 〉 6 〈ρ,�,−ρ� 〉

4 〈1, ρ,�, ρ� 〉 〈1, 1,�,� 〉 24 Q4 = 〈1,−1,�,−� 〉

2037



T. Bernstein et al.

1. The number of isometry classes of quadratic forms of degree n is 4 if n = 1, 7 if n = 2,
and 8 if n ≥ 3.

2. The number of choices of distinct diagonal representations of each anisotropic form or
hyperbolic plane, counting order but modulo (k×)2, is an invariant of the anisotropic
dimension and is independent of the class of p mod 4.

3. The map ι extends to a bijection ι : W−
k → W+

k such that for all u, u′ ∈ W−
k ,

dim(ι(u) − ι(u′)) = dim(ι(u − u′)). (2.2)

Proof The first statement is well-known, but can also be inferred from Table 1 directly. We
have recorded the number of choices of distinct diagonal representatives for each class of
anisotropic form or hyperbolic plane, counting order but modulo scaling in each factor by
(k×)2, in the fourth column of Table 1; this establishes the second assertion. The map ι

extends via the isomorphisms i : W±
k → (W±

f
)2. Since dim(i(u) ⊕ �i(u′)) = dim(u) ⊕

dim(u′) for any u, u′ ∈ Wf, Eq. 2.2 follows from Eq. 2.1. For convenience, we have recorded
the common representatives defining the map ι in the last column of Table 1.

We say that two tuples of quadratic forms (q1, q2, . . . , qs) and (q ′
1, q

′
2, . . . , q

′
s′) are iso-

metric if s = s′ and for all i, qi
∼= q ′

i . Let q = [q1, q2, . . . , qs] denote the corresponding
isometry class; then q = q1 + · · · + qs is a well-defined element of Wk . We say that q
represents q if q = q.

Now let λ be a partition of n. The multiplicitymi of i in λ is number of times i occurs in λ.
Let 
e(n) denote the set of partitions of n in which even parts occur with even multiplicity.
For λ ∈ 
e(n), let Qλ = {H} if λ has no odd parts; otherwise, let j1 < j2 < . . . < js

denote its distinct odd parts and let

Qλ = {q := [q1, . . . , qs] | for each i, qi is a quadratic form of degree mji
}

be the set of isometry classes of s-tuples of quadratic forms of the stated degrees.
Given a quadratic space (q, V ) of degree n, we set

N (q, n) = {(λ, q) | λ ∈ 
e(n), q ∈ Qλ such that q = q}. (2.3)

If n is even, let 
ve(n) ⊂ 
e(n) be the subset of partitions of n which have no odd parts;
these are called very even partitions. If q = 0 then to each very even partition we attach two
distinct copies ofH, to give

N hyp(n) = N (0, n) � {(λ,H′) | λ ∈ 
ve(n)}. (2.4)

3 Lie Triples, Nilpotent Adjoint Orbits, and the Orthogonal Group

Let G be a semisimple algebraic group defined over k and Lie(G) its Lie algebra. Let h be
the maximal value of the Coxeter number of any irreducible component of the root system
of G. We assume that the characteristic of k is either zero, or else is greater than 3(h − 1).
This hypothesis implies, by [7, §5.5], that each Lie triple defined below lifts to a unique
homomorphism of algebraic groups φ : SL2 → G, and that the degree of nilpotency of any
nilpotent element is less than p. Hence, if char(k) = p, then for each nilpotent element
X ∈ Lie(G), we have X[p] = 0 where this denotes the p-operation on the restricted Lie
algebra Lie(G). We note that by the work of G. McNinch, including particularly [16], these
hypotheses on p can often be weakened via the theory of optimal SL2-homomorphisms.
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3.1 Lie Triples

Let G = G(k) and g = Lie(G)(k). A Lie triple is a nonzero set {Y,H, X} ⊂ Lie(G)

such that [H, X] = 2X, [H, Y ] = −2Y and [X, Y ] = H . Then Jacobson-Morozov theory
[3, VIII,§11], [16] asserts a bijection between the nonzero nilpotent orbits of G on Lie(G)

(respectively, of G on g) and conjugacy classes of Lie triples in Lie(G) under G (respec-
tively, in g under G), given by associating the triple to the orbit of its nilpositive element
X. Moreover, by [7, §5.5] there is a group homomorphism φ : SL2 → G defined over k for
which

dφ

([
0 0
1 0

])

= Y, dφ

([
1 0
0 −1

])

= H, and dφ

([
0 1
0 0

])

= X. (3.1)

We often denote the Lie triple {Y,H, X} by dφ.
Suppose V is a G-module; then the subgroup φ(SL2(k)) (or equivalently its Lie algebra

dφ) decomposes V into pairwise orthogonal isotypic components. Let Ui denote the unique
irreducible sl2(k)-module of degree i, and set Mi := Homsl2(k)(Ui, V ). Then for each i the
map sending (u, T ) ∈ Ui ⊗ Mi to T (u) ∈ V induces an isomorphism

V =
⊕

i∈N
Vi

∼=
⊕

i∈N
Ui ⊗ Mi, (3.2)

where Vi is the Ui-isotypic component of V . Since elements of Gφ commute with dφ, each
space Mi is a Gφ-module.

In Section 6, we have need of the preceding in the more general setting of SL2(R)-
modules. For each n < p let Un be the irreducible module of SL2(R) of rank n + 1. Then
Un = Un ⊗R k and Un := Un ⊗R f := Un/PUn. For anyR-lattice L, let L := L⊗R k and
L := L ⊗R f.

Lemma 3.1. Suppose L is anR-lattice with SL2(R)-action given by φ. Then

L ∼=
⊕

i<p

Ui ⊗R Mi

whereMi = HomSL2(R)(Ui ,L) is anR-lattice in Mi .

Proof By the assumption on p, the SL2(f)-module L is semisimple, and therefore L ∼=⊕
i<p Ui ⊗ HomSL2(f)(Ui ,L). It now follows from [17, Proposition 5.3.1] that this

isomorphism lifts to the level of SL2(R)-modules.

3.2 Centralizers

Under the hypotheses on k, the centralizer Gφ of φ(SL2(k)) in G coincides with Gdφ , the
stabilizer under the adjoint action of the Lie triple dφ. Let us describe the structure of Gφ

for a large class of groups.
Let D be a central division algebra over k and suppose V is additionally a right D-

module. Then Mi inherits the structure of a right D-module. In fact, if G = GL(V ,D) then
Gφ ∼= ∏

i GL(Mi,D).
Now suppose further that V is equipped with a non-degenerate G-invariant sesquilinear

form F . Let βi denote the the unique (up to scaling) sl2(k)-invariant nondegenerate bilinear
form on Ui . It is symplectic if i is even and symmetric if i is odd. In this latter case, fix a
choice of form such that βi(Ui ,Ui ) = R and qβi

∼= 〈1〉 ⊕ H⊕k where i = 2k + 1.
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Then under the isomorphism (3.2), for each i, F and βi induce a nondegenerate Gφ-
invariant form γ i on Mi which satisfies, for each u, u′ ∈ Ui and each T , T ′ ∈ Mi ,
that F(T (u), T ′(u′)) = βi(u, u′)γ i(T , T ′). It follows that if G is the group U(V , F ) of
isometries of (V , F ), then Gφ ∼= ∏

i U(Mi, γ i).
In the special case that D = k and F is a symmetric bilinear form, we have that γ i

is symplectic for each even i and symmetric for each odd i. Writing O(q) := U(V , Bq)

for any quadratic space (V , q) and Sp(n) := U(V , F ) for any symplectic space (V , F ) of
dimension n, we have

O(q)φ ∼=
∏

i odd: Mi �= 0

O(qγ i ) ×
∏

i even: Mi �= 0

Sp(dim(Mi)). (3.3)

3.3 Nilpotent Orbits of Orthogonal Groups and Algebras

For the remainder of this section and until Section 6, let D = k and F = Bq be symmet-
ric, so that (q, V ) is an n-dimensional quadratic space over k. The special orthogonal Lie
algebra is

so(q) = {X ∈ sl(n, k) | tXMq + MqX = 0}.
Observe that so(q) = so(αq) for any α ∈ k×, so from Table 1 we infer there is a single iso-
morphism class of Lie algebra for each anisotropic dimension, except for dim q = 2. In this
latter case, by the Kneser-Tits classification [20], there are two isomorphism classes, corre-
sponding to Lie algebras splitting over a ramified or an unramified extension respectively.
The orthogonal group is

O(q) = {g ∈ GL(n, k) | t gMqg = Mq}
and it contains SO(q) as the index-two subgroup of elements of determinant equal to 1.
These groups are compact if and only if q is anisotropic. We think of them as the k-points
of the corresponding inner forms of the algebraic groups On and SOn, respectively.

Given a geometric nilpotent orbit O under the algebraic group O(q) ∼= On, then its set
of rational pointsO(k) may be empty, or may decompose as a union of one or more rational
nilpotent orbits. In the latter case, using the arguments of [18, Prop 4.1], one can deduce that
the set of rational orbits is in bijection with the kernel of the map of pointed sets in Galois
cohomology

α : H 1(k,O(q)φ) → H 1(k,O(q)) (3.4)

where dφ is an sl2-triple for a base point ofO and O(q)φ is its centralizer.
By Eq. 3.3, the algebraic group O(q)φ is a product of symplectic and orthogonal groups.

