
CLASSIFYING SPACES

ALEXANDER S. MERKURJEV

1. Cohomology theories on smooth varieties

1.1. Chow and Grothendieck rings. Let X be a smooth integral variety over a field
F . We use the following notation:

CH(X) =
⨿

i≥0 CH
i(X) is the graded Chow ring of classes of algebraic cycles on X.

K(X) is the Grothendieck ring of any of the following three categories: vector bundles
over X, locally free OX-modules of finite rank, coherent OX-modules.

I(X) is the kernel of the rank homomorphism K(X) → Z, I(X) is called the funda-
mental ideal of K(X).
In practice, it is easier to compute K(X) than CH(X).

1.2. Chow filtration. For every i ≥ 1, let K(X)(i) be the subgroup of K(X) generated
by the classes of coherent OX-modules with codimension of support at least i, or equiva-
lently, by the classes [OZ ], where Z ⊂ X is a closed irreducible subset of codimension at
least i. In particular, K(X)(1) = I(X).
We have the following finite Chow filtration (or topological filtration) on K(X):

K(X) = K(X)(0) ⊃ K(X)(1) ⊃ K(X)(2) ⊃ . . .

We write

ChowiK(X) := K(X)(i)/K(X)(i+1).

ChowK(X) =
⨿

i≥0 Chow
iK(X) is a graded ring.

There is a surjective graded ring homomorphism

φX : CH(X)→→ ChowK(X)

taking the class [Z] of a closed irreducible subset Z ⊂ X to the class of OZ .

1.3. Chern classes. There are Chern class maps

ci : K(X)→ CHi(X), i ≥ 0,

functorial in X, satisfying the following properties:

(1) c0(a) = 1 for all a ∈ K(X),
(2) For a line bundle L → X, the class c1(L) in CH1(X) is the image of the class of L

under the isomorphism Pic(X)
∼→ CH1(X),

(3) ci(E) = 0 for a vector bundle E → X and i > rank(E),
(4) cn(a + b) =

∑
i+j=n ci(a)cj(b), i.e., the total Chern class ct(a) :=

∑
i≥0 ci(a)t

i is
additive-multiplicative.
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A splitting principle asserts that for every element a ∈ K(X) there is a morphism
Y → X of smooth varieties such that the homomorphism CH(X) → CH(Y ) is injective
and the image of a in K(Y ) is a linear combination of the classes of line bundles with
integer coefficients. It follows that the properties as above determine the Chern classes
uniquely.

The Chern subring of CH(X) is the graded subring generated by all Chern classes. In
general, the Chern subring of CH(X) is not equal to CH(X).

The restriction of the Chern class ci onK(X)(i) is a homomorphism trivial onK(X)(i+1),
hence defining a homomorphism

ψi
X : ChowiK(X)→ CHi(X).

Both compositions of ψi
X with φi

X are multiplications by (−1)i−1(i − 1)!. In particular,
ψi
X with φi

X are isomorphisms for i ≤ 2 and Ker(φi
X) is a torsion group killed by (i− 1)!.

It follows that ψi
X is isomorphism after tensoring with Q.

There are also K-theoretic Chern class maps

cKi : K(X)→ K(X), i ≥ 0,

satisfying similar properties, where property (2) should be replaced by

(2′): For a line bundle L→ X, the class cK1 (L) is equal to 1− [L]−1.
In fact,

cKi (a) := γi(rank(a)− a∨),

where γi is the gamma-operation defined by γt = λt/(1−t) with λ the lambda operation
given by the exterior powers of vector bundles.

Note that cK1 (L) ∈ K(X)(1). Moreover, Im(cKi ) ⊂ K(X)(i) for all i. In particular, there
are Chern classes

c̄Ki : K(X)→ ChowiK(X), i ≥ 0.

