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0.1 Introduction

This report serves as a summary of my work from May to August 2017. The main reference
and the source of most of the exercises proven here is Reflection Groups and Coxeter Groups
by James E. Humphreys.
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Chapter 1

Finite Reflection Groups

1.1 Definitions

Reflection Let V be a Euclidean space and let α ∈ V be a nonzero vector. Define a linear

operator sα by sα(v) = v − 2 (α,v)
(α,α)α. Then sα is a reflection and it follows that

• sαHα = Hα where Hα = {v ∈ V : (α, v) = 0} is the hyperplane orthogonal to α

• sα(α) = −α.

It can also be verified that sα is an isometry.

Root System Let Φ ⊂ V be a finite set of nonzero vectors. If for all α ∈ Φ we have

R1 Φ ∩ Rα = {α,−α}

R2 sαΦ = Φ

then Φ is a root system and W is the associated reflection group generated by all sα.

Positive System Let Π ⊂ Φ be a set of positive vectors relative to some total ordering of V .
By R1 it is clear Φ = Π t −Π.

To simplify notation, for the remainder of this report, given a root αi ∈ V , we will denote the
reflection defined by this root by si.

Simple System Let {β1, . . . , βn} = ∆ ⊆ Π ⊂ Φ be such that

S1 ∆ is a basis of Φ

S2 ∀α ∈ Φ α =
∑n
i=1 ciβi where the ci are all nonnegative or all nonpositive.

Then ∆ is a simple system. In fact, we have that simple systems exist and W = 〈si : βi ∈ ∆〉.
See Theorem 1.9 in Reflection Groups and Coxeter Groups for a proof.

Essential Let V be a Euclidean space and W a reflection group acting on V with no nonzero
fixed points. Then W is essential.

Rank Let Φ be a root system and ∆ a simple system for W . The rank of Φ is the cardinality
of ∆.
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1.2 Some Exercises

Exercise 2, section 1.3 Find a simple system of D4, the dihedral group with 8 elements.

Proof. To find a root system Φ of W = D4 we must first find a set of invariant points of R2.

(1,0)(-1,0)

(0,1)

(0,-1)

π
4

Recalling that D4 is the set of symmetries of the square, it becomes clear that Φ =
{±(1, 0),±(0, 1),±(1, 1),±(−1, 1)} is a set of invariant points. We may now check the root
system axioms with our candidate for Φ.

R1 It can be clearly seen from the diagram that Φ ∩ Rα = {α,−α} for all α ∈ Φ.

R2 Consider s1(v) = s(1,0)(v) = v − 2(v · (1, 0))(1, 0) = (v1, v2) − 2(v1, 0) = (−v1, v2). The
other sii can be found as follows s(0,1)(v1, v2) = (v1,−v2), s(1,1)(v1, v2) = (v2, v1), and
s(−1,1)(v1, v2) = (−v2,−v1).

v (1, 0) (0, 1) (1, 1) (−1, 1) (−1, 0) (0,−1) −(1, 1) (1,−1)

s(1,0)(v) (−1, 0) (0, 1) (−1, 1) (1, 1) (1, 0) (0,−1) (1,−1) −(1, 1)
s(0,1)(v) (1, 0) (0,−1) (1,−1) −(1, 1) (−1, 0) (0, 1) (−1, 1) (1, 1)

s(1,1)(v) (0, 1) (1, 0) (1, 1) (1,−1) (0,−1) (−1, 0) −(1, 1) (−1, 1)

s(−1,1)(v) (0,−1) (−1, 0) −(1, 1) (−1, 1) (0, 1) (1, 0) (1, 1) (1,−1)

And so sαΦ = Φ for all α ∈ Φ.

We have shown Φ is a root system for D4. It remains to identify a positive system and from that
a simple system. Define a total ordering on V by (x, y) < (x′, y′) ⇐⇒ y < y′∨ (y = y′∧x < x′).
Then (0, 0) < (1, 0), (0, 1), (1, 1), (−1, 1) so Π = {(1, 0), (0, 1), (1, 1), (−1, 1)} is a positive system.
Since a simple system ∆ must form a basis for Φ ⊂ R2, we suspect our simple system will consist
of two vectors. A natural choice would be the standard basis vectors {(1, 0), (0, 1)} which satisfy
S1. However, we have that (−1, 1) = −1 · (1, 0)+1 · (0, 1) where clearly −1 and 1 do not have the
same sign so this system will not do. This problem indicates that we will probably need to take
one vector that already contains a negative such as (−1, 1). Indeed ∆ = {(1, 0), (−1, 1)} span Φ
so it remains to verify S2.

4



We have that (0, 1) = 1 · (−1, 1) + 1 · (1, 0), (1, 1) = 2 · (1, 0) + 1 · (−1, 1) and clearly (1, 0) =
1 · (1, 0) + 0 · (−1, 1) and (−1, 1) = 0 · (1, 0) + 1 · (−1, 1) where 1, 2, and 0 are all nonnegative.
Note that −Π can be achieved by simply using −1,−2, 0 instead. So S2 is satisfied so ∆ is a
simple system for D4.

Exercise 1, section 1.5 Let Φ be a root system of rank n consisting of unit vectors. If Ψ ⊂ Φ
is a set of n roots whose mutual angles agree with those between the roots in some simple system,
then Ψ must be a simple system.

Proof. Let ∆ = {α1, . . . , αn} be a simple system. Let Ψ = {β1, . . . , βn}. We know the mutual
angles of Ψ agree with those of ∆ so (αi, αj) = (βi, βj) for all i, j ∈ {1, . . . , n}. To show Ψ is a
simple system we must show that Ψ spans Φ and that for each γ ∈ Φ, γ =

∑n
i=1 ciβi where the

ci are all nonnegative or all nonpositive.