For a group U preserving a nondegenerate m-dimensional bilinear form, H 1(k, U) counts
the number of k-isometry classes of forms of degree m; thus it is trivial if the form is
symplectic, and if the form is symmetric, it has order 4, 7 or 8 if m is 1, 2 or at least 3,
respectively. The kernel of the map (3.4) can thus parametrized by tuples of quadratic forms
whose sum is equivalent to the chosen form q in the Witt group. This correspondence is
made explicit in the proof of the following theorem, which is a known result; for example,
for R and C see [9, Ch. 9] and for extensions of Qp see [21, I.6].

Theorem 3.2. Let (q, V ) be a nondegenerate n-dimensional quadratic space over k. The
nilpotent O(q) orbits on so(q) are parametrized by the set N (q, n). If q �= 0, then the
nilpotent SO(q) orbits coincide with those under O(q) but otherwise, n is even and the
nilpotent SO(q)-orbits are parametrized by the setN hyp(n).
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Proof Let X ∈ so(q) \ {0} be nilpotent and let dφ = {Y,H, X} be a corresponding Lie
triple. Decompose V into isotypic components under the corresponding action of sl2(k) (or
equivalently under its lift φ(SL2(k))) as in Eq. 3.2; then the nonzero summands are indexed
by parts i of a partition λ of n in which each part i occurs with multiplicity mi = dim(Mi).
Hence λ ∈ 
e(n), since even parts correspond to symplectic forms. If X = {0} set dφ = {0}
and M1 = V in Eq. 3.2, so that λ = [1n]. When i is an odd part of λ, we have qβi

� 〈1〉.
Thus writing qi := q|Vi

and noting that qβi
⊗ qγ i

∼= qi , we conclude that (qγ i , Mi) �
(qi, Vi) in Wk . On the other hand, when i is an even part of λ, βi ⊗ γ i is a split quadratic
space, whence (qi, Vi) � H inWk .

Consequently, the tuple q = [qγ j | j odd, mj �= 0] lies in Qλ. Since ⊕i∈Nqi � q,
the pair (λ, q) lies in N (q, n). Since Gφ acts by isometries on the spaces Mi , this map
dφ → N (q, n) lifts to a well-defined map on nilpotent orbits. It is surjective, since each
element of N (q, n) defines a decomposition (3.2) of (q, V ) (uniquely up to isometry) and
consequently a subgroup of O(q) isomorphic to SL2(k).

To show this map is bijective, suppose dφ and dφ′ are two Lie triples in so(q) and
V = ⊕iVi and V = ⊕iV

′
i are the corresponding decompositions of V into isotypic com-

ponents. Then these decompositions are isometric if and only if dφ and dφ′ are conjugate
via an element of O(q). As N (q, n) is in bijection with the set of isometry classes of such
decompositions, the first statement of the theorem follows.

To understand the SO(q) orbits, suppose that g ∈ O(q) \ SO(q) gives Ad(g)dφ = dφ′.
From Eq. 3.3, and that the symplectic factors have determinant 1, we conclude that O(q)φ

contains an element h of determinant −1 if and only if λ contains at least one odd part, in
which case gh ∈ SO(q) and Ad(gh)dφ = dφ′, showing that the O(q) and SO(q) orbits
coincide.

If, however, dim(Vi) is even for all i, then no such h exists. In this case, each Vi is a
split quadratic space and so (q, V ) is a sum of hyperbolic planes, whence q = 0. Since
O(q)φ = SO(q)φ in this case, and SO(q) has index two in O(q), we deduce that each
of the O(q)-orbits corresponding to λ ∈ 
ve(n) decompose as a disjoint union of two
SO(q)-orbits.

Note that for i odd, where convenient, we can and do identify Mi with the 0-weight
space of Vi .

4 Counting Rational Nilpotent Orbits

Let λ ∈ 
e(n). For i ∈ N let χi denote the number of odd parts j of λ occurring with
multiplicity exactly i, and set χ3+ = ∑n

i=3 χi . Let X be an element of the algebraic orbit
Oλ, dφ an associated Lie triple, and φ the corresponding homomorphism φ : SL2 → O(q).
From the form of O(q)φ in Eq. 3.3, and Lemma 2.1, we deduce that

|H 1(k,O(q)φ)| = 4χ17χ28χ3+ ,

whereas |H 1(k,O(q))| ∈ {4, 7, 8}, depending on n. Thus from the discussion preceding
the statement of Theorem 3.2, if n ≥ 3 one expects for each choice of k-form O(q) about
1
8 (4

χ17χ28χ3+) rational orbits in Oλ(k), with some variation depending on λ and q.
On the other hand, Theorem 3.2 gives a direct means of counting the number of rational

orbits in Oλ(k): they are parametrized by Pλ,q = {q ∈ Qλ | q = q}. That is to say, it
suffices to count the number of isometry classes of tuples (of degrees prescribed by the

2041



T. Bernstein et al.

multiplicities of the odd parts in λ) that represent q. This is a nontrivial counting problem,
and the subject of this section.

We begin with the simple case that each odd part of λ has multiplicity equal to 1.

Lemma 4.1. Let u ∈ Wk and let n◦ be its anisotropic dimension n◦ = dim(u). Let χ1 ∈
N+ have the same parity as n◦. The number N(u)χ1 of isometry classes of χ1-tuples of
degree-one quadratic forms representing u is

N(u)χ1 = 1

8
4χ1 + (2 − n◦)2χ1−2. (4.1)

Proof For ease of notation set χ := χ1. We prove this formula by induction on even and odd
χ , respectively. When χ = 1, we have N(u)1 = 1 if n◦ = 1 but N(u)1 = 0 if n◦ = 3, so
Eq. 4.1 holds.When χ = 2, there are 16 distinct isometry classes of pairs of quadratic forms.
By Lemma 2.1, regardless of the sign of −1 in k, each of the six anisotropic quadratic forms
u with n◦ = 2 is represented by exactly two such pairs, accounting for 12 = 6× 2 pairs; the
remaining four pairs represent the hyperbolic plane (which has n◦ = 0). In particular no pair
can represent Q4 (which has n◦ = 4). This count agrees with Eq. 4.1 for χ = 2 and each
n◦ ∈ {0, 2, 4}. Thus Eq. 4.1 holds for χ ∈ {1, 2} and all u with n◦ of the same parity as χ .

Suppose now that χ > 2 and that N(u′)χ−2 satisfies (4.1) for all u′ ∈ Wk such that
n′◦ := dim(u′) has the same parity as χ . In particular, since the right side of Eq. 4.1 depends
only on the anisotropic dimension, we may define N(n′◦)χ−2 := N(u′)χ−2.

Let u ∈ Wk and suppose it is represented by a χ -tuple of degree-one quadratic forms
qχ = [q1, q2, qχ−2] where qχ−2 denotes an (χ − 2)-tuple. Set u′ = qχ−2; then u′ =
u − 〈q1, q2〉 ∈ Wk . Set n◦ = dim(u) and n′◦ = dim(u′); then necessarily n′◦ ∈ {n◦, n◦ ±
2} ∩ {0, 1, 2, 3, 4}.

Suppose first that n◦ ∈ {0, 4}. There are four pairs that yield 〈q1, q2〉 � H (and hence
give u′ = u and thus n′◦ = n◦) whereas the twelve others give n′◦ = 2, yielding

N(u)χ = 4N(u)χ−2 + 12N(2)χ−2

= 4

(
1

8
4χ−2 + (2 − n◦)2χ−4

)

+ 12

(
1

8
4χ−2

)

= 1

8
4χ + (2 − n◦)2χ−2.

Next suppose that n◦ = 2. Then for each u′ ∈ {H,Q4} we have that dim(u − u′) = 2, so
u−u′ is represented by exactly two choices of pairs (q1, q2). Thus the remaining 12 choices
of (q1, q2) correspond to u′ such that n′◦ = 2. This yields

N(u)χ = 2N(0)χ−2 + 12N(2)χ−2 + 2N(4)χ−2 = 16

(
1

8
4χ−2

)

= 1

8
4χ ,

as required.
Finally, suppose n◦ ∈ {1, 3}. If u′ = u, then we must have 〈q1, q2〉 � H; this accounts for

4 pairs (q1, q2). For each of the three other elements u′ of the same anisotropic dimension
as u, a quick calculation using Table 1 and Lemma 2.1 yields that dim(u − u′) = 2 and so
u−u′ is representable by exactly two choices of (q1, q2). This accounts for 3×2 = 6 pairs.
The remaining six choices of (q1, q2) therefore yield u′ such that n′◦ �= n◦, so necessarily
n′◦ = 4 − n◦. We thus infer

N(u)χ = 4N(u)χ−2 + 6N(n◦)χ−2 + 6N(4 − n◦)χ−2

= 10

(
1

8
4χ−2 + (2 − n◦)2χ−4

)

+ 6

(
1

8
4χ−2 + (n◦ − 2)2χ−4

)

,

and the formula follows.
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Now consider the case that each odd part of λ has multiplicity exactly two.

