Disturbing the time capsule: Hydrothermal effects on zircon U-Pb ages

A Van Lankvelt*, DA Schneider, K Hattori
Department of Earth Sciences, University of Ottawa, Ottawa ON K1N 6N5, Canada
*Now at: Department of Geosciences, University of Massachusetts- Amherst, MA 01003-9297, USA

Introduction:
Zircon is generally considered a robust mineral for geochronology, as it can preserve its ages through high temperature metamorphism, partial melting, and weathering. In this study, we analyze zircons for U/Pb isotopes and trace elements via LA-ICP-MS at the University of New Brunswick. Our results are consistent with several origins of zircons, including crystallization from igneous precipitates, granite and pegmatite, and hydrothermal dissolution-reprecipitation. The textures and occurrences of altered zircons are consistent with other minerals, like monazite, which are susceptible to alteration.

Regional geology:
- North Caribou greenstone belt in North Caribou terrane of Superior Province
- Samples from TTO outcropping the North Caribou greenstone belt
- Muskelehite (structurally controlled, BIF-hosted, oregenic lode Au deposit) at center of belt
- Evidence for fluids include: isotopic and chlorine alteration and quartz veins
- Zircon textural evolution: 3-2.8 Ga formation of North Caribou terrane
- 3.7-2.6 Ga amalgamation of Superior craton

Igneous zircon:
- Outcrops may have complex textures (51, 52, 62, 63)
- Zircon textures
 - Oscillatory zoning
 - May have overgrowths (52)
 - Th/U ratios >0.3
 - May have many age populations
 - LREE depleted
 - Typical TTG compositions

Legend:
- Igneous zircon: Young cores
- Pegmatite with altered rims: Typical TTG compositions
- Pegmatite samples: Young age found only in rims
- Lower Th/U ratios in young zircon
- Enriched LREEs in young zircon

Zircon with altered rims:
- No pegmatite in outcrop
- Multiple age populations
- Young age found only in rims
- Lower Th/U ratios in young zircon
- Enriched LREEs in young zircon
- Old ages in some rims
- Pb trapped in rims
- Seen in altered monazite
- Cloudy resorption rims
- Parallel to zoning
- Crosscut zoning around cracks and inclusions
- Zoning in other minerals
- Typical TTG compositions

Pegmatite samples:
- Pegmatite intermingled with host rock in outcrop
- Rocks true granites
- One date from pegmatite (54)
- Multiple LA-ICP-MS dates
- Lower Th/U ratios in young population
- Young age found in both rims and cores
- Young ages in cores from neotectonic areas (53, 71)
- Depleted and enriched LREEs in young zircon
- Possible alteration associated with pegmatite intrusion? (54 zircons SEM shows altered cracks)

Summary:
- There is no single characteristic that can be used to discriminate between altered and pegmatitic zircons
- Source of LREEs: RC-bearing fluids relative to pegmatites (Van & Williams-Jones, 2013)?
- There is no single characteristic that can be used to discriminate between altered and pegmatitic zircons
- Enriched LREEs: Young cores Pegmatite
- Disrupted zoning in zircons

Acknowledgements and works cited:
This research was supported by a NSERC CRD 400220-10 in conjunction with Goldcorp's Muskelehite mine. Field support was provided by John Bluck of Muskelehite and Drive Consulting and Color Bulls of the University of Ottawa. AVL would like to thank Tath Kalinutch and Jason Duff (Meteors) and Mike Williams, Sheila Steen, Sven Reijns, and Jeff Morris (GEMET) for valuable discussions.