By Corollary 1.5, we know that there exists x ∈ W such that xα1 = β1. If xα2 = β2

then we are done. Otherwise, take H = {v ∈ V : (v, xα2) = (v, β2)} then H is the hyperplane
equidistant between xα2 and β2 and moreover reflection in H interchanges the two. Note
that (β1, xα2) = (xα1, xα2) = (α1, α2) since x is an isometry. Furthermore we have that
(α1, α2) = (β1, β2) by hypothesis. So β1 = xα1 ∈ H so RH fixes β1. So let f = RHx. Then
f(α1) = RH(β1) = β1 and f(α2) = RHx(α2) = β2 so f sends {α1, α2} to {β1, β2}.

Now we’ll assume this process holds for m vectors and will show it is true for m + 1
vectors. Suppose we have g ∈ W such that gαi = βi ∀i ∈ {1, . . . ,m}. If we have that
gαm+1 = βm+1 we are done. If not, let K = {v ∈ V : (v, gαm+1) = (v, βm+1)} then RK
interchanges gαm+1 and βm+1. It remains to verify that the gαi for i = 1, . . . ,m are fixed
by RK . We have that (βi, gαm+1) = (gαi, gαm+1) = (αi, αm+1) = (βi, βm+1) and so for all
i ∈ {1, . . . ,m} we have that gαi ∈ K. Therefore we have T (∆) = RKg(∆) = Ψ. So, we have
shown we can always find an isometry T such that T∆ = Ψ. We may now verify the properties
of a simple system.

If T ∈ W then we are done by Corollary 1.5. Otherwise, by proposition 1.2, we know for any
T ∈ O(V ), TsαiT

−1 = sT (αi). From the above, we then have that Tsαi = sT (αi)T = sβi
T .

Extending this inductively to any γ ∈ Φ where γ = sαi1
. . . sαik

(αj), we have that
T (γ) = T (sαi1

. . . sαik
(αj)) = sT (αi1) . . . sT (αik)T (αj) = sβi1

. . . sβik
(βj) ∈ Φ. Therefore

T preserves Φ.

S1 Since we have n vectors in both ∆ and T∆ = Ψ, it remains to verify that those vectors are
linearly independent. We know that ∆ is a linearly independent set so

∑n
i=1 ciαi = 0 ⇒

ci = 0. It then follows that 0 =
∑n
i=1 ciβi =

∑n
i=1 ciTαi = T

∑n
i=1 ciαi ⇒ ci = 0 so Ψ is

also a linearly independent set of n vectors since T is an isometry.

S2 From the remark above we know that for all γ ∈ Φ, Tγ ∈ Φ and so clearly T−1γ ∈ Φ. Then
T−1γ =

∑n
i=1 ciαi where ci are all nonnegative ( since otherwise take −ci). Now consider

γ = TT−1γ = T
∑n
i=1 ciαi =

∑n
i=1 ciTαi =

∑n
i=1 ciβi where all ci are nonnegative. Thus

S2 is satisfied.

Therefore Ψ = T∆ is a simple system.

Exercise Let W be a reflection group in a Euclidean space V with dimV = n. Let Φ be a
root system with simple system ∆ = {α1, . . . , αk}. Prove that W is essential if and only if
rankΦ = dimV
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Proof. Let v ∈ V be a nonzero vector such that sαi(v) = v for all αi ∈ ∆. Then, (αi, v) = 0 for
all i ∈ {1, . . . , k}. Denote span ∆ by V ′. Then v ∈ V ′⊥. Note that V = V ′ ⊕ V ′⊥ from linear
algebra. Since v 6= 0, we know dimV ′⊥ > 0. Therefore, rankΦ = dimV ′ < n = dimV .

Now, suppose that rankΦ < dimV = n. Consider V ′ = span ∆ ⊂ V again. Clearly
dimV ′ < dimV but from linear algebra we know V ′ ⊕ V ′⊥ = V . It then follows that
dimV ′⊥ > 0 and so there exists a non zero vector v ∈ V ′⊥. Thus (αi, v) = 0 for all αi ∈ ∆ and
so v is fixed by all reflections sαi

and is therefore fixed by W , so W is not essential.

Theorem 1.8 Let ∆ be a simple system, Π the corresponding positive system. The following
conditions on w ∈W are equivalent:

(a) wΠ = Π

(b) w∆ = ∆

(c) n(w) = 0

(d) l(w) = 0

(e) w = 1

Proof. l(1) = 0 by convention so e) ⇒ d). We know n(w) = l(w) so d) ⇒ c). Since n(w) is the
number of positive roots sent to negative roots it is clear that wΠ = Π if no roots change sign
and vice versa so c)⇐⇒ a). Finally if w = 1 it is clear that w∆ = 1 ·∆ = ∆ so e)⇒ b).

Exercise 1, section 1.7 In the Exchange Condition, suppose l(w) = r. Prove that the index i
in the conclusion is uniquely determined.

Proof. Let w ∈ W such that w = s1 . . . sr where l(w) = r. Suppose there exists some simple
reflection s such that ws = s1 . . . ŝi . . . sr and ws = s1 . . . ŝj . . . sr where i 6= j. Then multiplying
on the right by (sj+1 . . . sr)

−1 we have s1 . . . ŝi . . . sj = s1 . . . sj−1. Now multiplying on the left
by (s1 . . . si−1)−1 we get si+1 . . . sj = si . . . sj−1. This is exactly the conditions in Theorem
1.7 part (b). Therefore, it follows that w = s1 . . . ŝi . . . ŝj . . . sr (part (c) of theorem) but then
l(w) = r − 2 6= r. Therefore the index in the Exchange Condition must be unique.

Exercise 1, section 1.13 If s1, . . . , sr are distinct elements of S, then l(s1 . . . sr) = r.

Proof. Let w = s1 . . . sr. Suppose l(w) = n(w) < r, then by Theorem 1.7 there exist indices such
that si+1 . . . sj = si . . . sj−1, so si = si+1 . . . sj(si+1 . . . sj−1)−1 so si is not needed as a generator
of W , a contradiction. So l(w) = r.
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Chapter 2

Classification of Finite Reflection
Groups

2.1 Definitions

Coxeter Graph Let ∆ be a simple system for a Coxeter group W . Construct a graph Γ by
associating a vertex with each simple root, and connecting those roots if the order of the product
of simple reflections is 3 or greater. Denote this order by m(α, β). Unless the order is 3, label
the edge with m(α, β).