Lemma 4.2. Let u ∈ Wk be such that dim(u) = n◦ ∈ {0, 2, 4}, and let χ2 ≥ 0. Then the
number M(u)χ2 of isometry classes of χ2-tuples of degree-two quadratic forms representing
u is

M(u)χ2 =

⎧
⎪⎨

⎪⎩

� 1
87

χ2� + 1 if χ2 is even and n◦ = 0;
� 1
87

χ2� − 1 if χ2 is odd and n◦ = 4;
� 1
87

χ2� otherwise.

where � 1
87

χ2� = 1
8 (7

χ2 − (−1)χ2) denotes the closest integer to 7χ2/8.

Proof Set χ := χ2. We can write the formula as M(u)χ = 1
8 (7

χ − (−1)χ ) + εn◦,χ , where

εn◦,χ =
{

(−1)χ if n◦ = 0 and χ is even, or n◦ = 4 and χ is odd, and
0 otherwise.

(4.2)

Notice that if n◦ ∈ {0, 4} then εn◦,χ−1 + (−1)χ = εn◦,χ , for all χ .
When χ = 0, then M(0)0 = 1 and M(u)0 = 0 for all u �= 0 so the formula holds. Assume

χ ≥ 1 and let us count the number of ways, up to isometry, to construct a χ -tuple of degree-
two quadratic forms qχ = [q1, qχ−1] representing u. There are 7 choices for the form q1,
of which 6 are anisotropic. Set u′ = qχ−1 = u − q1 and let n′◦ = dim(u′). By induction
M(u′)χ−1 is an invariant of anisotropic dimension so we can set M(n′◦)χ−1 := M(u′)χ−1.

Suppose n◦ ∈ {0, 4}. If q1 = 0 then u′ = u and n′◦ = n◦; otherwise, n′◦ = dim(u′) =
dim(u − q1) = 2. Therefore we have

M(u)χ = M(u)χ−1 + 6M(2)χ−1

= 1

8

(
7χ−1 − (−1)χ−1

)
+ εn◦,χ−1 + 6

(
1

8

(
7χ−1 − (−1)χ−1

))

= 1

8
(7χ − (−1)χ ) + (−1)χ + εn◦,χ−1 = 1

8
(7χ − (−1)χ ) + εn◦,χ .

On the other hand, if n◦ = 2, then u′ = H if q1 = u and u′ = Q4 if q1 = Q4 − u. Each of
the remaining five choices of q1 gives u′ such that n′◦ = 2. This yields the final relation

M(u)χ = M(H)χ−1 + 5M(2)χ−1 + M(Q4)χ−1

= 7

(
1

8

(
7χ−1 − (−1)χ−1

))

+ ε0,χ−1 + ε4,χ−1.

Since ε0,χ−1 + ε4,χ−1 = (−1)χ−1, the formula follows.

Theorem 4.3. Let M be a vector space of dimension n ≥ 1 and let A be an index set.
Suppose M is decomposed as a direct sum of nonzero subspaces ⊕α∈AMα; set χi = |{α |
dim(Mα) = i}|. Let u ∈ Wk and let n◦ = dim(u) denote its anisotropic dimension. If
n − n◦ is a nonnegative even integer, then the number of ways T(u)χ1,χ2,χ3+ of assigning a
nondegenerate quadratic form to each of the |A| subspaces such that the sum is equivalent
to u in the Witt group is

T(u)χ1,χ2,χ3+ =

⎧
⎪⎨

⎪⎩

1
84

χ17χ28χ3+ if χ3+ ≥ 1;
1
84

χ17χ2 + (2 − n◦)2χ1−2 if χ3+ = 0, χ1 ≥ 1;
� 1
87

χ2� + εn◦,χ2 if χ1 = χ3+ = 0,

where εn◦,χ2 was defined in Eq. 4.2.
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Proof Set χ3+ = ∑n
i=3 χi . First suppose that there exists some α ∈ A such that dim(Mα) ≥

3. Then the number of choices of quadratic forms on M ′ = ⊕β �=αMβ is 4χ17χ28χ3+−1.
Given such a choice, let u′ be its Witt class. Then dim(u − u′) has the same parity as
dim(Mα). Since dim(Mα) ≥ 3, each of the 8 possible choices of u − u′ can be realized on
Mα . The formula follows.

Now suppose that χ3+ = 0, so that dim(Mα) ∈ {1, 2} for all α ∈ A. If χ2 = 0 or χ1 = 0
then we apply Lemmas 4.1 and 4.2, respectively. Otherwise, lettingW2 denote the subgroup
of the Witt group of all quadratic forms of even anisotropic dimension, we deduce that

T(u)χ1,χ2,0 =
∑

u′∈W2

N(u − u′)χ1M(u′)χ2 =
∑

u′∈W2

N(u − u′)χ1

(⌊
1

8
7χ2

⌉

+ εdim(u′),χ2

)

= 4χ1

⌊
1

8
7χ2

⌉

+
∑

u′∈W2

N(u − u′)χ1εdim(u′),χ2 (4.3)

where at this last step we have used that u−u′ ranges over allWitt classes of quadratic forms
of dimension of the same parity as dim(u), and thus all 4χ1 possible χ1-tuples of degree-one
quadratic forms.

When χ2 is even, εdim(u′),χ2 is nonzero only when u′ = 0, in which case ε0,χ2 = 1, so
the final summand is

ε0,χ2N(u)χ1 = 1

8
4χ1 + (2 − n◦)2χ1−2

whereas when χ2 is odd, the only nonzero factor is ε4,χ2 = −1 and the term corresponding
to u′ = Q4 has dim(u − u′) = 4 − n◦; this yields

ε4,χ2N(u − Q4)χ1 = (−1) ·
(
1

8
4χ1 + (2 − (4 − n◦)) 2χ1−1

)

= −1

8
4χ1 + (2 − n◦)2χ1−2.

Thus the final summand in Eq. 4.3 is precisely (−1)χ2 1
84

χ1 + (2 − n◦)2χ1−2. Expanding
⌊
1
87

χ2

⌉
as in Lemma 4.2, we obtain, for χ1, χ2 > 0 and χ3+ = 0,

T(u)χ1,χ2,0 = 4χ1
1

8
(7χ2 − (−1)χ2) + (−1)χ2

1

8
4χ1 + (2 − n◦)2χ1−2,

as required.

By Theorem 3.2, the O(q) orbits in Oλ(k) are in bijection with

Pλ,q := {q ∈ Qλ | q = q}.
Therefore rephrasing Theorem 4.3 gives the desired result.

Corollary 4.4. Let q be a nondegenerate quadratic form on an n-dimensional space V and
let λ ∈ 
e(n). Denote by Oλ the corresponding algebraic nilpotent adjoint orbit of O(q).
Write χi for the number of odd parts of multiplicity exactly i in λ and χ3+ := ∑n

i=3 χi .
Then the number of O(q)-orbits in Oλ(k) is |Pλ,q | = T(q)χ1,χ2,χ3+ .

Finally, let us formulate an algorithm, suggested by the proofs above, for enumerating
the elements of the set Pλ,q . Set n◦ = dim(q) and n = deg(q).

Algorithm 4.5. Let λ ∈ 
e(n). Write mj for the multiplicity of part j in λ, and let D be
the set of odd parts in λ. Set m = ∑

j∈D mj .

Step 1 If m < n◦ then Pλ,q = ∅. If m = 0 and n◦ = 0 then Pλ,H = {H}. Otherwise:
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Step 2 Define a subset E of D as follows. If there is at least one part j ∈ D with mj ≥ 3,
let E = {j}. If m < 4 then let E = D. Otherwise, choose E to satisfy

∑
j∈E mj = 3 if

n◦ is odd and
∑

j∈E mj = 4 if n◦ is even.
Step 3 Generate the set S of all tuples [qj | j ∈ D \ E] and the (small) set T of all tuples

[qj | j ∈ E] (with deg(qj ) = mj for each j ).
Step 4 By construction, for each qS ∈ S, there exist one or more tuples qT ∈ T such that

qS + qT = q; include each of the resulting tuples [qS, qT ] in Pλ,q .

In particular,Oλ has no k-rational points in so(q) if and only if m < n◦.

5 Representatives for Nilpotent Orbits

In this section, we show how to generate from an element of N (q, n) (or N hyp(n)) an
explicit representative of the corresponding rational nilpotent orbit of G = O(q) (or G =
SO(q)) on g = so(q). We set our notation for g and for irreducible sl2(k)-modules in
Section 5.1. We present the strategy for the algorithm in Section 5.2, and provide the steps
in Sections 5.3 to 5.9.