Lemma 1.1. The following diagram is commutative:

K(X)

ci
��

c̄Ki

''NN
NNN

NNN
NNN

CHi(X)
φi
X // // ChowiK(X)

Proof. Let j : D ↪→ X be an irreducible divisor. Then for the locally free sheaf L = L(D),
we have c1(L) = [D]. It follows from the exact sequence

0→ L(−D)→ OX → j∗OD → 0

that

φ(c1(L)) = φ([D]) = j∗[OD] = [OX ]− [L(−D)] = 1− L−1 = c̄1(L). �
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1.4. Chern filtration. There is another filtration onK(X) that is easier to compute than
K(X)(i). Let K(X)[i] be generated by the products cKi1 (a1) · · · c

K
in(an) with aj ∈ K(X)

and i1 + · · ·+ in ≥ i. This is the smallest ring filtration satisfying cKi (a) ∈ K(X)[i] for all
i and a ∈ K(X). We have

K(X) = K(X)[0] ⊃ K(X)[1] ⊃ K(X)[2] ⊃ . . .

The formula a = −cK1 (a∨) for all a ∈ I(X) shows that K(X)[1] = I(X), hence

I(X)i ⊂ K(X)[i] ⊂ K(X)(i)

We write
CherniK(X) := K(X)[i]/K(X)[i+1].

Then ChernK(X) =
⨿

i≥0 Chern
iK(X) is the graded ring. We have a diagram of

graded ring homomorphisms

ChernK(X)

ρX
��

CH(X)
φX // // ChowK(X)

In general, ρX is neither injective nor surjective. It is known that

I(X) = K(X)[1] = K(X)(1), K(X)[2] = K(X)(2), K(X)
[i]
Q = K(X)

(i)
Q .

In particular, Ker(ρX) and Coker(ρX) are torsion groups. We have

CherniK(X) = ChowiK(X) =

{
Z, if i = 0;
CH1(X) = Pic(X), if i = 1.

Example 1.2. We have CH(Pn
F ) = Z[h]/(hn+1), where h ∈ CH1(Pn

F ) is the class of a
hyperplane section, K(Pn

F ) = Z[l]/(l − 1)n+1, where l = [O(1)]. Also, c1(l) = h and
cK1 (l) = 1− l−1,

I(Pn
F )

i = K(Pn
F )

[i] = K(Pn
F )

(i) = (l − 1)iK(Pn
F ).

We have the following properties of the three filtrations on K(X):

CH(X) is generated
by Chern classes

⇐ CH(X) is generated
by CH1(X)

⇒ K(X) is generated by
classes of line bundles

⇓ ⇓ ⇓
K(X)[i] = K(X)(i) I(X)i = K(X)[i] = K(X)(i) I(X)i = K(X)[i]

⇑
ChernK(X) is
torsion-free

For example, suppose CH(X) is generated by Chern classes. By Lemma 1.1, the ring
ChowK(X) is generated by Chern classes, hence ρX is surjective. By descending induction
on i, we see that K(X)[i] = K(X)(i).
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2. Classifying spaces

2.1. Torsors. Let G be a linear algebraic group over F . We just assume that G is of finite
type (and don’t assume smoothness or connectedness). Suppose G acts on a variety Y
(on the right), acts trivially on a variety X and f : Y → X is a G-equivariant morphism.
Consider the morphism

θ : Y ×G→ Y ×X Y, (y, g) 7→ (yg, y).

We say that f is a G-torsor is θ is an isomorphism and f is faithfully flat. The first
condition means that for every commutative F -algebra R and every point x ∈ X(R) ,
either the fiber of Y (R)→ X(R) over x is empty or G(R) acts simply transitively on the
fiber. We think of X as a variety of G-orbits in Y and often write X = Y/G.

A G-torsor E → SpecF is called a principal homogeneous space of G.

Example 2.1. GLn-torsors over X are essentially vector bundles over X of rank n. Pre-
cisely, if E → X is a vector bundle of rank n, then the variety IsoX(1

n
X , E) of isomorphisms

between E and the trivial vector bundle 1nX is a GLn-torsor, and every torsor is of this
form for a unique vector bundle E → X up to canonical isomorphism.

2.2. Descent. Let Y → X be a G-torsor and W → Y be a G-vector bundle (i.e., G acts
linearly on W and the morphism is G-equivariant). Let pi : Y ×X Y → Y , i = 1, 2, be
the two projections. We have the two isomorphisms

p∗i (W ) := (Y ×X Y )×Y,pi W ≃ W ×G.

The automorphism W × G → W × G taking (w, g) to (wg, g) yields a descent data on

W in the fppf (flat) topology (an isomorphism p∗1(W )
∼→ p∗2(W ) satisfying the cocycle

condition). It is known that descent holds for vector bundles (locally free sheaves). Hence
the G-vector bundle W → Y descents to a vector bundle W/G → X. Moreover, is
W ′ ⊂ W is an openG-invariant subset, thenW ′ descents to an open subsetW ′/G ⊂ W/G.