Irreducible A Coxeter system is said to be irreducible if the corresponding Coxeter graph Γ is
connected. A graph is connected if for every pair of vertices there exists a path between them.

Subgraph Given a graph Γ, a subgraph Γ′ is obtained by omitting vertices and their adjacent
edges and/or by decreasing the label on one or more edges. By convention, Γ is not a subgraph
of itself.

Circuit Let Γ be a graph. Suppose there exists a finite trail of vertices vi and distinct edges
ei such that each ei connects vi and vi+1 where v1 = vn for some n. Then this trail is called a

circuit. Below is the graph of Ãn which contains a circuit.

. . .

Coxeter Matrix Let Γ be a Coxeter graph. Define an n× n symmetric matrix A = (aij) by

aij = − cos
π

m(αi, αj)
.

Then A is a Coxeter matrix.

Principal Minors Let A be a Coxeter matrix. The principal minors of A are the deteminants
of the submatrices obtained by removing the last k rows and columns of A with 0 ≤ k < n.
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2.2 Some Exercises

Exercise 1, section 2.2 Let W be the dihedral group D6 of order 12 with standard Coxeter
generators S = {s, s′}, where S is the set of simple reflections. The Coxeter system (W,S) is
irreducible. However, W has another set S′ of Coxeter generators leading to a Coxeter system
which is not irreducible: S′ : = {s, (s′s)3, s(s′s)2}.

Proof. It is clear the Coxeter system (W,S) is irreducible since the corresponding graph Γ is

6

and is obviously connected. To find the corresponding graph Γ′ for S′ we must first find the
relations between the elements. We have (s(s′s)3)n = (ss′ss′ss′s)n = (ss′s)n = 1 ⇒ n = 2,
(ss(s′s)2)n = ((s′s)2)n = 1 ⇒ n = 3 and ((s′s)3s(s′s)2)n = (s′ss′ss′sss′ss′s)n = (ss′s)n = 1 ⇒
n = 2. So, for Γ′ we have

Which is clearly not a connected graph. Therefore (W,S′) is not irreducible.

Principal minors of Coxeter Graphs (2.4) We will compute the principal minors of certain
Coxeter graphs given in section 2.4 by calculating det 2A where A is the Coxeter matrix to show
these graphs are positive definite.

Proof. Consider the Coxeter graph of An

. . .

Let n = 2 then we have

From the graph we know m(α1, α2) = 3 and m(αi, αi) = 1. It remains to calculate the cos
values for our matrix. We have − cos(π3 ) = − 1

2 and − cos(π1 ) = 1 so for our matrix A we have

[
1 − 1

2
− 1

2 1

]
so det 2A = 4− 1 = 3 > 0 so the graph of A2 is positive definite.

Now consider the graph of E6
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As always, m(αi, αi) = 1. We can determine all of the remaining orders simply by looking
at the graph. For α1 we have α1 we have m(α1, α2) = 3 and m(α1, α3) = m(α1, α4) =
m(α,1 , α5) = m(α1, α6) = 2. Now for s2 we have m(α2, α1) = m(α2, α3) = 3, m(α2, α4) =
m(α2, α5) = m(α2, α6) = 2. For α3 we have m(α3, α2) = m(α3, α4) = m(α3, α6) = 3 and
m(α3, α1) = m(α3, α5) = 2. For α4 we have m(α4, α1) = m(α4, α2) = m(α4, α6) = 2 and
m(α4, α5) = m(α4, α3) = 3. For α5 we have m(α5, α1) = m(α5, α2) = m(α5, α3) = m(α5, α6) =
2 and m(α5, α4) = 3. Finally for sα6 we have m(sα6, α3) = 3 and m(α6, α1) = m(α6, α2) =
m(α6, α4) = m(α6, α5) = 2. Using the above values we can construct our matrix 2A.

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2


and so det 2A = 3 > 0 so the graph of E6 is positive definite.

Nonpositive Coxeter Graphs (2.5) We will show that the Coxeter graph of Z4 is not of
positive type by calculating the principal minors.

Proof. Consider the graph of Z4

5

We can calculate the orders and thus the matrix 2A as follows


2 −1 0 0

−1 2 − 1+
√

5
2 0

0 − 1+
√

5
2 2 −1

0 0 −1 2


and so det 2A = 3− 2

√
5 < 0 so Z4 is nonpositive.

Section 2.12, Rotation Subgroup Let W be a finite reflection group. Then W has a normal
subgroup W+ of index 2 (the rotation subgroup, consisting of elements of determinant 1).

Proof. First we apply the subgroup test on W+ = {x ∈ W : detx = 1}. Let x, y ∈ W+ then
detx = 1 = det y. Consider detxy−1 = detxdet y−1 = detx(det y)−1 = 1 · 1 = 1 so W+ is a
subgroup of W . It remains to verify it is normal and has index two.Let x ∈ W+ and w ∈ W .
Consider detwxw−1 = detw detx detw−1 = detw · 1 · (detw)−1 = 1 so wW+w−1 ⊆ W+

so W+ is a normal subgroup of W . Since det is a homomorphism, we can apply the First
Isomorphism Theorem. We have that ker det = {x ∈ W : detx = 1} = W+ and Im det =
{1,−1} so W/W+ ' {1,−1}. Since we know W+ is a normal subgroup, we can conclude that
2 = |W/W+| = |W : W+|.
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Chapter 3

Weyl Groups

3.1 Definitions

Crystallographic Group Let L be a lattice in V and G ⊆ GL(V ) be a subgroup. If G
stabilizes L, meaning gL ⊂ L for all g ∈ G, then G is said to be crystallographic. It is clear in
this case gL = L since G is a group.