5.1 Bases for g and for sl2(k )-Modules

Suppose q ∼= H⊕m ⊕ q◦ where the anisotropic kernel q◦ is represented by 〈r1, r2, . . . , rn◦ 〉;
then dim(V ) = n = 2m+n◦. Let {v1, . . . , vm,w1, . . . , wm} be a Witt basis ofH⊕m, that is,
with Bq(vi, wj ) = δi,j , such that the subspace generated by the vis (respectively, the wis)
is totally isotropic. Complete this to a basis of V by choosing, for 1 ≤ κ, � ≤ n◦, vectors
z� in the orthogonal complement such that Bq(z�, zκ) = δ�,κ r�. Then with respect to the
ordered basis B = {v1, . . . , vm,w1, . . . , wm, z1, . . . , zn◦ } of V , and the corresponding dual
basis B∗ = {v∗

1 , . . . , v
∗
m,w∗

1, . . . , w
∗
m, z∗

1, . . . , z
∗
n◦ } of V ∗, the Lie algebra g ⊂ gl(V ) has a

maximal split toral subalgebra t spanned by

Hi = viv
∗
i − wiw

∗
i , for 1 ≤ i ≤ m.

Then its centralizer gt = t ⊕ s, where s ∼= so(q◦) is spanned by {rκz�z
∗
κ − r�zκz∗

� | 1 ≤
� < κ ≤ n◦}. Denoting by εi ∈ t∗ the functional εi(Hj ) = δi,j , for each 1 ≤ i, j ≤ m, the
positive roots of g with respect to t are �+ = {εi ± εj , εk | 1 ≤ i < j ≤ m, 1 ≤ k ≤ m}
and the root system is � = �+ ∪ (−�+). A basis for each root space is given as follows:

εi − εj (1 ≤ i �= j ≤ m) : Xi,j = viv
∗
j − wjw

∗
i

εi + εj (1 ≤ i < j ≤ m) : Xi,−j = viw
∗
j − vjw

∗
i

−εi − εj (1 ≤ i < j ≤ m) : X−i,j = wjv
∗
i − wiv

∗
j (5.1)

εi (1 ≤ i ≤ m) : {X�
i = z�w

∗
i − r�viz

∗
� | 1 ≤ � ≤ n◦}

−εi (1 ≤ i ≤ m) : {X�−i = z�v
∗
i − r�wiz

∗
� | 1 ≤ � ≤ n◦}.

With respect to these choices, we have the expected relations [Xi,j , Xj,i] = Hi − Hj ,
[Xi,−j , X−i,j ] = Hi + Hj , [X�

i , Xκ−i] = δ�,κ r�Hi , and also for i < j

[X�
i , Xκ

j ] = −r�δ�,κXi,−j , [X�−i , Xκ−j ] = r�δ�,κX−i,j , [X�
i , X�−j ] = r�Xi,j ,

whereas if � �= κ and i �= j we have [X�
i , Xκ

j ] ∈ s.
Suppose now dφ = {Y,H, X} ⊂ so(q) is a Lie triple. Let Ui be an sl2(k)-submodule of

V . Then a basis for Ui is given by {Xi−1v, Xi−2v, . . . , Xv, v}, where v ∈ Ui is a lowest
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weight vector; we’ll call such an ordered basis an sl2(k)-basis. With respect to this basis, the
action of X is given in matrix form as a Jordan block Ji , that is, an upper triangular matrix
with 1s on the second diagonal and 0s elsewhere. In fact, H, X, Y act by, respectively, the
matrices

hi = diag(i − 1, i − 3, · · · ,−i + 3,−i + 1), xi = Ji, and yi = Di
tJi (5.2)

where Di = diag(0, μ1, · · · , μi−1) with μk = k(i − k) for 1 ≤ k < i. Importantly, by our
hypotheses on p we have that the residual characteristic satisfies p > h (where the Coxeter
number h of G is h = 2n if n is odd, and h = 2(n − 1) if n is even) so that μk ∈ R×,
regardless of i. We use this property at various points, whose importance will be evident in
Section 7; its necessity for the DeBacker correspondence was discussed in [19].

We want to describe various sl2(k)-submodules with respect to the basis B of V in order
to construct our desired matrix representatives. In Sections 5.3 to 5.9 we generally do so in
one of two ways.

In the first way, given a consecutive subset of the Witt basis, which we take without loss
of generality to be B ′ = {v1, . . . , vi , w1, . . . , wi}, we realize its span V ′ as two copies of Ui

by choosing the sl2(k)-bases B1 = {v1, v2, . . . , vi} and B2 = {−wi,wi−1, . . . , (−1)iw1}.
Then the restriction of dφ to V ′ is given in matrix form by

H |V ′ = diag(hi,−hi), X|V ′ =
[
xi 0
0 −t xi

]

, and Y |V ′ =
[
yi 0
0 −t yi

]

. (5.3)

Alternatively, if i = 2k + 1 is odd, we may take a consecutive subset such as Bk =
{v1, . . . , vk, w1, . . . , wk} of the Witt basis, together with a vector x in the span of B \ Bk

(which is not necessarily in span{z1, · · · , zn◦ }!) satisfying q(x) = r , which will take the
role of the 0-weight vector of the module. Then

B ′ = {rv1, rv2, . . . , rvk, x, −wk, wk−1, . . . , (−1)kw1}
is an sl2(k)-basis of a submodule V ′ isomorphic to Ui , such that q|V ′ ∼= 〈r〉 ⊕ H⊕k ∼=
〈r〉⊗ (〈1〉⊕H⊕k). The restriction of dφ to V ′ is given in matrix form relative to the ordered
basis Bk ∪ {x} by

H |V ′ = diag(h̃k,−h̃k, 0), where h̃k = diag(2k, 2k − 2, · · · , 2), (5.4)

X|V ′ =
⎡

⎣
xk 0 Mr

0 −t xk 0
0 tM1 0

⎤

⎦ , and Y |V ′ =
⎡

⎣
ỹk 0 0
0 −t ỹk M−1

tMr−1 0 0

⎤

⎦ ,

where Ms denotes the k × 1 matrix (δi,ks)1≤i≤k , and ỹk is the kth order principal submatrix
of yi . We make the convention that if k = 0 then h̃0 is omitted.

5.2 The Strategy

Now suppose that (λ, q) ∈ N (q, n) orN hyp(n), so that λ ∈ 
e(n) and q = [qi1 , · · · , qis ] ∈
Pλ,q (or is taken to be H if λ has no odd parts). Let mi be the multiplicity of i in λ. Thus
each distinct part in λ corresponds to an orthogonal component of the direct sum Eq. 3.2,
on which the restriction of q is equivalent to qik if the part ik is odd, or else to a direct sum
of hyperbolic planes if the part is even. When −1 /∈ k2, some complications may arise, as
in the following example.
Example 1. Suppose λ = (1, 3, 5) and q = 〈1〉 ⊕ H⊕4. If −1 ∈ k2, then Pλ,q =
{[1, a,−a], [a, 1,−a], [a, −a, 1] | a ∈ {±1,±� }} (writing a in place of 〈a〉) which
has N(q)3 = 10 distinct elements. To [1,�, −� ] ∈ Pλ,q , for example, one associates a
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decomposition V = V1 ⊕ V3 ⊕ V5 with quadratic forms q1 = 〈1〉, q3 = 〈� 〉 ⊕ H and
q5 = 〈−� 〉 ⊕H⊕2, respectively. Thus V3 ⊕ V5 is isomorphic to a direct sum of hyperbolic
planes (though individually neither one is), and (q1, V1) � (q, V ). On the other hand, how-
ever, now suppose −1 /∈ k2. Then to q = [ρ, ρ, ρ] ∈ Pλ,q we associate a decomposition as
above but in this case, no single Vi carries a form equivalent to q!

As this example illustrates, the difficulty is that although q � qi1 ⊕ · · · ⊕ qis , it is not
in general true that one can partition the basis B to reflect this orthogonal decomposition,
and thus choices of embeddings of (qi, Vi) into (q, V ) must be made. An optimal choice,
as will be discussed in Section 7, is one for which the span of the roots on whose spaces X

and Y are supported has the smallest dimension. We proceed as follows.
We set some notation. Recall that we have fixed a diagonal representative 〈r1, . . . , rn◦ 〉

for q◦. Let (λ, q) ∈ N (q, n) orN hyp(n). Let

Iλ = {(i, j) | i ∈ λ, 1 ≤ j ≤ mi}
be the set of all index pairs, which has cardinality |λ| = ∑

i∈λ mi , the number of parts
in λ. Write q = [qj1 , . . . , qjs ] and for each odd part i = jt (1 ≤ t ≤ s) of λ let qi �
〈ri,1, ri,2, . . . , ri,mi

〉 be a diagonal form of qi . This defines a choice of map (i, j) �→ ri,j on
all (i, j) ∈ Iλ such that i is odd.

