Bulgarian Academy of Sciences Institute of Mathematics and Informatics

A NOTE ON ELEMENTARY DERIVATIONS

Joseph Khoury

Communicated by V. Drensky

ABSTRACT. Let R be a UFD containing a field of characteristic 0, and $B_m = R[Y_1, \ldots, Y_m]$ be a polynomial ring over R. It was conjectured in [5] that if D is an R-elementary monomial derivation of B_3 such that ker D is a finitely generated R-algebra then the generators of ker D can be chosen to be linear in the Y_i 's. In this paper, we prove that this does not hold for B_4 . We also investigate R-elementary derivations D of B_m satisfying one or the other of the following conditions:

- (i) D is standard.
- (ii) $\ker D$ is generated over R by linear constants.
- (iii) D is fix-point-free.
- (iv) $\ker D$ is finitely generated as an R-algebra.
- (v) D is surjective.
- (vi) The rank of D is strictly less than m.

2000 Mathematics Subject Classification: Primary: 14R10. Secondary: 14R20, 13N15. Key words: Derivations, Hilbert fourteenth problem.

1. Introduction. In this paper, unless otherwise noted, k is a field of characteristic 0, R is a UFD containing k and B is an R-algebra which is a polynomial ring in a finite number of variables over R. If m is a positive integer, then $R^{[m]}$ means the polynomial ring in m variables over R. If $B \cong R^{[m]}$, then a coordinate system of B over R is an element $(Y_1, \ldots, Y_m) \in B^m$ satisfying $B = R[Y_1, \ldots, Y_m]$. Recall that a derivation $D: B \to B$ is an additive map satisfying D(xy) = D(x)y + xD(y) for all $x, y \in B$. If $D(R) = \{0\}$, then we say that D is an R-derivation of B. D is called locally nilpotent if for every $x \in B$, there exists $n \geq 0$ such that $D^n(x) = 0$.

Definition 1.1. If $B = R^{[m]}$, then an R-derivation $D: B \to B$ is called R-elementary if there exists a coordinate system (Y_1, \ldots, Y_m) of B over R such that $DY_i \in R$ for all i.

In this case we have:

$$D = \sum_{i=1}^{m} a_i \frac{\partial}{\partial Y_i} \quad \text{(where } a_i \in R\text{)}.$$

Definition 1.2. Let $C = k^{[N]}$. A derivation $D: C \to C$ is elementary if, for some integers $m, n \geq 0$ such that m + n = N, there exists a coordinate system $(X_1, \ldots, X_n, Y_1, \ldots, Y_m)$ of C satisfying:

$$k[X_1, \dots, X_n] \subseteq \ker D$$
 and $\forall i, DY_i \in k[X_1, \dots, X_n].$

In this case, D is $k[X_1, \ldots, X_n]$ -elementary:

$$D = \sum_{i=1}^{m} a_i \frac{\partial}{\partial Y_i} \quad \text{(where } a_i \in k[X_1, \dots, X_n]).$$

An immediate consequence of the above definition is that all elementary derivations are locally nilpotent.

Definition 1.3. A derivation $D: B \longrightarrow B$ is called irreducible if the only principal ideal of B containing D(B) is B itself. A locally nilpotent derivation D is called fix-point-free if the ideal of B generated by the image of D is equal to B. A slice of D is an element $s \in B$ such that D(s) = 1.

It is clear that any surjective locally nilpotent derivation of B admits a slice. The converse is also true: if s is a slice of a locally nilpotent derivation D

of B and $y \in B$, let

$$x = \sum_{k=0}^{\infty} (-1)^k \frac{s^{k+1}}{(k+1)!} D^k(y)$$

then $x \in B$ since D is locally nilpotent and it is easy to verify that D(x) = y.

Knowing that a locally nilpotent derivation of a polynomial algebra admits a slice helps to understand the kernel of the derivation. More precisely, the following is a well known fact (see [8]).

Proposition 1.1. If $D: C \to C$ is a locally nilpotent R-derivation of an R-algebra C with a slice s, then

- 1. $C = A[s] = A^{[1]}$, where $A = \ker D$.
- 2. The map

$$\zeta: \quad C \quad \longrightarrow \quad C$$

$$x \quad \mapsto \quad \sum_{i>0} \frac{1}{i!} (-s)^i D^i(x)$$

is a homomorphism of R-algebras with image equal to ker D. In particular, if $C = R[Y_1, \ldots, Y_m]$ then

$$\ker D = R[\zeta(Y_1), \dots, \zeta(Y_m)].$$

R-derivations of B can be classified according to their rank:

Definition 1.4. The rank of an R-derivation D of B is defined to the least integer s ($0 \le s \le n$) for which there exists a coordinate system (X_1, \ldots, X_n) of B over R satisfying $R[X_1, \ldots, X_{n-s}] \subseteq \ker D$. In other words, rank D is the least number of partial derivatives of B needed to express D.