Crystallographic root system Suppose that for all αi, αj ∈ Φ we have
2(αi,αj)
(αj ,αj) ∈ Z. Then Φ

is crystallographic. These ratios are called Cartan integers.

If Φ is crystallographic, then W is crystallographic and preserves the lattice L = spanZ ∆. In
particular, Φ ⊆ spanZ ∆. Therefore we have W spanZ ∆ = spanZ ∆. Therefore, it is enough that
the above condition hold only for simple roots because it ensures spanZ ∆ in V is W−stable.

Fundamental Domain Let D ⊆ V . If ∀v ∈ V ∃w ∈ W such that wv is conjugate to exactly
one point in D then D is a fundamental domain for the action of W . Our standard choice for D
is {λ ∈ V : (λ, α) ≥ 0 for all α ∈ ∆}.

Facet Let D be a fundamental domain. Let I ⊆ ∆ and define CI = {λ ∈ D : (λ, α) = 0 ∀α ∈
I, (λ, α) > 0 ∀α ∈ ∆ \ I}. Then the CI partition D and are called facets of type I.

Conjugacy Let x, y ∈ V be vectors. We say x is conjugate to y if and only if there exists w ∈W
such that wy = x. The set {x ∈ V : ∃w ∈W such that wy = x} is the W -orbit of y.

Minimal Linear Space Let S be a subset of a Euclidean space V . If X ⊇ S is a subspace of
V and we have that for all subspaces U ⊆ V containing S, X ⊆ U then X is the minimal linear
space of S and we write X = L(S).

Associativity Let F1, F2 ⊆ V be facets. F1 is associate to F2 if and only if there exists w ∈W
such that wL(F1) = L(F2). We write F1 ∼ F2.

3.2 Some Exercises

Section 1.15 The facets CI partition the fundamental domain D.
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Proof. It is clear from the definition these CI are nonempty since ∆ is a basis. Let I 6= J ⊆ ∆
and if one is contained in the other let I ⊆ J . Then there exists α ∈ I such that α /∈ J .
Let λ ∈ CI then (λ, α) = 0 and so clearly λ /∈ CJ since we do not have (λ, α) > 0 therefore
CI ∩ CJ = ∅. Let x ∈ ∪CI . Then, there exists some I ⊆ ∆ such that x ∈ CI . By the definition
of D it is clear that CI ⊆ D and thus x ∈ D. Conversely, let x ∈ D. So we have that (x, α) ≥ 0
for all α ∈ ∆. Take I = {α ∈ ∆: (x, α) = 0} then x ∈ CI and so x ∈ ∪CI . Thus D = ∪CI .
Therefore the facets CI partition our fundamental domain D.

Associativity is an equivalence relation

Proof. Let F1, F2, F3 ⊆ V and let W be a group acting on V .

• Reflexive: Clearly if we take w = 1 then wL(F1) = L(F1) so F1 ∼ F1.

• Transitive: If F1 ∼ F2 and F2 ∼ F3 then there exist w,w′ ∈W such that wL(F1) = L(F2)
and w′L(F2) = L(F3) therefore ww′L(F1) = L(F3) where ww′ ∈W so F1 ∼ F3.

• Symmetric: If F1 ∼ F2 then wL(F1) = L(F2). Apply w−1 ∈ W to both sides to obtain
w−1wL(F1) = L(F1) = w−1L(F2) so F2 ∼ F1.

Then ∼ is an equivalence relation.

Vector representation of a facet Let CI be a facet. Define the set PI to be the set of
indices of the simple roots in I. Consider the set P = {1, . . . , n + 1} \ PI = {i1, . . . , i`} with
i1 < . . . < i`. Define i0 = 0 and note that i` = n + 1. Finally, construct a set of vectors
SI = {vk = εik−1+1 + . . .+ εik : k ∈ {1, . . . , `}}.

Conversely, if given the set SI = {vk = εik−1+1 + . . .+ εik : k ∈ {1, . . . , `}} of vectors formed
from a partition of {1, . . . , `}, we can reconstruct I. First, find the set P = {i1, . . . , i`} where
i` = n + 1 and note P = {1, . . . , n + 1} \ PI where PI is the indexing set of I. From there, we
can construct I = {αj : j ∈ PI}.

Lemma 3.2.1. Let CI be a facet and let SI as defined above, then CI = {a1v1 + . . .+a`v` : a1 >
. . . > a`}.

Proof. Let A = {a1v1 + . . . + a`v` : ai > ai+1}. Let x ∈ A. Then x = a1v1 + . . . + a`v` =
a1(εi0+1 + . . . + εi1) + . . . + a`(εi`−1+1 + . . . + εi`) with a1 > . . . > a`. Now, take αt ∈ I and
compute (x, αt) = (a1(ε1 + . . . + εi1) + . . . + a`(εi`−1+1 + . . . + εi`), εt − εt+1). Since t /∈ P , we
know the coefficients in the tth and t+ 1th positions will be the same. Thus, (x, αt) = 0. Now,
let αij ∈ ∆ \ I. So (x, αij ) = (a1(ε1 + . . . + εi1) + . . . + a`(εi`−1+1 + . . . + εi`), εij − εij+1). Due
to the decreasing construction of these coefficients we have (x, αij ) = aj − aj+1 > 0. Therefore
x ∈ CI and so A ⊆ CI .

Now let y ∈ CI . Then for all αrt ∈ I, (y, αrt) = 0, thus art = art+1
. Using our construction of

the SI above we have that y = a1(ε1 + . . . + εi1) + . . . + a`(εi`−1+1 + . . . + εi`). It remains to
verify that a1 > . . . >`. Since for all αij ∈ ∆ \ I we have (y, αij ) > 0 and so aij > aij+1 , thus
the coefficients are decreasing. Therefore y ∈ A and so CI ⊆ A.

So we have CI = A.