Proposition 5.1. There exists a partition � of Iλ into subsets of the form:

even: {(i, j), (i, j + 1)} such that i is even;
hyp: {(i, j), (i, j ′)} such that i is odd, j �= j ′ and 〈ri,j 〉 ∼= 〈−ri,j ′ 〉;
pairs: {(i, j), (i′, j ′)} such that i �= i′ are odd, and 〈ri,j 〉 ∼= 〈−ri′,j ′ 〉;
quad: if −1 /∈ k2: {(i1, j1), (i2, j2), (i3, j3), (i4, j4)} such that the ik are distinct odd

parts and 〈ri1,j1〉 ∼= 〈ri2,j2〉 ∼= 〈ri3,j3〉 ∼= 〈ri4,j4〉;
trip: if −1 /∈ k2, {(i1, j1), (i2, j2), (i3, j3)} such that the ik are distinct odd parts, and

there exists 1 ≤ � ≤ n◦ such that 〈−r�〉 ∼= 〈ri1,j1〉 ∼= 〈ri2,j2〉 ∼= 〈ri3,j3〉;
sign: if −1 /∈ k2, {(i, j), (i′, j ′)} such that i �= i′ are odd and there exist 1 ≤ κ < � ≤ n◦

such that 〈ri,j 〉 ∼= 〈ri′,j ′ 〉 ∼= 〈−rκ 〉 ∼= 〈−r�〉;
ani: for some t ≤ n◦: {(is , js) | 1 ≤ s ≤ t} such that up to permutation of the diagonal

representative of q◦ we have 〈ris ,js 〉 ∼= 〈rs〉 for each 1 ≤ s ≤ t;

and such that there are in total at most two sets of the form trip, sign or ani in �.

Proof Even parts occur with even multiplicity, so the index pairs (i, j) with i even can be
partitioned into couples of the form even. Thus it suffices to consider the case that all parts
i of λ are odd.

If −1 ∈ k2, then 〈r〉 = 〈−r〉 so exhaustively matching up elements of Iλ using hyp or
pairs leaves at most four index pairs (i, j), such that each ri,j represents a distinct square
class in {1, ρ, �, ρ� }. Since q = q, we deduce these must satisfy ani. Therefore the lemma
holds in this case.

If −1 /∈ k2, then exhaustively matching up elements using hyp or pairs leaves at most
two sets of index pairs: Sa and S�b, consisting of those (i, j) for which 〈ri,j 〉 ∼= 〈a〉 or
〈ri,j 〉 ∼= 〈�b〉, for some fixed a, b ∈ {1, ρ}, respectively. We claim that Sa and S�b can
each be partitioned as required, with at most one part of the form trip, sign or ani.

If Sa ∪ S�b satisfies ani, we are done. If not, then given the classification of Table 1,
there is at least one r ∈ {a, �b} such that |Sr | > 2; we now consider each such r in turn.
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If Sr contains two distinct elements (i, j) and (i, j ′) with the same part i of λ, then by
applying the relation 〈r, r〉 ∼= 〈−r, −r〉, we can replace the diagonal form of the correspond-
ing qi with one in which ri,j = ri,j ′ = −r instead. Since |Sr | > 2, we may then apply hyp
or pairs, removing at least two (and perhaps four) elements from Sr . Repeat this process
until either: the resulting Sr has two or fewer elements, in which case ani applies and we are
done; or all the parts i of λ occuring in elements of the resulting Sr are distinct. In the latter
case, we next exhaustively eliminate quadruples from Sr using quad, leaving at most three
elements. Recalling that 〈r, r, r〉 � 〈−r〉 and 〈r, r〉 ∼= 〈−r, −r〉, we conclude that exactly
one of trip, sign or ani must apply to what is left of Sr , and we are done.

Choose such a partition �. For each L ∈ {even, hyp, pairs, quad, trip, sign, ani}, let �L

denote the set of parts of � falling under case L. For each γ ∈ �trip ∪ �sign ∪ �ani, if any,
we have that ⊕(i,j)∈γ 〈ri,j 〉 represents a nontrivial element of the Witt group, and these are
the only such parts in �.

In the following sections we partition the basis B according to �, giving an orthogonal
decomposition V = ⊕γ∈�Vγ . On each orthogonal subspace Vγ we construct an action of
sl2(k) such that their direct sum is isomorphic to a decomposition (3.2) associated to (λ, q).
In doing so, we define a Lie triple dφ = {Y,H, X} such that X represents the nilpotent
orbit corresponding to (λ, q). Since X is a sum of its restrictions to each Vγ , and each Vγ

is spanned by a subset of B, we will recoup an expression for X as a linear combination of
root vectors, and thus an explicit representative of the orbit.

For ease of notation, in each case we suppose the subset Bγ of B starts with {v1, w1}; to
implement this algorithm in practice, one chooses an appropriate partition of B and shifts
the indices on all the vectors and root vectors.

5.3 �even: Even Parts of λ, and�hyp: Hyperbolic Planes in Odd Parts of λ

Suppose γ = {(i, j), (i, j ′)} ∈ �even ∪ �hyp. Then Vγ should be a sum of two copies of Ui

and the restriction of q to Vγ should be a split quadratic space of dimension 2i. Therefore
we choose a consecutive subset of the Witt basis with 2i elements, which up to relabeling
we may take to be Bγ = {v1, . . . , vi , w1, . . . , wi}. Set Vγ = span(Bγ ) and define an action
of dφ as in Eq. 5.3. Then Vγ

∼= Ui ⊕ Ui and the restriction of q to Vγ is isometric to H⊕i .
From the matrix form we deduce that X|Vγ is a sum of simple root vectors. Specifically,
we have

X|Vγ =
∑

1≤t<i

Xt,t+1, and Y |Vγ =
∑

1≤t<i

μtXt+1,t , (5.5)

where we note that Y |Vγ is a linear combination of exactly the corresponding negative root
vectors.

By choosing disjoint subsets Bγ for each γ ∈ �even ∪ �hyp, we thus create an sl2(k)-
submodule Vhyp = ⊕Vγ of V .

5.4 �pairs: Hyperbolic Planes Across Two Distinct Odd Parts

Suppose now that γ = {(i, j), (i′, j ′)} ∈ �pairs. Scaling by a square if necessary, we may
assume that ri,j = r and ri′,j ′ = −r for some r . Write i = 2k + 1, i′ = 2k′ + 1, with
k > k′ ≥ 0, and set p = 1

2 (i + i′) = k + k′ + 1.
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Here, Vγ should be isomorphic to Ui ⊕ Ui′ as sl2(k)-modules, and the restriction of q to
Vγ should be (〈r〉 ⊗ (〈1〉 ⊕ H⊕k)) ⊕ (〈−r〉 ⊗ (〈1〉 ⊕ H⊕k′

)) ∼= H⊕2p. We use the relation

tK

[
0 1
1 0

]

K =
[
r 0
0 −r

]

, with K =
[
r/2 r/2
1 −1

]

, (5.6)

to explicitly identify the two-dimensional 0-weight space, which carries the form 〈r, −r〉,
with a hyperbolic planeH spanned by a Witt basis.

That is, choose a subset of the Witt basis with 2p elements, which up to relabeling we
take to be Bγ = {v1, . . . , vp, w1, . . . , wp}. Identify the 2-dimensional 0-weight space with
the span of {vp,wp} by choosing x±

p = r
2vp ± wp as our 0-weight vectors. Note that

q(x±
p ) = ±r . Then sl2(k)-bases for the corresponding decomposition of Bγ into orthogonal

SL2(k)-invariant subspaces are

Bi = {rv1, rv2, . . . , rvk, x
+
p , −wk, wk−1, . . . , (−1)kw1} (5.7)

and

Bi′ = {rvk+1, rvk+2, . . . , rvk+k′ , x−
p ,wk+k′ ,−wk+k′−1, . . . , (−1)k

′+1wk+1},
respectively, giving the required sl2(k)-structure to Vγ = span(Bγ ).

We next write down explicit representatives of the restrictions of H and of X to Vγ with
respect to Bγ , which amounts to performing a change of coordinates from Bi ∪ Bi′ , with
respect to which these matrices are given as in Eq. 5.2.

We have H |Vγ = diag(h̃k, h̃k′ , 0,−h̃k,−h̃k′ , 0). If k′ = 0 then it follows from the bases
above that Xv1 = 0, Xvp = vk , and Xvi = vi−1 for 1 < i < p, whereas if k′ > 0 then
instead Xvk+1 = 0 and Xvp = vk + vk+k′ . Similarly, if k′ = 0 we have Xwp = r

2vk ,
Xwk = − r

2vp − wp and Xwi = −wi+1 for all 1 ≤ i < k, whereas if k′ > 0 then instead
Xwp = r

2vk − r
2vk+k′ and Xwk+k′ = r

2vp − wp. Using the notation of Eq. 5.1, we may
thus write the restriction of X to Vγ as the sum of positive root vectors

X|Vγ =
∑

1≤j<k+k′
j �=k

Xj,j+1 + Xk,p + r

2
Xk,−p + Xk+k′,p − r

2
Xk+k′,−p (5.8)

where if k′ = 0 we omit the two terms in which k + k′ appears as a subscript. Similarly,
Y |Vγ is a linear combination (with coefficients inR×) of the root vectors

{Xj+1,j , Xp,k, r
−1X−k,p, (Xp,k+k′), (r−1X−p,k+k′) | 1 ≤ j < k + k′, j �= k},

omitting the terms in parentheses when k′ = 0.
Making suitable choices of disjoint bases Bγ , for each γ ∈ �pairs, yields another split

quadratic subspace Vpairs = ⊕γ∈�pairsVγ ⊆ V .