Example 2.2. Let Y → X be a G-torsor and V a linear G-representation. Then the
G-vector bundle V × Y → Y descends to a vector bundle (V × Y )/G→ X. We call the
Chern classes of this bundle by the Chern classes of the representation (if the torsor is
clear).

2.3. Versal torsors. A G-torsor f : Y → X is called weakly versal if for every p.h.s.
E → SpecK with K a field extension of F with K infinite there is a point x ∈ X(K)
such that E → SpecK is isomorphic to the pull-back of f with respect to x.

E

��

// Y

f
��

SpecK
x // X

We say that f : Y → X is versal if for every nonempty subset U ⊂ X, the G-torsor
f−1(U)→ U is weakly versal.

Let V be a G-representation over F and let U ⊂ V be a nonempty G-invariant open
subset such that there is a G-torsor f : U → U/G. Then f is a versal G-torsor. Indeed,
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let E → SpecK be a G-torsor, where K is a field extension of F with K infinite. Consider
the diagram

E × U

xxppp
ppp

ppp
ppp

p

�� &&LL
LLL

LLL
LLL

L

E

��

(E × U)/G

xxqqq
qqq

qqq
qq t

%%LL
LLL

LLL
LL

U

��
SpecK U/G

with two fiber squares. As (E×U)/G is an open subset in the vector bundle (vector space)
(E × V )/G over K and K is infinite, there is a rational point s : SpecK → (E × U)/G
over K. Then E → SpecK is the pull-back of f with respect to the composition t ◦ s.
A morphism of varieties f : Y → X over a field F is called weakly split if there is a

rational morphism g : X 99K Y such that f ◦ g is the identity of X. We say that f is split
if for every nonempty open subset U ⊂ Y there is a rational morphism g : X 99K Y such
that Im(g) ∩ U ̸= ∅ and f ◦ g = idX .
A variety X over F is weakly retract rational (respectively, retract rational) if there is

a nonempty open subvariety Y ⊂ An
F for some n and a weakly split (respectively, split)

morphism f : Y → X over F .
Every stably rational variety is retract rational and hence weakly retract rational.
We say that the G-torsors over field extensions of F are rationally parameterized if

there is a versal G-torsor Y → X with X a rational variety.

Proposition 2.3. The G-torsors over field extensions of F are rationally parameterized
if and only if the classifying space BG is retract rational over F .

Example 2.4. Let n be a positive integer that is neither divisible by 8 nor by p2, where p
is an odd prime. Then BPGL(n) is retract rational. I conjecture that otherwise, BPGL(n)
is not retract rational.

Example 2.5. The space BSpin(n) is retract rational if n ≤ 14 This follows from the clas-
sification of quadratic forms with trivial discriminant and Clifford invariant of dimension
at most 14. I conjecture that BSpin(n) is not retract rational if n ≥ 15.

2.4. Approximations of BG. In topology the classifying space BG of a topological
group G is defined as EG/G, where EG is a contractible space with a free G-action.
Let G be an algebraic group over F . We don’t define BG (it makes sense as an algebraic

stack but not an algebraic variety), but we define “approximations” of BG as algebraic
varieties.
Let V be a G-representation over F and U ⊂ V be a nonempty G-invariant open subset

such that there is a G-torsor f : U → U/G. We say that U/G is an n-approximation of
BG if codimV (V \ U) ≥ n. Every group G admits n-approximations for every n.

Example 2.6. Embed G ↪→ GL(m) with m > 0 and choose an integer N ≥ 0. Let
UN be the open subset of all injective linear maps Fm → Fm+N in the vector space
V = Hom(Fm, Fm+N). We have codimV (V \ UN) = N + 1. The group GL(m +N) acts
linearly (by composition) on V (on the left) and acts transitively on UN with the stabilizer
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1m ∗
0 GL(N)

)
of the canonical inclusion Fm ↪→ Fm ⊕ FN = Fm+N . The group G acts

on UN via the right action of GL(m) on UN by composition and if we define

UN/G := GL(m+N)/

(
G ∗
0 GL(N)

)
we have a G-torsor UN → UN/G and UN/G is an (N + 1)-approximation of BG. Note
that UN/GL(m) is naturally isomorphic to the Grassmannian variety Gr(m,m+N).