Lemma 3.2.2. Given a subset S of a Euclidean space V , we have that the minimal linear space,
L(S), is spanS.
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Proof. Let U = spanS. Note that U is a vector space. Let u ∈ U . Then u = a1v1 + . . .+anvn for
some n ≥ 1, vi ∈ S and ai ∈ R. Since L(S) ⊇ S, we know that vi ∈ L(S) for all i. Furthermore,
since L(S) is a vector space, it must contain all linear combinations of its elements. It follows
that u ∈ L(S) and so U ⊆ L(S). However, from the definition of minimal linear space, this
forces L(S) = U .

Lemma 3.2.3. Let C = {a1v1 + . . . + anvn : ai > ai+1, ai ∈ R} be a facet. The minimal linear
space of C, L(C), is {a1v1 + . . . + anvn : ai ∈ R}. Note that L(C) has in fact been obtained by
dropping the inequalities in the facet C.

Proof. Let S = {a1v1 + . . . + anvn : ai ∈ R}. Note S = span {v1, . . . , vn}. Clearly, if we can
conclude that each vi ∈ L(C) we can conclude S ⊆ L(C). Furthermore, by minimality of L(C)
we can then conclude that they are in fact equal.

Let i ∈ {1, · · · , n} and let k ∈ R. We can define two elements y, z ∈ C such that

y = (k + 1)v1 + (k)v2 + . . .+ (k − i+ 2)vi+1 + (k − i+ 1)vi + (k − i− 1)vi−1 + . . .+ (k − n)vn

z = (k + 1)v1 + (k)v2 + . . .+ (k − i+ 2)vi+1 + (k − i)vi + (k − i− 1)vi−1 + . . .+ (k − n)vn

Then, we have that y − z = vi. Since the coefficients are strictly decreasing we have that both
y, z ∈ C, and so y, z ∈ L(C) as well. Therefore we can conclude y − z = vi ∈ L(C) for each
i ∈ {1, . . . , n}.
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Chapter 4

Groups of type An

Sn+1 acts on Rn+1 in the following way. The transposition (i, j) sends εi − εj to its negative
and fixes the orthogonal complement, the set of all vectors in Rn+1 with equal ith and jth
coordinates. Furthermore, Sn+1 stabilizes the hyperplane of vectors whose coordinates add up
to 0. As shown in the following section, the Weyl group, W , of type An is the permutation group
Sn+1. Thus, groups of type An can be thought of as acting on this n−dimensional space through
permutations.

4.1 Construction of An

Lemma 4.1.1 (Root System for An). Φ = {εi − εj : 1 ≤ i 6= j ≤ n+ 1} is a root system

Proof.

R1 Let α ∈ Φ then α = εi − εj for some i 6= j ∈ {1, . . . , n + 1}. Clearly −α = εj − εi where
again j 6= i ∈ {1, . . . , n+ 1} so −α ∈ Φ.

R2 Let α ∈ Φ then again α = εi − εj with i 6= j ∈ {1, . . . , n + 1}. Let v ∈ V then using the
formula in chapter 1 we have

sα(v) = v − 2
(α, v)

(α, α)
α

= (v1, . . . , vn+1)− (vi − vj)(εi − εj)
= (v1, . . . , vi, . . . , vj , . . . , vn+1 + (vj − vi)εi + (vi − vj)εj
= (v1, . . . , vj , . . . , vi, . . . , vn+1)

so sα is the transposition (i, j). Then applying sα to any element of Φ will yield yet another
element in Φ. Thus sαΦ = Φ for all α ∈ Φ.

We have verified the axioms of a root system from chapter 1. Therefore Φ is the root system for
groups of type An.

Lemma 4.1.2 (Simple System for An). ∆ = {εi − εi+1 : 1 ≤ i ≤ n + 1} is a simple system for
An.

Proof.
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S1 Linear independence is clear, it remains to show that Φ ⊆ span ∆. Let Φ ⊆ V be a root
system for a group W of type An. Let α = εi − εj ∈ Φ. Then we have that εi − εj =
(εi− εi+1) + (εi+1− εi+2) + . . .+ (εj−2− εj−1) + (εj−1− εj) wherein each term is an element
of ∆. Therefor ∆ forms a basis for Φ.

S2 Let α ∈ Φ. Then α = εi − εj . If i < j then see the construction in S1 where the coefficient
on each element of ∆ is 1 and thus they all have the same sign. Otherwise, both sides of
the equation in S1 can be multiplied by −1 in which case all coefficients will again have
the same sign.

We have verified the axioms of a simple system from chapter 1. Therefore ∆ is a simple system
for groups of type An.

Theorem 4.1.3. The Weyl group W of type An is the permutation group Sn+1.

Proof. Given the simple system ∆ = {αi = εi− εi+1 : i ∈ {1, . . . , n+ 1}}, we consider the simple
reflections si. Let x = (x1, . . . , xn+1) ∈ Rn+1, by the reflection formula defined in chapter 1 we
have

si(x) = x− 2
(x, αi)

(αi, αi)
αi

= x− (x · αi)αi
= (x1, . . . , xn+1)− (xi − xi+1)(εi − εi+1)

= (x1, . . . , xn+1)− (0, . . . , 0, xi − xi+1, xi+1 − xi, 0, . . . , 0)

= (x1, . . . , xi − (xi − xi+1), xi+1 − (xi+1 − xi), . . . , xn+1)

= (x1, . . . , xi+1, xi, . . . , xn+1)

and so we have that the action of si is equivalent to the transposition (i, i+1). Thus we have that
our group W is generated by transpositions. And so W is the full permutation group Sn+1.

Remark Since every facet is conjugate under the Weyl group to a facet of the fundamental
domain, it suffices to determine which facets of the form CI where I ⊆ ∆ are associate.

4.2 Associativity Classes of A2

A2 From the previous section we have that ∆ = {α1, α2} = {(1,−1, 0), (0, 1,−1)} forms a simple
system for A2.