5.5 �quad: Hyperbolic Planes Across Four Parts, When−1 /∈ k2

Suppose now that

γ = {(i1, j1), (i2, j2), (i3, j3), (i4, j4)} ∈ �quad

with i1 > i2 > i3 > i4, and after scaling by squares if necessary, let r be the common value
of rit ,jt for 1 ≤ t ≤ 4. Let it = 2kt +1 for each t , and set p = 1

2

∑
it = k1+k2+k3+k4+2.

Choose a subset of the Witt basis with 2p elements, which we assume up to relabelling
is Bγ = {v1, · · · , vp,w1, · · · , wp}. This space is to carry the module ⊕tUit with form
〈r, r, r, r〉 ⊕H⊕p−2. We choose its hyperbolic four dimensional 0-weight space to coincide

2049



T. Bernstein et al.

with W0 = span{vp−1, vp,wp−1, wp}. Using the change of basis matrix K from Eq. 5.6
we diagonalize Bq on this subspace to diag(r, r, −r,−r). Next, since −1 /∈ k2, there exist
c, s ∈ k× such that c2 + s2 = −1. A matrix C satisfying tC(−rI )C = rI is given by

C =
[
c −s

s c

]

. (5.9)

Consequently, the following vectors form an orthogonal basis of W0 in which each vector
xt satisfies q(xt ) = r:

x1 = r

2
vp−1 + wp−1, (5.10)

x2 = r

2
vp + wp,

x3 = cr

2
vp−1 + sr

2
vp − cwp−1 − swp,

x4 = −sr

2
vp−1 + cr

2
vp + swp−1 − cwp.

We complete each of these to an sl2(k)-basis ofUit , respectively, by partitioning the remain-
ing elements of Bγ as before. Specifically, setting pt = ∑t

s=1 ks , so that p0 = 0 and
p4 = p − 2, ordered bases of the four sl2(k) submodules are

Bt = {rvpt−1+1, rvpt−1+2, · · · , rvpt , xt ,−wpt , · · · , (−1)kt wpt−1+1}, (5.11)

where it is understood that if k4 = 0 then B4 = {x4}, a one-dimensional space.
These bases define the restriction of the Lie triple {Y,H,X} to Vγ = span(Bγ ). For

example, the matrix of HVγ is

diag(h̃k1 , h̃k2 , h̃k3 , h̃k4 , 0, 0,−h̃k1 ,−h̃k2 ,−h̃k3 ,−h̃k4 , 0, 0).

To obtain the matrix of the restriction of X to Vγ with respect to Bγ , we first invert (5.10),
and then apply the relations Xxi = rvpi

to deduce

Xvp−1 = vp1 − cvp3 + svp4

Xvp = vp2 − svp3 − cvp4

Xwp−1 = r

2
vp1 + cr

2
vp3 − sr

2
vp4

Xwp = r

2
vp2 + sr

2
vp3 + cr

2
vp4 ,

where if k4 = 0 we omit the four terms containing the subscript p4. The action of X on the
remaining vi and wi of Bγ can be read from the bases (5.11) directly, and contribute sums
of simple root vectors as before. With respect to the root vectors (5.1), the restriction of X

to Vγ is given by

X|Vγ =
∑

1≤j<p−2,j �=p1,p2,p3

Xj,j+1 + Xp1,p−1 + Xp2,p − cXp3,p−1 − sXp3,p

+ r

2
Xp1,−(p−1) + r

2
Xp2,−p + cr

2
Xp3,−(p−1) + sr

2
Xp3,−p

+sXp4,p−1 − cXp4,p + −sr

2
Xp4,−(p−1) + cr

2
Xp4,−p, (5.12)

where the four terms containing p4 as a subscript are omitted if k4 = 0. As before, one can
verify that Y |Vγ is a linear combination of the corresponding negative root vectors, with the
proviso that if a root vector appears with coefficient in aR× in Eq. 5.12 for some a ∈ k
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then the corresponding negative root vector appears with a coefficient in a−1R× in Y |Vγ ,
that is, with the negative valuation.

Choosing disjoint subsets Bγ , for each γ ∈ �quad, gives an sl2(k)-invariant split
quadratic subspace Vquad = ⊕γ∈�quadVγ of V .

5.6 �trip: Anisotropic Part, When−1 /∈ k2 and a Triple Identity is Required

Suppose −1 /∈ k2 and γ = {(i1, j1), (i2, j2), (i3, j3)} ∈ �trip; without loss of generality we
assume i1 > i2 > i3 and ri1,j1 = ri2,j2 = ri3,j3 = −r . Let � ∈ {1, . . . , n◦} be such that
r = r�; then by the proof of Proposition 5.1 we know that this is the only occurrence of r

(up to scaling by (k×)2) in the diagonal form of q◦. Let kt = (it − 1)/2 for each t and set
p = k1 +k2 +k3 +1. In this case, Vγ should be isomorphic to Ui1 ⊕Ui2 ⊕Ui3 and carry the
form 〈−r, −r, −r〉 ⊕ H⊕p−1 ∼= 〈r〉 ⊕ H⊕p. Therefore, up to relabeling of the Witt basis,
we choose the subset

Bγ = {v1, · · · , vp,w1, · · · , wp, z�}.
The restriction of q to W0 = span{vp, wp, z�} can be transformed to the diagonal form
〈−r, −r, −r〉 by first applying the matrix K of Eq. 5.6 to the first two coordinates, then C

of Eq. 5.9 to the first and last coordinates. Thus the orthogonal vectors

x1 = cr

2
vp + cwp + sz�, x2 = r

2
vp − wp, and x3 = − sr

2
vp − swp + cz�

each satisfy q(xi) = −r , which implies that the following bases span complementary
quadratic subspaces of Vγ = span(Bγ ), each with anisotropic kernel 〈−r〉:

B1 = {−rv1, . . . ,−rvk1 , x1,−wk1 , . . . , (−1)k1w1}
B2 = {−rvk1+1, . . . ,−rvk1+k2 , x2,−wk1+k2 , . . . , (−1)k2wk1+1}

B3 = {−rvk1+k2+1, . . . ,−rvk1+k2+k3 , x3,−wk1+k2+k3 , . . . , (−1)k3wk1+k2+1}
where it is understood that B3 = {x3} if k3 = 0. We interpret the Bi as standard bases
for sl2(k)-modules as usual. With respect to Bγ the matrix of the restriction of H to Vγ is
diag(h̃k1 , h̃k2 , h̃k3 , 0,−h̃k1 , −h̃k2 , −h̃k3 , 0, 0). The action of X can be determined from the
bases Bt above, noting that

vp = −cr−1x1 + r−1x2 + sr−1x3, wp = 1

2
(−cx1 − x2 + sx3), z� = −sx1 − cx3.

It follows that in terms of the root vectors (5.1) we have

X|Vγ =
∑

1≤j<p−1
j �=k1,k1+k2

Xj,j+1 + cXk1,p − Xk1+k2,p − sXp−1,p

+cr

2
Xk1,−p + r

2
Xk1+k2,−p − sr

2
Xp−1,−p − sX�

k1
− cX�

p−1 (5.13)

where if k3 = 0 we omit the three terms having p − 1 as a subscript. Similarly, we can
readily determine that Y |Vγ is a linear combination (with coefficients in R×) of the root
vectors

{Xj+1,j , Xp,k1 , Xp,k1+k2 , (Xp,p−1), r
−1X−k1,p, r−1X−(k1+k2),p, (r−1X−(p−1),p),

r−1X�−k1
, (r−1X�

p−1) | 1 ≤ j < p − 1, j �= k1, j �= k1 + k2}
where the vectors in parentheses are omitted if k3 = 0.
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5.7 �sign: Anisotropic Part, When−1 /∈ k2 and Sign Change is Required

Now suppose −1 /∈ k2 and γ = {(i, j), (i′, j ′)} ∈ �sign. We assume without loss of
generality that i > i′ and ri,j = ri′,j ′ = −r . By the proof of Proposition 5.1, there are
exactly two indices � < κ in {1, . . . , n◦} such that r = r� = rκ . Let k = (i − 1)/2,
k′ = (i′ − 1)/2 and p = k + k′. Then Vγ should be isomorphic to Ui ⊕ Ui′ as sl2(k)-
modules and carry the form 〈−r, −r〉⊕H⊕p. Therefore, up to numbering of the Witt basis,
we choose the subset

Bγ = {v1, · · · , vp,w1, · · · , wp, z�, zκ }.
The matrix C of Eq. 5.9 transforms 〈r, r〉 to 〈−r, −r〉, so the vectors

x1 = cz� − szκ and x2 = sz� + czκ

each satisfy q(xi) = −r . Thus the following bases span complementary quadratic subspaces
of the span Vγ of Bγ , each with anisotropic kernel 〈−r〉:

B1 = {−rv1, . . . ,−rvk, x1,−wk, . . . , (−1)kw1}
B2 = {−rvk+1, . . . , −rvk+k′ , x2,−wk+k′ , . . . , (−1)k

′
wk+1}

where it is understood that B2 = {x2} if k′ = 0. We interpret the Bi as standard bases
for sl2(k)-modules as usual. With respect to Bγ the matrix of the restriction of H to Vγ is
diag(h̃k, h̃k′ ,−h̃k,−h̃k′ , 0, 0). The action of X can be read from the bases Bt above, noting
that

z� = −cx1 − sx2 and zκ = sx1 − cx2.

