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Paleo-weathering

The Red Zone developed [
during the weathering of
the basement rocks and is
distinguished from the
Green zone by the
hematitization of Fe-
bearing minerals and the e
formation of kaolinite- EEEEEaE

Red Zone, weathering Speaas.
promoted chloritization in :
Green Zone. S
Figure 4: Drill-core and BT Oyt e e
thin section photos of jj_f' oy
pegmatite from the Red &, “B&3: €
Zone. Thin-section
photos show hematization &_ %%
and kaolinreplacing illite. 237

Diagenesis

Previous researchers have interpreted the Bleached Zone to have formed during weathering.
However, the Bleached Zone occurs above and below the unconformity as fine grained white-
yellow clay alteration that overprints the Red Zone. Thin sections of samples from the Bleached
Zone are dominated by primary quartz, secondary fine-grained kaolinite and two generations of
illite: early, fine-grained illite and late, coarse-grained illite. SWIR spectral analyses suggest a
mixture of kaolinite, illite and dickite, and the spectra are reproduced in all samples along the P2
iIndependent of mineralization. The evidence indicates that the formation of illite and kaolinite
was most likely a regional event. Therefore, the Bleached Zone was probably formed by K-
bearing diagenetic fluids during the deposition of the Athabasca Group.
Figure 5: A) A drill core
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Figure 6: Spectra A, Band C are DS,

most typical for samples.
Spectra D, K, IS, l and S (dickite,
kaolinite, 80% illite 20% sudoite
(Mg-Al chlorite), illite and
sudoite, respectively) are
spectra of Athabasca mineral
standards obtained from the
GSC. Spectrum A is interpreted
to be a mixture of dickite and
kaolinite (based on features 1
and 2 outlined in purple) and is
found most commonly within
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Hydrothermal alteration

Intense hydrothermal alteration occurs below the Zone 2 ore body at the McArthur River Mine,
between the P2 and VQ faults. It destroyed the original textures and produced aggregates of
white, yellow, green, red and blue clays. Blue clay is abundant along the VQ (H201) and P2
zone proximal to i) sub-economic mineralization (MC-370), and ii) in the Zone 2 ore-body
(H493). The blue clay yields SWIR spectrum of tourmaline. Other clays show spectra similar to
those of background samples.
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Flgure 7 Pervaswe hydrothermal alteration
C&.— In drill-core: A) yellow-white clay within the
& P2 fault zone below Zone 2 mineralization;
A4 B) red and green alteration within the P2
7 zone from MC-349; and C) green and yellow
. clay within the VQ fault zone within Zone 2.

Figure 8: Adrill-core photo and the 1 em
spectrum of blue clay alteration = 2
phase (MAC32; sandstone from = -
the P2 zone at the unconformity)
compared to those of Athabasca
standard clays: magnesiofoitite
(M), and 40% illite 10% kaolinite &
50% magnesiofoilite (I4K1M35). A
XPL photomicrograph shows radial
tourmaline from a metapelite-
breccia (MC370).
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Summary & on-going wc

The Green Zone formed during retrogression of regional metamorphism and was likely enhanced during
weathering. It is comprised of Fe-rich chlorite and fine-grained illite. The Red Zone formed during the weathering
and overprints the Green Zone, resulting in the formation of hematite and kaolinite. The Red Zone was overprinted
during the deposition of the Athabasca sandstones by the Bleached Zone, which formed dickite and coarse-
grained illite.

Boron was introduced during hydrothermal activity, forming tourmaline in the vicinity of uranium mineralization at
the McArthur River mine, P2 and VQ faults. Two types of hematitic alteration are identified: one associated with the
weathering Red Zone and a later one with hydrothermal activity.

lllite, kaolinite, chlorite and dickite are ubiquitous in the McArthur River mine and along the P2 fault. Although
SWIR is an efficient method in identifying mono-minerallic samples, it may yield ambiguous spectra from mixed
clays. Additional methods are necessary for the identification of mixed clays.

On-going work:
Mineral chemistry and crystal structures of individual alteration phases
XRD of mixed clay samples
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