Theorem 4.2.1 (Associativity classes of A2). The representatives of the distinct associativity
classes of A2 are given by the following facets of the fundamental domain D {C∅, C{α1}, C∆}.

Proof. We will begin by finding these CI . In the following table (and in the remaining sections)
a > b > c represent arbitary real numbers.

I CI Representative

∅ {(x, y, z) ∈ R3 : x > y > z} (a, b, c)

{α1} {(x, y, z) ∈ R3 : x = y > z} (a, a, b)

{α2} {(x, y, z) ∈ R3 : x > y = z} (a, b, b)

{α1, α2} {(x, y, z) ∈ R3 : x = y = z} (a, a, a)
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When the condition that A2 acts on the plane x+ y + z = 0 is considered, we see that C∅ is
one of the 2 dimensional chambers and is clearly associate to all chambers of A2 since they all
share the same minimal linear space, namely the plane where the coordinates add to 0. It’s also
clear that in (a, a, a), we have that a = 0 and so C∆ = {0}. To find the associativity classes of
the remaining facets we first apply a permuation to (a, b, b) in the following way

s2s1(a, b, b) = (b, b, a)

By definition, this representative is conjugate to our original facet and so is associate. Then, we
consider the minimal linear space of this new facet. First note (b, b, a) = b(1, 1, 0) + a(0, 0, 1)

L(b, b, a) = span {(1, 1, 0), (0, 0, 1)} = L(a, a, b)

Since in the minimal linear space the inequalities do not matter, we can rename this facet as
follows

b 7→ a, a 7→ b

to obtain
(b, b, a) 7→ (a, a, b)

Then, clearly this facet shares a minimal linear space with our facet C{α1} and so is associate.
By transitivity of associativity we then have that C{α1} ∼ C{α2}. And thus our associativity
classes are {C∅, C∆, C{α1}}.

4.3 Associativity Classes of A3

A3 We have that ∆ = {(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1)} is a simple system for A3.

Theorem 4.3.1 (Associativity classes of A3). The set of associativity classes of A3 is represented
by {C∅, C{α1}, C{α1,α2}, C{α1,α3}, C∆}.

Proof. Let us again find the CI and their associativity classes. The cases for C∅ and C∆ are
consistent with A2 for all n and will be omitted. Furthermore, explicitly calculating the sets CI
will also be omitted and we will instead use the construction of the SI in section 3.2 to find a
representative.

I Representative

{α1} (a, a, b, c)

{α2} (a, b, b, c)

{α3} (a, b, c, c)

{α1, α2} (a, a, a, b)

{α1, α3} (a, a, b, b)

{α2, α3} (a, b, b, b)

Following a similar pattern as in the n = 2 case we can find an element of our Weyl group W to
permute the coordinates of our facet representatives.

s2s1(a, b, b, c) = (b, b, a, c)
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s2s3s1s2(a, b, c, c) = (c, c, a, b)

and so these representatives and their permutations are associate. Now we consider the minimal
linear spaces of their permutations and do renamings to get

(b, b, a, c) 7→ (a, a, b, c)

(c, c, a, b) 7→ (a, a, b, c)

and so these facets share a minimal linear space and are associate. It then follows that
C{α1} ∼ C{α1} ∼ C{α3}.

Similarly for the 2 dimensional cases we can apply permutations

s3s2s1(a, b, b, b) = (b, b, b, a)

and then consider the minimal linear spaces, apply a renaming to get that C{α1,α2} ∼ C{α2,α3}.
Clearly, there is no permutation to map C{α1,α3} into another facet. Furthermore, its minimal
linear space is spanned by {(1, 1, 0, 0), (0, 0, 1, 1)} which is different from any other facet.
Therefore we have {C∅, C∆, C{α1}, C{α1,α2}, C{α1,α3}} is our set of associativity classes.

For the remaining dimensions, we will skip finding the permutation of the Weyl group and the
renaming process. The following lemma allows us to do so.

Lemma 4.3.2. Two facets CI , CJ are associate if and only if their representatives have the same
numbers of repeated coordinates.

Proof. Let CI , CJ be associate facets. Then, there exists w ∈ W such that wL(CI) = L(CJ).
Taking a representative from each of these linear spaces, we can see that since groups of type
An act by permutation, we cannot possibly change the numbers of repeated coordinates and so
they must be the same, although in different orders, for CI and CJ . Conversely, if two facet
representatives have the same numbers of repeated coordinates, we can find a permutation that
maps one into the other. By Lemma 4.1.1, we can conclude this permutation is an element of
our Weyl group W . Furthermore, using Lemma 3.2.3 to think of L(CI) in terms of the repeated
coordinates of CI , we can see that this permutation will actually send the basis elements of L(CI)
to the basis elements of L(CJ). Therefore these two facets are associate. See Lemma 4.4.3.

4.4 Associativity Classes of A4

A4 We have that ∆ = {(1,−1, 0, 0, 0), (0, 1,−1, 0, 0), (0, 0, 1,−1, 0), (0, 0, 0, 1,−1)} is a simple
system for A4.

Theorem 4.4.1 (Associativity classes of A4). The associativity classes of A4 are
{C∅, C{α1}, C{α1,α2}, C{α1,α3}, C{α1,α2,α3}, C{α1,α2,α4}, C∆}.

Proof.
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I Representative

{α1} (a, a, b, c, d)

{α2} (a, b, b, c, d)

{α3} (a, b, c, c, d)

{α4} (a, b, c, d, d)

{α1, α2} (a, a, a, b, c)

{α1, α3} (a, a, b, b, c)

{α1, α4} (a, a, b, c, c)

{α2, α3} (a, b, b, b, c)

{α2, α4} (a, b, b, c, c)

{α3, α4} (a, b, c, c, c)

{α1, α2, α3} (a, a, a, a, b)

{α1, α2, α4} (a, a, a, b, b)

{α1, α3, α4} (a, a, b, b, b)

{α2, α3, α4} (a, b, b, b, b)

Following Lemma 4.3.2, we can see C{α1} ∼ C{α2} ∼ C{α3} ∼ C{α4}. For the 3−dimensional
facets we have C{α1,α2} ∼ C{α2,α3} ∼ C{α3,α4} and C{α1,α3} ∼ C{α1,α4} ∼ C{α2,α4}. And for
the 2−dimensional we have C{α1,α2,α3} ∼ C{α2,α3,α4} and C{α1,α2,α4} ∼ C{α1,α3,α4}. Thus, our
associativity classes are {C∅, C{α1}, C{α1,α2}, C{α1,α3}, C{α1,α2,α3}, C{α1,α2,α4}, C∆}.