In terms of the root vectors (5.1) we have

X|Vγ =
∑

1≤j<k+k′,j �=k

Xj,j+1 − cX�
k + sXκ

k − sX�
k+k′ − cXκ

k+k′ , (5.14)

where we omit the two terms with k + k′ in the subscript if k′ = 0. On the other hand, Y |Vγ

is a linear combination (with coefficients inR×) of the root vectors in the set
{

Xj+1,j , r
−1X�−k, r

−1Xκ−k,
(
r−1X�

−(k+k′)

)
,
(
r−1Xκ

−(k+k′)

)
| 1 ≤ j < k + k′, j �= k

}

where the vectors in parentheses are omitted if k′ = 0.

5.8 �ani: Anisotropic Part, Simple Case

Suppose now that γ ∈ �ani and match each element (i, j) of γ to a distinct index � ∈
{1, . . . , n◦} such that ri,j = r�. Now fix (i, j) ∈ γ and the corresponding index �. Let
k = (i − 1)/2; then up to renumbering the elements of the Witt basis, choose the subset
B(i,j) = {v1, . . . , vk, w1, . . . , wk, z�} and denote its span V(i,j). We rescale and reorder this
basis to obtain the sl2(k)-basis

B� = {r�v1, · · · , r�vk, z�, −wk,wk−1, · · · , (−1)kw1}
that spans an irreducible sl2(k)-module isomorphic toUi and carrying the form 〈r�〉⊗(〈1〉⊕
H⊕k). The restriction of H to V(i,j) is given in matrix form by Eq. 5.4, with x = z�. In
terms of our chosen scaling of root vectors in Eq. 5.1 we have, if k > 0,

X|V(i,j)
=

k−1∑

j=1

Xj,j+1 − X�
k, Y |V(i,j)

=
k−1∑

j=1

μj Xj+1,j + μkr
−1X�−k, (5.15)
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and both are 0 if k = 0. Let Vγ = ⊕(i,j)∈γ V(i,j), obtained by choosing suitable disjoint
subsets B(i,j) of the basis B.

By Proposition 5.1, � contains at most two parts corresponding to the cases trip, sign, or
ani, and their union corresponds to a subspace of V carrying a form that is Witt-equivalent
to q. Let Vani = ⊕γ∈�trip∪�sign∪�aniVγ denote this subspace.

Putting all of the preceding constructions together, we have chosen a partition of the
basis B and a corresponding direct sum decomposition

V = Vhyp ⊕ Vpairs ⊕ Vquad ⊕ Vani (5.16)

together with an action of a Lie triple {Y,H,X}, such that X represents the nilpotent orbit
of O(q) attached to (λ, q).

5.9 Very Even Orbits

Now suppose that λ ∈ 
ve(n) is a very even partition. A representative for the cor-
responding nilpotent O(q) orbit on so(q) was constructed in Section 5.3, by pairing up
irreducible sl2(k)-submodules in the obvious way. In this section, we modify one compo-
nent in order to construct a second representative, such that the nilpotent SO(q) orbits of
the two representatives are distinct.

Choose one element of γ = {(i, 1), (i, 2)} ∈ �even = �, and up to relabelling let Bγ =
{v1, . . . , vi , w1, . . . , wi} be the corresponding subset of the Witt basis. Set Vγ = span(Bγ ).
This time, using the strategy of the proof of Theorem 3.2 we first apply the orthogonal
transformation of determinant −1 which permutes vi and wi , to define

B1 = {v1, v2, · · · , vi−2, vi−1, wi}
B2 = {vi,−wi−1, wi−2, · · · , (−1)i−1w1}

as the sl2(k)-bases for the two submodules isomorphic to Ui . With respect to Bγ , the restric-
tion of H to Vγ now has the form diag(i−1, hi−2, i−1,−i+1,−hi−2,−i+1). The action
of X and Y on Vγ can be read directly from B1 and B2; as a sum of root vectors, this yields

X|Vγ =
i−2∑

j=1

Xj,j+1 + Xi−1,−i , Y |Vγ =
i−2∑

j=1

μj Xj+1,j + μ1X−(i−1),i . (5.17)

Putting this component in the place of Vγ in Eq. 5.16, we obtain a representative of the
second SO(q)-orbit corresponding to λ.

6 On Functoriality and the DeBacker Parametrization of Nilpotent
Orbits

Let us return to the more general setting of Section 3.2, and adopt the notation introduced
there.

In [10], DeBacker gives a parametrization of rational nilpotent orbits of G on g in terms
of objects arising from its Bruhat-Tits building B(G) = B(G, k). To describe it, recall that
to each x ∈ B(G) Bruhat-Tits theory associates anR-lattice gx,0; this is carefully described
(particularly for non-split groups) in [12], for example, following [6]. In this section, we
often use a more concrete description of the Bruhat-Tits building of our groups in terms of
lattice chains, as in [4] and [5].
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Given a nilpotent element X, form a Lie triple dφ = {Y,H, X} and define the subset

B(Y,H, X) = B(dφ) = {x ∈ B(G) | dφ ⊂ gx,0}.
This is a union of facets of B(G); let F be such a facet. Then the pair (F , X) (or rather,
(F , v) where v ∈ gx,0/gx,0+ is the image of X in the quotient, though we will not need
this here) is called degenerate. We say a degenerate pair (F , X) is distinguished if F is
of maximal dimension in B(dφ). DeBacker shows that the rational nilpotent orbits are in
bijection with classes of distinguished pairs relative to an equivalence relation called 0-
associativity [10]. For ease of notation, write

B(G)φR := B(G)φ(SL2(R)).

Then by [10, Corollary 4.5.5], we have B(G)φR = B(dφ).
The following theorem characterizes B(G)φR in terms of the building of the centralizer

Gφ of φ(SL2(k)) for many groups. Let D denote a central division algebra over k.

Theorem 6.1. Suppose G is GLn(D), SLn(D) or a classical group, and suppose dφ =
{Y,H,X} is a Lie triple in g. Then there is a natural Gφ-equivariant identification

B(G)φR = B(Gφ).

Proof First let G = GL(V ,D) for some central division algebra D over k and free rank n

right D-module V . Let RD ⊃ R be the ring of integers of D ⊃ k. We identify B(G) with
the set of lattice functions LattRD

(V ) = {Vx | t �→ Vx,t } on V [4]. Since eachRD lattice in
V is naturally also anR-lattice, B(G) is canonically identified as a subset of B(GL(V , k)).
Given dφ, recall that we have Gφ = ∏

i GL(Mi,D) so B(Gφ) = ∏
i B(GL(Mi,D)).

Now each x ∈ B(G)φR corresponds to a lattice function Vx . Define a map

R : B(G)φR B(Gφ)

Vx (Mi
x)i whereMi

x,t := Homsl2(R)(Ui ,Vx,t ).
(6.1)

Note thatMi
x,t hasRD-module structure inherited from that of Vx,t .

On the other hand, we define a map

E : B(Gφ) B(G)

(Mi
x)i Vx where Vx,t := ⊕

i Ui ⊗R Mi
x,t .

(6.2)

Its image lies in B(G)φR by construction.
It is immediate that for all y ∈ B(Gφ) we have R(E (y)) = y. On the other hand,

Lemma 3.1 ensures that for all x ∈ B(G)φR we have E (R(x)) = x. The theorem now
follows for G = GLn(D), and for SLn(D) by restricting the maps R and E .

Now let G be a classical group; that is, for some central division algebra D and sesquilin-
ear form F : V ⊗ V → D we have that G = U(V , F ). As in Section 3.2, given dφ we have
Gφ = ∏

i U(Mi, γ i). We may identify B(G) and B(Gφ)) with self-dual lattice functions in
B(GL(V ,D)) and

∏
i B(GL(Mi, γ i)) respectively [5]. It is immediate that Eq. 6.2 restricts

to a well-defined map E from B(Gφ) to B(G)φR .
To prove that the image of the map R of Eq. 6.1 lies in B(Gφ), suppose that x ∈

B(G)φ ⊂ B(GL(V ,D))φ and R(x) = (Mi
x)i ∈ B(GL(Mi, γ i)). We need to show that

for each i and x,Mi
x is a self-dual lattice in Mi under the form γ i .
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Since Vx is self-dual and βi(Ui ,Ui ) = R by assumption, we have that

γ i
(
Mi

x,t ,Mi
x,−t+

)
=
(
βi ⊗ γ i

)(
Ui ⊗ Mi

x,t ,Ui ⊗ Mi
x,−t+

)
⊂F

(
Vx,t ,Vx,−t+

) = PD .

Therefore Mi
x,t ⊂ (Mi

x,−t+)∗. On the other hand, the pairing F between different the
isotypic components Ui ⊗ Mi being zero, we have

F
(
Ui ⊗

(
Mi

x,−t+
)∗

,Vx,−t+
)

= F
(
Ui ⊗

(
Mi

x,−t+
)∗

,Ui ⊗ Mi
x,−t+

)
= PD .