2.5. Definition of CH(BG) by Totaro. Fix i ≥ 0. Let U/G and U ′/G be two n-
approximations of BG for n > i. The “roof” diagram

(U × V ′)/G

vector bundle
��

(U × U ′)/G? _
openoo

wwnnn
nnn

nnn
nnn

n

''PP
PPP

PPP
PPP

P
� � open // (V × U ′)/G

vector bundle
��

U/G U ′/G

yields two pull-back isomorphisms

CHi(U/G)
∼← CHi((U × U ′)/G)

∼→ CHi(U ′/G)

since i < n. In other words, the group CHi(U/G) does not depend up to canonical
isomorphism on the choice of an n-approximations U/G of BG with n > i. We set

CHi(BG) := CHi(U/G).

Example 2.7. Let G = Gm over F . Consider the standard action of Gm on An
F . Taking

Un := An
F \ {0} we get an n-approximation Pn−1

F = Un/Gm of BGm. It follows that

CH(BGm) = Z[h],

where h is the class of a hyperplane section. Let T be a split torus and x ∈ T̂ =
Hom(T,Gm) a character of T . Choose an approximation U/T of BT . Let Lx be the line
bundle (A1 × U)/T → U/T , where T acts on A1 via the character x. (For example, if
T = Gm, the line bundle Lx for the tautological character x is the canonical line bundle

on Pn−1 (having the nickname O(1)) with c1(Lx) = h.) The map T̂ → CH1(BT ) taking
a character x to c1(Lx) extends to an isomorphism

CH(BT ) ≃ Sym(T̂ ),

where Sym is the symmetric ring.

3. Invariants of G-torsors

3.1. Definition. Let Q be a contravariant functor from Sm(F ) to AbGroups. Let G be
a group over F . An invariant of G with values in Q is an assignment to every G-torsor
E → X over a smooth variety X over F an element in Q(X). We assume that this
assignment is functorial in X. All invariants of G with values in Q form an abelian group
Inv(G,Q).
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We consider invariants of G with values in CHi for a given i. We get a graded ring

Inv(G,CH) :=
⨿
i≥0

Inv(G,CHi).

Example 3.1. In view of Example 2.1, a polynomial of classical Chern classes ck with
integer coefficients yields an invariant of the group GLn.

If a ∈ Inv(G,CHi) we define an element α(a) in CHi(BG) as follows. Choose an n-
approximation U/G of BG where U ⊂ V and n > i and set

α(a) = a(U → U/G) ∈ CHi(U/G) = CHi(BG).

Thus, we get a homomorphism

α : Inv(G,CHi)→ CHi(BG).

We can define a homomorphism in the other direction. Choose an n-approximation U/G
of BG for n > i as above. Let E → X be a G-torsor with smooth X. Consider the “roof”
diagram

E × U

yysss
ss
ss
ss
ss

�� &&LL
LLL

LLL
LLL

L

E

��

(E × U)/G
s

zzttt
ttt

ttt
tt t

%%LL
LLL

LLL
LL

U

��
X U/G

By assumption, the pull back homomorphism s∗ : CHi(X) → CHi((E × U)/G) is an
isomorphism since it is equal to the composition of two isomorphisms

CHi(X)
∼→ CHi((E × V )/G)

∼→ CHi((E × U)/G).
The first map is homotopy invariance isomorphism, the second map is an isomorphism
since n > i.
Define

β : CHi(BG)→ Inv(G,CHi)

by

β(c)(E → X) = (s∗)−1(t∗(c))

for any c ∈ CHi(U/G) = CHi(BG).

Theorem 3.2. (Totaro) The maps α and β are isomorphisms inverse to each other,
Inv(G,CH) ≃ CH(BG).

3.2. Torsors trivial in Zariski topology. We say that a G-torsor E → X is Zariski
trivial if there is a Zariski cover X = ∪Ui such that the restrictions E|Ui

→ Ui are trivial
torsors for all i.
A Zariski invariant of G with values in a functor Q is a functorial assignment to every

Zariski trivial G-torsor E → X over a smooth variety X an element in Q(X). All Zariski
invariants with values in Q form an abelian group InvZar(G,Q).
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We study the graded ring

InvZar(G,CH) :=
⨿
i≥0

InvZar(G,CH
i).