Conjecture 4.4.2 (False). The number of associativity classes for each dimension is equal to
the dimension of the space minus the dimension of the facets.

Proof. For the first set of facets, C{α1} and so on, there is one associativity class which is 5−4 =
dimV −dimF . However, for the 2−dimensional case we have that C{α1,α2,α3} ∼ C{α2,α3,α4} and
C{α1,α2,α4} ∼ C{α1,α3,α4}. Wherein the relation between the dimension of the facets and number
of classes fails.

We note that in the n = 2, 3, 4 cases we had that C{αi} ∼ C{αj} for all i 6= j. We may
expect this pattern to continue into higher dimensions. Furthermore, in n = 3, 4 we had that
C{α1,α2} ∼ C{α2,α3}.

Lemma 4.4.3. Let CI , CJ be facets and SI , SJ be their corresponding vector sets defined above.
wL(CI) = L(CJ) if and only if wSI = SJ .

Proof. Since SI , SJ form bases for L(CI) and L(CJ) respectively, it is clear that wSI = SJ
implies wL(CI) = L(CJ). For the proof of the converse see Lemma 4.3.2.

Theorem 4.4.4. Given two associate facets CnI ∼ CnJ in An we can conclude Cn+1
I ∼ Cn+1

J in
An+1 as well.
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Proof. Let Wn be a group of type An. Let CnI , C
n
J be two facets such that CnI ∼ CnJ . Then, there

exists w ∈ Wn such that wL(CnI ) = L(CnJ ). It follows that wSnI = SnJ by the previous Lemma.
Since w = sm . . . sk for some simple reflections, by abuse of notation we can conclude that
αm, . . . αk ∈ ∆n ⊆ ∆n+1 and so w ∈Wn+1 as well. Construct an embedding, ϕ, of SnI into Sn+1

I

by ϕ : (a1, . . . , an) 7→ (a1, . . . , an, 0). Then, using this embedding we can see that we essentially
have SnI = Sn+1

I . Therefore we can conclude that wSn+1
I = Sn+1

J and so wL(Cn+1
I ) = L(Cn+1

J )
as desired. So Cn+1

I ∼ Cn+1
J .
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4.5 Associativity Classes of A5 Using Dynkin Diagrams

A5 We have that ∆ = {ε1− ε2, ε2− ε3, ε3− ε4, ε4− ε5, ε5− ε6}. We will construct and colour the
Dynkin diagrams of each facet CI . A node will be coloured white if it is in I and black otherwise.

C∅

C{α1}

C{α2}

C{α3}

C{α4}

C{α5}

C{α1,α2}

C{α1,α3}

C{α1,α4}

C{α1,α5}

C{α2,α3}

C{α2,α4}

C{α2,α5}

C{α3,α4}

C{α3,α5}

C{α4,α5}

C{α1,α2,α3}

C{α1,α2,α4}

C{α1,α2,α5}

C{α1,α3,α4}

C{α1,α3,α5}

C{α1,α4,α5}

C{α2,α3,α4}

C{α2,α3,α5}

C{α2,α4,α5}

C{α3,α4,α5}

C{α1,α2,α3,α4}

C{α1,α2,α3,α5}

C{α1,α2,α4,α5}

C{α1,α3,α4,α5}

C{α2,α3,α4,α5}

C∆

It becomes clear visually that both C∅ and C∆ stand alone as expected. For the remaining
classes, we can compare the groups of adjacent white vertices. It makes sense then, that
the singleton facets would form one class. For the 4−dimensional facets, we see that
C{α1,α2}, C{α2,α3}, C{α3,α4}, C{α4,α5} all contain two white vertices in a row. Note that these
two vertices in a row correspond to the Dynkin diagram of A2. It can be verified in the usual
way that these facets are all associate. The remaining 4−dimensional facets also form one
class and each contain two single white vertices, or A1 × A1. The 3−dimensional facets either
contain A3, A2 × A1, or A1 × A1 × A1, the classes C{α1,α2,α3} ∼ C{α2,α3,α4} ∼ C{α3,α4,α5},
C{α1,α2,α4} ∼ C{α1,α2,α5} ∼ C{α1,α3,α4} ∼ C{α1,α4,α5} ∼ C{α2,α3,α5} ∼ C{α2,α4,α5}, and
C{α1,α3,α5} respectively. Again, this can be verified using the permutation-renaming process
on the representatives. Finally, for the 2−dimensional facets we have diagrams containing
those of A4, A3 × A1, or A2 × A2. The respective classes are C{α1,α2,α3,α4} ∼ C{α2,α3,α4,α5},
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C{α1,α2,α3,α5} ∼ C{α1,α3,α4,α5}, and C{α1,α2,α4,α5}.

4.6 The General Case

An

Theorem 4.6.1 (Associativity classes of An). Two facets CI , CJ in the fundamental domain D
are associate if and only if there exists a permutation sending SI to SJ .

The proof of this theorem will follow the discussion below.

Conjecture 4.6.2 (False). Before computing the classes of larger groups, it was believed the
classes formed by whether all the contents of I were consectutive or not for each dimension. So
for example C{α1,α3,α5} ∼ C{α1,α2,α5}.