Clearly, the rank of D is zero if and only if D is the zero derivation.

Definition 1.5. Let $B = R[Y_1, ..., Y_m]$ and consider an R-elementary derivation

$$D = \sum_{i=1}^{m} a_i \, \partial_i \quad : \quad B \longrightarrow B$$

where $a_i \in R$ and $\partial_i = \partial/\partial Y_i$ for all i.

1. Any element of $\ker D$ of the form

$$r_1Y_1 + \dots + r_mY_m$$
 (where $r_i \in R$)

is said to be a linear constant of D.

2. Given
$$i, j \in \{1, ..., m\}$$
, define $L_{ij} = \frac{a_i}{g_{ij}} Y_j - \frac{a_j}{g_{ij}} Y_i$ where:

$$g_{ij} = \begin{cases} \gcd(a_i, a_j) & \text{if } a_i \neq 0 \text{ or } a_j \neq 0 \\ 1 & \text{if } a_i = 0 = a_j. \end{cases}$$

It is clear that $L_{ij} \in \ker D$, $L_{ii} = 0$ and $L_{ji} = -L_{ij}$ (for all i, j). We call the elements L_{ij} the standard linear constants of D.

3. If ker D is generated as an R-algebra by the standard linear constants, we say that D is a standard derivation.

This paper investigates R-elementary derivations $D: R^{[m]} \to R^{[m]}$ satisfying one or the other of the following conditions:

- (i) D is standard.
- (ii) ker D is generated over R by linear constants.
- (iii) D is fix-point-free.
- (iv) ker D is finitely generated as an R-algebra.
- (v) D is surjective.
- (vi) Rank D < m.

Studying the finite generation of the kernel of derivations of polynomial rings is closely related to the famous fourteenth's problem of Hilbert, that can be stated as follows

If L is a subfield of
$$k(X_1,...,X_n)$$
 (the quotient field of $k^{[n]}$), is $L \cap k[X_1,...,X_n]$ a finitely generated k-algebra?

Deveney and Finston ([3]) used a couterexample to Hilbert's fourteenth problem found by Roberts in 1990 ([6]) to prove that the kernel of the elementary derivation

$$D = X_1^{t+1} \frac{\partial}{\partial Y_1} + X_2^{t+1} \frac{\partial}{\partial Y_2} + X_3^{t+1} \frac{\partial}{\partial Y_3} + (X_1 X_2 X_3)^t \frac{\partial}{\partial Y_4}$$

of $k[X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4]$ is not finitely generated as a k-algebra for any $t \geq 2$.

To prove that the invariant subalgebras of some derivations in this paper are finitely generated we will use the following tool we proved in [5].

Proposition 1.2 ([5, Lemma 2.2]). Let $E \subseteq A_0 \subseteq A \subseteq C$ be integral domains, where E is a UFD. Suppose that some element d of $E \setminus \{0\}$ satisfies:

- $(A_0)_d = A_d$
- $pC \cap A_0 = pA_0$ for each prime divisor p of d, (in E)

then $A_0 = A$.

Using our notations, E plays the role of R, A plays the role of $\ker D$, A_0 is a subalgebra of $\ker D$ (which is a candidate for $\ker D$) and C plays the role of B.

2. Unimodular rows and variables. Recall that an element $F \in B \cong R^{[m]}$ is called a *variable* of B over R if there exists a coordinate system (F, F_2, \ldots, F_m) of B over R.

Given an element F of B, it is desirable to know if F is a variable over R. That question seems to be hard in general. In this section, we give a necessary and sufficient condition for a linear form to be a variable.

Definition 2.1. Let A be a ring and n a positive integer. An element (a_1, \ldots, a_n) of A^n is called a unimodular row of length n over A if $a_1b_1 + \ldots + a_nb_n = 1$ for some $b_1, \ldots, b_n \in A$. A unimodular row over A is called extendible if it is the first row of an invertible matrix over A. The ring A is called Hermite if every unimodular row over A is extendible.

It is well known that Hermite rings include:

- 1. polynomial rings over a field
- 2. Formal power series over a field
- 3. Laurent polynomials over a field
- 4. Any PID
- 5. Any complex Banach Algebra with a contractible maximal ideal space.