We have the restriction graded ring homomorphism

Inv(G,CH)→ InvZar(G,CH).

Now assume that G is a split reductive group with maximal split torus T . If a G-torsor
is split at the generic point, then by a theorem of Colliot-Thélène and Ojanguren, the
torsor is Zariski trivial. In particular, if G is a special group, every G-torsor is Zariski
trivial, hence Inv(G,CH) = InvZar(G,CH). In particular, by Example 2.7 and Theorem
3.2,

InvZar(T,CH) = Inv(T,CH) = CH(BT ) = Sym(T̂ ).

Let N be the normalizer of T in G and W = N/T the Weyl group of G. Note that the
natural action of N by conjugation on the G-torsors is trivial and the N -action on the
T -torsors factors through a W -action. Hence we have a restriction homomorphism

InvZar(G,CH
i)→ InvZar(T,CH

i)W = Symi(T̂ )W .

Theorem 3.3. (Edidin-Graham) Let G be a split reductive group with maximal split torus

T and the Weyl group W . Then the map InvZar(G,CH)→ Sym(T̂ )W is an isomorphism.

Proof. (Injectivity) Let a ∈ InvZar(G,CH
i) be such that a|T = 0 and p : E → X a Zariski

trivial G-torsor. We show that a(E → X) = 0. The push-forward of the torsor E → E/T
with respect to the inclusion of T to G is isomorphic to the pull-back of E → X under
q : E/T → X. Therefore,

q∗(a(E → X)) = (res a)(E → E/T ) = 0.

It suffices to show that q∗ : CH(X) → CH(E/T ) is injective. If B is a Borel subgroup
containing T , all fibers of the projection E/T → E/B are affine spaces, the pull-back
map CH(E/B)→ CH(E/T ) is an isomorphism, so we can replace T by B.

As p : E → X is Zariski trivial, there is a rational section of p, hence there is a rational
section of q : E/B → X. Let Z ⊂ E/B be the closure of the image of this section. We
have q∗([Z]) = 1 in CH(X). By the Projection Formula,

c = c · q∗([Z]) = q∗(q
∗(c) · [Z])

for every c ∈ CH(X), hence q∗ is split injective. �

Corollary 3.4. If G is a special split reductive group, then the natural homomorphism,

the restriction homomorphism CH(BG)→ Sym(T̂ )W is an isomorphism.

Remark 3.5. If G is a split reductive group (not necessarily special), the homomorphism

CH(BG)→ Sym(T̂ )W is an isomorphism after tensoring with Q. It follows that the kernel
this homomorphism coincides with CH(BG)tors.

Question 3.6. How to compute InvZar(G,CH
i) for an arbitrary reductive group G?
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Example 3.7. Let G = GL(n) (this is a special group), T the torus of diagonal matrices
and W = Sn. Hence

Inv(GL(n),CH) = CH(BGL(n)) = Sym(T̂ )W = Z[x1, x2, . . . , xn]
Sn = Z[c1, c2, . . . , cn],

where ci are classical Chern classes (symmetric functions on the xi). Thus, every invariant
on vector bundles of rank n with values in CH is a polynomial in the Chern classes
c1, c2, . . . , cn. Similarly,

CH(BSL(n)) = Z[c2, . . . , cn].

3.3. Some computations of CH(BG). Embed a group G into GL(m) for some m. We
can choose n-approximations U/GL(m) and U/G of BGL(m) and BG, respectively. The
morphism U/G→ U/GL(m) yields a graded ring homomorphism

Z[c1, c2, . . . , cm] = CH(BGL(m))→ CH(BG).

We also denote by ci their images in CH(BG).

Lemma 3.8. Suppose CHi(GL(m)/G) = 0 for all i > 0. Then the homomorphism
CH(BGL(m))→ CH(BG) is surjective, i.e., CH(BG) is generated by c1, c2, . . . , cm.

Proof. As the group GL(m) is special, all fibers of the morphism BG → BGL(m) are
isomorphic to GL(m)/G. The result follows from Rost’s spectral sequence for this mor-
phism. �
Remark 3.9. The generators c1, c2, . . . , cm of CH(BG) are the Chern classes of the rep-
resentation G ↪→ GL(m).