Proof. Consider A6. The simple system is given by ∆ = {ε1 − ε2, ε2 −
ε3, ε3 − ε4, ε4 − ε5, ε5 − ε6, ε6 − ε7}. The associativity classes of A6 are in fact
{C∅, C{α1}, C{α1,α2}, C{α1,α3}, C{α1,α2,α3}, C{α1,α2,α4}, C{α1,α3,α5}, C{α1,α2,α3,α4}, C{α1,α2,α3,α5},
C{α1,α2,α4,α5}, C{α1,α2,α4,α6}, C{α1,α2,α3,α4,α5}, C{α1,α2,α3,α4,α6}, C{α1,α2,α3,α5,α6}, C∆}. Which is
left to be verified by the reader using the following table.
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I Representative I Representative I Representative

{α1} (a, a, b, c, d, e, f) {α1, α2, α3} (a, a, a, a, b, c, d) {α1, α2, α3, α4} (a, a, a, a, a, b, c)

{α2} (a, b, b, c, d, e, f) {α1, α2, α4} (a, a, a, b, b, c, d) {α1, α2, α3, α5} (a, a, a, a, b, b, c)

{α3} (a, b, c, c, d, e, f) {α1, α2, α5} (a, a, a, b, c, c, d) {α1, α2, α3, α6} (a, a, a, a, b, c, c)

{α4} (a, b, c, d, d, e, f) {α1, α2, α6} (a, a, a, b, c, d, d) {α1, α2, α4, α5} (a, a, a, b, b, a, c)

{α5} (a, b, c, d, e, e, f) {α1, α3, α4} (a, a, b, b, b, c, d) {α1, α2, α4, α6} (a, a, a, b, b, c, c)

{α6} (a, b, c, d, e, f, f) {α1, α3, α5} (a, a, b, b, c, c, d) {α1, α3, α4, α5} (a, a, b, b, b, b, c)

{α1, α2} (a, a, a, b, c, d, e) {α1, α3, α6} (a, a, b, b, c, d, d) {α1, α3, α4, α6} (a, a, b, b, b, c, c)

{α1, α3} (a, a, b, b, c, d, e) {α1, α4, α5} (a, a, b, c, c, c, d) {α1, α3, α5, α6} (a, a, b, b, c, c, c)

{α1, α4} (a, a, b, c, c, d, e) {α1, α4, α6} (a, a, b, c, c, d, d) {α1, α4, α5, α6} (a, a, b, c, c, c, c)

{α1, α5} (a, a, b, c, d, d, e) {α1, α5, α6} (a, a, b, c, d, d, d) {α2, α3, α4, α5} (a, b, b, b, b, b, c)

{α1, α6} (a, a, b, c, d, e, e) {α2, α3, α4} (a, b, b, b, b, c, d) {α2, α3, α4, α6} (a, b, b, b, b, c, c)

{α2, α3} (a, b, b, b, c, d, e) {α2, α3, α5} (a, b, b, b, c, c, d) {α2, α3, α5, α6} (a, b, b, b, c, c, c)

{α2, α4} (a, b, b, c, c, d, e) {α2, α3, α6} (a, b, b, b, c, d, d) {α2, α4, α5, α6} (a, b, b, c, c, c, c)

{α2, α5} (a, b, b, c, d, d, e) {α2, α4, α5} (a, b, b, c, c, c, d) {α1, α2, α3, α4, α5} (a, a, a, a, a, a, b)

{α2, α6} (a, b, b, c, d, e, e) {α2, α4, α6} (a, b, b, c, c, d, d) {α1, α2, α3, α4, α6} (a, a, a, a, a, b, b)

{α3, α4} (a, b, c, c, c, d, e) {α2, α5, α6} (a, b, b, c, d, d, d) {α1, α2, α3, α5, α6} (a, a, a, a, b, b, b)

{α3, α5} (a, b, c, c, d, d, e) {α3, α4, α5} (a, b, c, c, c, c, d) {α1, α2, α4, α5, α6} (a, a, a, b, b, b, b)

{α3, α6} (a, b, c, c, d, e, e) {α3, α4, α6} (a, b, c, c, c, d, d) {α1, α3, α4, α5, α6} (a, a, b, b, b, b, b)

{α4, α5} (a, b, c, d, d, d, e) {α4, α5, α6} (a, b, c, d, d, d, d) {α2, α3, α4, α5, α6} (a, b, b, b, b, b, b)

{α4, α6} (a, b, c, d, d, e, e)

and so we have that in particular C{α1,α3,α5} 6∼ C{α1,α2,α5}.

Remark By the construction of the SI in section 3.2, we know if there is a coefficient of 1 on εi
in some vector of SI , then it has a coefficient of 0 in all other vectors of SI . In other words, for
each i ∈ {1, hdots, n}, there is exactly one vector v ∈ SI where εi has a nonzero coefficient.

Proof of Theorem 4.6.2. If wSI = SJ then clearly wL(CI) = L(CJ) and we are done. Suppose
CI ∼ CJ . Then there exists w ∈ W such that wL(CI) = L(CJ). Then we have that wSI is a
basis for L(CJ), as is SJ . Suppose wSI 6= SJ . We know |SI | = |wSI | = |SJ | = k, so there must
be some v ∈ wSI which not in SJ . Since v ∈ wSI , we know v ∈ L(CJ) so v can be expressed as
a linear combination of elements in SJ . Then, by the remark above we know that all coefficients
of the linear combination must be 1. So there are vectors u1, . . . ut ∈ SJ with t > 1 such that
v = u1 + . . . + ut. Again by the remark above, there are no other vectors in SJ with nonzero
coefficients on the standard basis vectors that the uj consist of. Therefore, the remaining k − 1
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elements of wSI are linear combinations of the remaining k − t elements of SJ , implying they
are linearly dependent, a contradiction. So wSI = SJ .

Alternatively, for a more visual approach, the facets can be compared using their coloured Dynkin
diagrams.

Corollary 4.6.3 (Associativity Classes of An using Dynkin Diagrams). Two facets CI , CJ are
associate if and only if their coloured Dynkin diagrams consist of the same subdiagrams.
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