We thus deduce that Ui ⊗ (
Mi

x,−t+
)∗ ⊂ (

Vx,−t+
)∗ = Vx,t , that is,

(
Mi

x,−t+
)∗ ⊂ Mi

x,t ,
as required. The desired identification of B(G)φR and B(Gφ) now follows from Eqs. 6.1
and 6.2.

7 Realization of the DeBacker Parametrization for Orthogonal Groups

We now return to the setting of orthogonal groups. In this section, we attach facets of the
building of G to selected explicit Lie triples of Section 5 and use the results of Section 6 to
prove these are distinguished representatives which realize the DeBacker correspondence.
We return to the more abstract realization of buildings used in [10].

Let T be the maximal split torus of G = SO(q) with Lie algebra t. We have the root
system � = �(G, T ) with simple system � = {ε1 − ε2, . . . , εm−1 − εm, εm} if n◦ > 0 and
� = {ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm} if n◦ = 0. LetA = A(T ) be the corresponding
apartment in B(G) = B(SO(q)); this is the affine space under X∗(T ) ⊗Z R on which the
roots act by functionals, together with the simplicial structure defined by the affine root
hyperplanesHα,n = {x ∈ A | α(x) = n}, as α ranges over � and n over Z.

We choose a pinning of G relative to T , which is a consistent choice of valuation on each
root subgroup (or equivalently, root subalgebra), and identified with a choice of (hyperspe-
cial) vertex x0 of A ⊂ B(G). For each α ∈ {±εi ± εj | 1 ≤ i �= j ≤ m}, we have
dim(gα) = 1 and we declare that our chosen root vectors X±i,∓j have valuation 0. If n◦ > 0
then there are roots α ∈ {±εi | 1 ≤ i ≤ m} and for each one, dim(gεi

) = n◦. Following the
process described in [12, §2], one determines that a consistent pinning assigns valuation 0
to each root vector X�±i such that val(r�) = 0 and valuation 1

2 to each root vector X�±i such
that val(r�) = 1. Then the corresponding R-subalgebra gx0,0 of g (which is the stabilizer
in g of the lattice chain attached to x0, in the language of Section 6) is generated by the R-
span of our chosen root vectors. Its intersection with t + s is an R-subalgebra containing,
in particular, theR-span of {Hi | 1 ≤ i ≤ m}.

We put coordinates on A so that the vertex x0 is the origin. Thus when a vector X ∈ g

is expressed as a linear combination of nonzero vectors in different root spaces
∑

α∈�X
Xα ,

then the x ∈ A for which X ∈ gx,0 are simply described by the condition that for each
α ∈ �X we have val(Xα) + α(x) ≥ 0.

Proposition 7.1. Let (λ, q) ∈ N (q, n) and let � be a partition of Iλ as in Proposition 5.1.
Let dφ� be an associated Lie triple as constructed in Section 5. Let F denote a maximal
facet in B(dφ�) ∩ A. If λ is very even, then dim(F) = 1

2 |λ| and this is the same value
obtained for both SO(q)-orbits attached to λ. Otherwise, dim(F) = |�even| + |�hyp|.

Proof Suppose that dφ� = {Y,H,X} is a Lie triple produced in Section 5 from a choice of
partition � of Iλ. Then H ∈ spanR{H1, . . . , Hn}, so it lies in gx,0 for all x ∈ A. Let �X
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be the set of roots such that for some γ ∈ �, X|Vγ has a nonzero projection onto the root
space gα . Then we have determined an expression of the form X = ∑

α∈�X
Xα with each

Xα denoting an element of gα .
Reviewing the construction reveals that for our choice of X and Y , we have �X = −�Y ,

that is, Y = ∑
α∈�X

Yα for some nonzero Yα ∈ g−α . We now list, in Table 2, all the pairs
(Xα, Yα), up to multiplication by scalars inR×, which appear in the expressions for X and
Y in Eqs. 5.5, 5.8, 5.12, 5.13, 5.14, 5.15 and 5.17. In doing so, we make use of the fact that
the coefficients {c, s, 2,−1} lie inR× but that the coefficients ri,j and r� (often abbreviated
as r) variously take values in {R×,�R×}. Given that val(Xi,j ) = val(Xi,−j ) = 0 and
val(X�

i ) = 1
2val(r�), we compute the valuations of Xα and Yα in the last two columns of

Table 2.
Note that X, Y ∈ gx,0 if and only if val(Xα) ≥ −α(x) and val(Yα) ≥ α(x) for all α. We

observe from Table 2 that our representatives satisfy val(Yα) = −val(Xα) for all α. Hence
these were optimally chosen: dφ� ∈ gx,0 if and only if

α(x) = −val(Xα), ∀α ∈ �X . (7.1)

We claim this system of equations is consistent, whereby the solution is an affine subspace
A� which is a union of facets of A. In this case we’ll let F be any maximal facet of A�;
note that dim(F) = dim(A�).

To solve (7.1) explicitly, let �̃ be the partition of the set {1, 2, · · · ,m} induced by the
partition �; that is, for each γ ∈ � the element γ̃ ∈ �̃ is the set of indices of the Witt
basis Bγ attached to Vγ . For each γ ∈ �, the roots α ∈ �X|Vγ

are linear combinations of
{εi | i ∈ γ̃ }. The linear system (7.1) can thus be decoupled into |�| distinct linear systems,
whence any solution may be written x = ∑

γ̃∈�̃ xγ̃ as each xγ̃ runs over an affine set Aγ̃ .
Let eγ̃ be the vector such that εi(eγ̃ ) = 1 for all i ∈ γ̃ and 0 otherwise.

It is then a straightforward exercise to see that solving these uncoupled systems (with
notation of the corresponding paragraphs in Section 5) yields

Aγ̃ =

⎧
⎪⎨

⎪⎩

Reγ̃ if γ ∈ �even ∪ �hyp,

{− 1
2val(r)eγ̃ } if γ ∈ �pairs ∪ �quad ∪ �trip,

{− 1
2val(r�)eγ̃ } if γ ∈ �sign ∪ �ani.

We conclude that dim(A�) = dim(F) = |�even| + |�hyp|, proving the final statement of
the proposition.

Now suppose that λ is very even, so that there are two SO(q)-orbits. The first is
constructed as in Section 5.3. Since � = �even consists entirely of pairs, it has size
dim(F) = 1

2 |Iλ| = 1
2 |λ|, which gives the stated dimension for the first SO(q)-orbit. The

second SO(q)-orbit is obtained by modifying the choice of X|Vγ on one γ ∈ �even with an

Table 2 Nonzero pairs (Xα, Yα), with α ∈ �X , such that the projections of X and Y onto the root spaces gα

and g−α lie in R×Xα and R×Yα , respectively

α ∈ �+ Xα Yα val(Xα) val(Yα)

εi − εi+1 Xi,i+1 Xi+1,i 0 0

εi + εj Xi,−j X−i,j 0 0

εi + εj �Xi,−j �−1X−i,j 1 −1

εi X�
i r−1

� X�−i
1
2 val(r�) − 1

2 val(r�)

The final columns record the valuations of Xα and Yα , respectively
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expression of the form Eq. 5.17. The corresponding linear system consistent, with solution
space Rẽ where εj (ẽ) = 0 if j /∈ γ̃ , εj (ẽ) = 1 if 1 ≤ j < i, and εi(ẽ) = −1. As the solu-
tion to this subsystem is again one-dimensional, the dimension of the facet is the same for
both orbits attached to λ.

Recall that by definition, a pair γ = {(jt , m), (jt , m
′)} in �hyp corresponds to a hyper-

bolic plane in qjt . Therefore to maximize |�even| + |�hyp| over all partitions � of Iλ is to
choose a partition which contain all such hyperbolic planes, and all the even parts, from
Iλ. Then Iλ \ (�even ∪ �hyp) has precisely

∑s
i=1 dim qji

elements, corresponding to the
anisotropic kernels of all of the quadratic forms in q. Complete this to a partition �max of
Iλ satisfying Proposition 5.1.

Theorem 7.2. Let (λ, q) ∈ N (q, n) orN hyp(n), and �max a partition of Iλ as above. Then
the corresponding pair (F�max , X�max) is distinguished. Its associativity class is the unique
one attached to the rational nilpotent orbit G · X�max by the DeBacker correspondence, for
G = O(q) or G = SO(q).

Proof Since for each �, each pair in �even ∪ �hyp contributes one linear degree of freedom
to the solution spaceA� , we conclude that for our choice of � = �max that

dim(F�max) = 1

2

(

|λ| −
s∑

i=1

dim qji

)

.

On the other hand, by Theorem 6.1 we have dim(B(dφ)) = dim(B(Gφ)), which is equal
to the split rank of Gφ . The split rank of U(Mi, γ i) is exactly the maximal number of
orthogonal hyperbolic planes in γ i ; for i odd this is therefore 1

2 (deg(γ
i) − dim γ i). We

deduce from Eq. 3.3 that
dim(F�max) = dim(B(dφ)),

so the facet is indeed distinguished, as required.

This theorem establishes a constructive map from the classical partition-based
parametrization of nilpotent orbits of orthogonal and special orthogonal groups to the
building-based parametrization proposed by DeBacker.
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