Example 3.10. Let G = Sp(2n) (this is a special group) and consider the natural em-
bedding of G into GL(2n). Then GL(2n)/G is isomorphic to the variety of nondegenerate
symplectic forms of dimension 2n that is an open subset of an affine space. By Lemma
3.8, CH(Sp(2n)) is generated by c1, c2, . . . , c2n. Note that for every vector bundle E → X
with a nondegenerate symplectic form, the dual bundle E∨ is isomorphic to E, we have
2ci(E) = 0 if i is odd. By Corollary 3.4, CH(Sp(2n)) is torsion free, hence ci(E) = 0 if i
is odd. Restricting to a maximal split torus, we see that every nonzero polynomial in ci
with i even yields a nontrivial element in CH(Sp(2n)). Hence,

CH(Sp(2n)) = Z[c2, c4, . . . , c2n].

Example 3.11. Consider the natural embedding of the split orthogonal group G = O(n)
into GL(n). Then GL(n)/G is isomorphic to the variety of nondegenerate quadratic forms
of dimension n that is an open subset of an affine space. By the same argument as in
Example 3.10, CH(O(n)) is generated by c1, c2, . . . , cn and 2ci(E) = 0 if i is odd. In fact,
we have

CH(O(n)) = Z[c1, c2, . . . , cn]/(2ci = 0, i odd),

if char(F ) ̸= 2.

Example 3.12. Since O(2m+ 1) = µ2 ×O+(2m+ 1), we have

CH(O+(2m+ 1)) = Z[c2, c3, . . . , c2m+1]/(2ci = 0, i odd),

if char(F ) ̸= 2.
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Example 3.13. The ring CH(BO+(2m)) is not generated by Chern classes if m ≥ 3.

Example 3.14. Let T be a quasi-trivial torus, so T is a special group. Write T = GLA(1),
where A is an étale F -algebra. Similar to the split case, the variety Xn = RA/F (P

n
A) is an

approximation of BT . The Chow motive of Xn is a direct sum of twists of 0-dimensional
motives of the form SpecL, where L/F is a separable finite field extension. For such
motives the Chow groups satisfy Galois descent. It follows that

CHi(BT ) = CHi(Xn) = CHi(Xn, sep)
Γ = CHi(BTsep)

Γ = Symi(T̂sep)
Γ

for i ≤ n (here Γ = Gal(Fsep/F )). Thus,

CH(BT ) ≃ Sym(T̂sep)
Γ.

Example 3.15. Let K/F be a cyclic cubic field extension and let T = GLK(1). The

character lattice T̂sep has a basis {a, b, c} cyclically permuted by the Galois group Γ.
Therefore, a2b + b2c + c2a ∈ Z[a, b, c]Γ = CH(BT ). A computation shows that every
element in the Chern subring of CH(BT ) is stable modulo 2 under the action of the
symmetric group S3. Thus CH(BT ) is not generated by Chern classes, although T is a
special group.

4. Representation ring R(G)

This is joint work with N. Karpenko.
Let G be an algebraic group over F . Write R(G) for the representation ring of G. As

an abelian group, R(G) is free with basis the classes of irreducible representations. We
think of R(G) as an analog of the Grothendieck group K(BG).

Example 4.1. If T is a split torus, every irreducible representation of T is 1-dimensional,
thus given by a character of T . Therefore,

R(T ) = Z[T̂ ].

It x ∈ T̂ , we write ex for the corresponding element in R(T ), so ex+y = exey. If G is a
split reductive group with a split maximal torus T , then the restriction homomorphism

R(G)→ R(T )W = Z[T̂ ]W

is an isomorphism. (Note that similar homomorphism CH(BG) → Sym(T̂ )W is an iso-
morphism for special groups G but not isomorphism in general.)

Let E → X be a G-torsor, where X is a smooth variety. We have a canonical ring
homomorphism

αE : R(G)→ K(X),

taking the class of a G-representation W to the class of the vector bundle

(W × E)/G→ X.

We apply this to the G-torsor U → U/G, where U/G is an n-approximation of BG for
some n and U ⊂ V . In fact the resulting homomorphism

αU : R(G)→ K(U/G)
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is surjective since it is equal to the composition

R(G) = KG(pt)
∼→ KG(V )→→ KG(U)

∼→ K(U/G).