A well-known example of a non Hermite ring is the following.

Example 2.1. (M. Hochster, [4]) Let $R = \mathbb{R}[X,Y,Z]/(X^2 + Y^2 + Z^2 - 1) = \mathbb{R}[x,y,z]$ (x,y,z are the images of X,Y,Z in R respectively), then (x,y,z) is a unimodular row over R which is not extendible. So R is not Hermite.

Clearly any extendible unimodular row is unimodular. The converse holds in case of length 2 by the following (obvious) proposition.

Proposition 2.1. f A is an arbitrary ring (commutative with identity), then any unimodular row of length ≤ 2 over A is extendible.

We relate now the notion of a "linear variable" with that of "extendible unimodular row". First, a lemma.

Lemma 2.1. Let E be a domain, and $V = E[X_1, ..., X_n]$ be a polynomial ring in n variables over E. If $\gamma = (F_1, ..., F_n)$ is a coordinate system of V over E, then the determinant of the matrix

$$A = \left(\frac{\partial F_i}{\partial X_j}\right)_{1 < i, j < n}$$

is a unit of E.

Proposition 2.2. Let A be a domain, $(a_1, \ldots, a_n) \in A^n$ and $B = A[Y_1, \ldots, Y_n] = A^{[n]}$. Then the following conditions are equivalent:

- 1. The linear form $a_1Y_1 + \cdots + a_nY_n$ is a variable of B over A
- 2. (a_1, \ldots, a_n) is an extendible unimodular row of B over A.

Proof. Assume first that $F = a_1Y_1 + \cdots + a_nY_n$ is a variable of B over A, then $B = A[F, F_2, \dots, F_n]$ for some elements F_2, \dots, F_n of B. By Lemma ??,

$$\det(\mathcal{M}) \in R^*$$

where

$$\mathcal{M} = \left(\frac{\partial F_i}{\partial Y_j}\right)_{1 \le i, j \le n}$$

(with $F = F_1$). Sending all the variables to 0 in \mathcal{M} gives a matrix with entries in R and first row equal to (a_1, \ldots, a_n) . Relation (1) shows that the determinant of this matrix is a unit in A and hence (a_1, \ldots, a_n) is an extendible unimodular row of B over A.

For the converse, suppose that \mathcal{M} is an invertible matrix with entries in A and first row equal to (a_1, \ldots, a_n) . Let $(F_2, \ldots, F_n) \in B^{n-1}$ be such that

$$\mathcal{M}^{-1} \left[\begin{array}{c} F \\ F_2 \\ \vdots \\ F_n \end{array} \right] = \left[\begin{array}{c} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{array} \right].$$

This implies that $A[F, F_2, ..., F_n] \supseteq A[Y_1, ..., Y_n]$. Since the other inclusion is clear, $B = A[F, F_2, ..., F_n]$ and F is then a variable of B over $A \square$

3. Homogeneous derivations.

Definition 3.1. Let $C = \bigoplus_i C_i$ be a \mathbb{Z} -graded or an \mathbb{N} -graded ring. A derivation $D: C \to C$ is called homogeneous of degree n if there exists an integer n such that $D(C_i) \subseteq C_{i+n}$ for all i.

Consider the natural N-grading on $B = R[Y_1, \ldots, Y_m]$ where the degree of each element of R is zero and the degree of each of the variables in one. Every R-elementary derivation on B is then homogeneous of degree -1.

The following proposition will be used later in this paper.

Proposition 3.1. Let $B = R[Y_1, \ldots, Y_m]$ equipped with the natural \mathbb{N} -grading. If D is a homogeneous derivation of B that annihilates a variable of B over R, then D annihilates a variable of B over R which is a linear form in the Y_i 's (over R).

Proof. Suppose that $F \in \ker D$ is a variable of B over R. Without loss of generality, one can assume that the homogeneous part of degree 0 of F is zero. Write

$$F = F_{(1)} + F_{(2)} + \ldots + F_{(d)}$$

where d is the degree of F and $F_{(i)}$ is the homogeneous part of F of degree i. Choose $F_2, \ldots, F_m \in B$ such that $B = R[F, F_2, \ldots, F_m]$ and let

$$\mathcal{M} = \left(\frac{\partial F_i}{\partial Y_j}\right)_{1 \le i, j \le n}$$

(with $F = F_1$). Then \mathcal{M} is invertible by Lemma 2.1. Setting all the Y_i 's equal to zero in \mathcal{M} gives an element of $GL_m(R)$ whose first row is $(\alpha_1, \alpha_2, \ldots, \alpha_m)$ where

$$F_{(1)} = \alpha_1 Y_1 + \alpha_2 Y_2 + \dots + \alpha_m Y_m.$$

Proposition 2.2 shows that $F_{(1)}$ is a variable of B over R. On the other hand, the fact that D is homogeneous implies that each of the homogeneous components of F are in ker D. In particular $F_{(1)} \in \ker D$. \square

4. Standard derivations. We consider first the simple case of R-elementary derivations in dimension 2 (R is a UFD containing a field k).