Composing αU with (classical) Chern classes on U/G yields Chern classes

ci : R(G)→ CHi(BG)

for i < n.

Example 4.2. The generators ci of the ring CHi(BGL(n)) are the Chern classes of the
tautological representation of GL(n).

The augmentation ideal I(G) ⊂ R(G) is the kernel of the ring homomorphism R(G)→
Z given by dimension of G-representations. The augmentation filtration on R(G) is given
by the powers I(G)i, i ≥ 0, of the augmentation ideal.
We simply write cRi for the Chern classes defined by

cRi (a) := γi(rank(a)− a∨).
If a is a character of G (a 1-dimensional representation of G), then cR1 (a) = 1− a−1.
We have the smallest ring Chern filtration

R(G) = R(G)[0] ⊃ R(G)[1] ⊃ . . .

with the property that cRi (x) ∈ R(G)[i] for all x ∈ R(G) and any i ≥ 0. We write
ChernR(G) for the associated graded ring.

4.1. Chow filtration on R(G). Our next goal is to define the Chow filtration on R(G).
Let U/G be an n-approximation of BG and i ≤ n. We set

R(G)(i) := (αU)
−1(K(U/G)(i)).

This does not depend on the choice of the approximation U/G. We get the Chow filtration

R(G) = R(G)(0) ⊃ R(G)(1) ⊃ . . .

on R(G).
We have

I(G)i ⊂ R(G)[i] ⊂ R(G)(i)

for all i. (However none of the filtrations is finite in general.) The second inclusion induces
a ring homomorphism ChernR(G)→ ChowR(G) which is neither injective nor surjective
in general.
Let U/G be an n-approximation of BG and i < n. The composition

CHi(BG) = CHi(U/G)
φi

−→ ChowiK(U/G) = ChowiR(G)

yields a surjective graded ring homomorphism

φG : CH(BG)→→ ChowR(G).

We have a diagram

ChernR(G)

ρG
��

CH(BG)
φG // // ChowR(G).
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The kernel of φi : CHi(BG) → ChowiR(G) is killed by multiplication by (i − 1)!.
In particular, the maps φi are isomorphisms for i ≤ 2. Also, φ(ci(a)) = cRi (a) modulo
R(G)(i+1) for every a ∈ R(G).

We have I(G) = R(G)[1] = R(G)(1) and R(G)[2] = R(G)(2). The map ChernR(G) →
ChowR(G) becomes an isomorphism after tensoring with Q and

CherniR(X) = ChowiR(X) =

{
Z, if i = 0;

Ĝ = Pic(BG), if i = 1.

CH(BG) is generated
by Chern classes

⇐ CH(BG) is generated
by CH1(BG)

⇒ R(G) is generated by
classes of line bundles

⇓ ⇓ ⇓
R(G)[i] = R(G)(i) I(G)i = R(G)[i] = R(G)(i) I(G)i = R(G)[i]

⇑
ChernR(G) is
torsion-free

Example 4.3. For G := O+(2n) with any n ≥ 3 over the field of complex numbers, the
Chern filtration on R(G) differs from the Chow filtration. Indeed, the Chow ring CH(BG)
is not generated by Chern classes. By calculation, the Chern subring of CH(BG) (i.e.,
the subring of CH(BG) generated by Chern classes) contains every element of finite order
of the group CH(BG). Since the kernel of the surjective ring homomorphism CH(BG)→
ChowR(G) consists of elements of finite order, the two above statements together imply
that the ring ChowR(G) is not generated by Chern classes. Since the ring ChernR(G)
is generated by Chern classes (for any G), the two filtrations (for G = O+(2n)) are not
the same.

Example 4.4. Consider the symplectic group H = Sp(2n). The group CH(BH) is
torsion-free. Since the kernel of the surjective ring homomorphism φ : CH(BH) →
ChowR(H) consists of torsion elements only, it follows that this map is an isomorphism.
In particular, the group ChowR(H) is also torsion-free.

Since the ring CH(BH) is generated by Chern classes, we conclude that the Chow filtra-
tion on R(H) coincides with the Chern filtration. It follows that the group ChernR(H)
is torsion-free.

The Weyl groups and character groups of maximal tori (as modules over the Weyl
groups) of Sp(2n) andG := O+(2n+1) are isomorphic. Therefore, there is an isomorphism
of the rings R(H) ≃ R(G). It induces an isomorphism ChernR(H) ≃ ChernR(G). In
particular, the group ChernR(G) turns out to be torsion-free. This implies that the
Chern filtration on R(G) coincides with the Chow filtration. We conclude that the group
ChowR(G) is torsion-free. But CH3(BG) contain torsion element c3, hence

0 ̸= c3 ∈ Ker
(
CH3(BG)

φ−→ Chow3R(G)
)
.

Replacing BG by a 4-approximation X, we get an example of a variety X such that
CH(X) is generated by Chern classes, but φX is not injective (in degree 3).
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4.2. Equivalence of the three filtrations.

Theorem 4.5. For any group G and any n, we have I(G)n ⊃ R(G)(N) for some N . In
particular, the three filtrations define the same topology on R(G).

Proof. The statement is implied by the following two facts:

(1) For any n, there exists an approximation U/G of BG such that the kernel of the
homomorphism αU : R(G)→ K(U/G) is contained in I(G)n.

(2) For any approximation U/G of BG, the kernel of αU contains R(G)(N) for some N .

The second fact is easier. Let N = dim(U/G) + 1. Since αU respects Chow filtration,
we have

αU(R(G)
(N)) ⊂ K(U/G)(N) = 0.

Now we prove (1). Let us fix an embedding G ↪→ GL(m) for some m. For any N ,
consider the (N + 1)-approximation U/G = GL(m + N)/H of BG as in Example 3.2,

where H =

(
G ∗
0 GL(N)

)
. Note that R(H) = R(G×GL(N)) since the unipotent radical

of H acts trivially on all simple representations of H. Moreover, R(G × GL(N)) =
R(G)⊗R(GL(N)).
By a theorem in equivariant K-theory,

K(U/G) = K(GL(m+N)/H) = R(H)/IR(H) = [R(G)⊗R(GL(N))]/I[R(G)⊗R(GL(N))],

where I = I(GL(m+N)).
Under this identification, the homomorphism αU : R(G)→ K(U/G) (which we denote

below by αG) coincides with the natural (surjective) homomorphism

R(G)→ [R(G)⊗R(GL(N))]/I[R(G)⊗R(GL(N))].

It follows that

αG = αGL(m) ⊗R(GL(m)) R(G)

and therefore, the natural homomorphism

Ker(αGL(m))⊗R(GL(m)) R(G)→ Ker(αG)

is surjective.
We have U/GL(m) = Gr(m,m + N). In fact, the kernel of αGL(m) is generated by

some polynomials of degree at least N + 1 in the Chern classes cR1 , . . . , c
R
m ∈ R(GL(m))

of the standard representation of GL(m), where cRi is of degree i. Therefore, Ker(αG) is
generated by polynomials in the images of cR1 , . . . , c

R
m (these images are the Chern classes

of the G-representation given by the fixed embedding G ↪→ GL(m)) of degree > N and
will indeed be contained in I(G)n for sufficiently large N . �

4.3. Invariants with values in K. Let G be a group over F . We consider the group
of invariants Inv(G,K) with values in K-theory. Consider the approximations UN/G
defined in the Example 2.6. Note that there is a natural G-equivariant closed embedding
UN ↪→ UN+1 inducing an embedding UN/G ↪→ UN+1/G. By the proof of Theorem 4.5,
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the kernels JN of the natural surjections R(G) → K(UN/G) form a filtration that is
equivalent to any of the three filtrations considered above. Therefore,

lim
N
K(UN/G) ≃ R̂(G).

Here R̂(G) is the completion of R(G) with respect to the powers of the fundamental ideal,
i.e.,

R̂(G) = lim
N
(R(G)/I(G)N).

An invariant in Inv(G,K) evaluated on the G-torsors UN → UN/G for all N yields an

element in limN K(UN/G) = R̂(G). Thus we get a map

Inv(G,K)→ R̂(G).

Theorem 4.6. The map Inv(G,K)→ R̂(G) is an isomorphism.

Note that if G is a split reductive group with a split maximal torus, then R̂(G) =

R̂(T )
W

. It follows that the group of Zariski invariants InvZar(G,K) is naturally isomorphic
to Inv(G,K).
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