Proposition 4.1. Every R-elementary derivation of $R^{[2]}$ is standard.

Proof. Let $B = R[Y_1, Y_2] = R^{[2]}$, and $D = a_1 \frac{\partial}{\partial Y_1} + a_2 \frac{\partial}{\partial Y_2}$ an R-elementary derivation of B. We may clearly assume that D is irreducible; i.e., a_1 and a_2 are relatively prime in R. Using Proposition 1.2, we will show that $\ker D = R[a_1Y_1 - a_2Y_2]$.

Let $F = a_1Y_2 - a_2Y_1$ and $R_0 = R[F]$. Then, $R_0 \subseteq \ker D$ and $(R_0)_{a_1} = (\ker D)_{a_1}$.

Let p be a prime divisor of a_1 , and let $x \in pB \cap R_0$; we show that $x \in pR_0$, the inclusion $pR_0 \subseteq pB \cap R_0$ being clear. For this, write $x = \Phi(F)$ for some $\Phi \in R[T] = R^{[1]}$ then the image $\overline{\Phi} \in \overline{R}[T]$ of Φ (where $\overline{R} = R/pR$) is in the kernel of the epimorphism

$$\alpha: \overline{R}[T] \longrightarrow \overline{R}[\overline{F}]$$

sending T to \overline{F} . Since \overline{F} is transcendental over \overline{R} , α is an isomorphism. Consequentely, $\overline{\Phi} = 0$ and $x \in pR_0$. \square

The implications $(i) \Longrightarrow (ii)$ and $(i) \Longrightarrow (iv)$ above (see the introduction) are true by the definition of standard derivations. By proposition 4.1, the $k[X_1, X_2]$ -elementary derivation

$$(2) X_1 \frac{\partial}{\partial Y_1} + X_2 \frac{\partial}{\partial Y_2}$$

of $k[X_1, X_2, Y_1, Y_2]$ is standard. Clearly, this derivation is not fix-point-free and consequently not surjective. This shows that $(i) \Longrightarrow (iii)$ and $(i) \Longrightarrow (v)$ are false in general. For the implication $(i) \Longrightarrow (vi)$, note that the derivation (2) above does not annihilate a variable of $k[X_1, X_2, Y_1, Y_2]$ over $k[X_1, X_2]$. Indeed, if $F \in k[X_1, X_2, Y_1, Y_2]$ is a variable of $k[X_1, X_2, Y_1, Y_2]$ over $k[X_1, X_2]$ such that D(F) = 0, then we may assume that $F = \alpha_1 Y_1 + \alpha_2 Y_2$ for some unimodular row (α_1, α_2) over $k[X_1, X_2]$ (Proposition 3.1). But the fact that D(F) = 0 implies that

$$X_1\alpha_1 + X_2\alpha_2 = 0$$

and hence the ideal generated by α_1 and α_2 in $k[X_1, X_2]$ is included in the ideal generated by X_1 and X_2 . This contradicts the fact that (α_1, α_2) is a unimodular row. We conclude that the rank of D is 2 and that the implication $(i) \Longrightarrow (vi)$ is false.

5. The case where ker D is generated by linear constants. The following theorem gives a counterexample "of rank m" to the implication $(ii) \Rightarrow (i)$ above.

Theorem 5.1. The kernel of the elementary derivation

$$D = (X_1^2 - X_2 X_3) \frac{\partial}{\partial Y_1} + (X_2^2 - X_1 X_3) \frac{\partial}{\partial Y_2} + (X_3^2 - X_1 X_2) \frac{\partial}{\partial Y_3}$$

of $B = k[X_1, X_2, X_3, Y_1, Y_2, Y_3]$ is generated by two linear constants (in fact it is a polynomial ring in two variables over $k[X_1, X_2, X_3]$) but D is not standard. Moreover the rank of D over $k[X_1, X_2, X_3]$ is 3.

Proof. Let $a_1 = X_1^2 - X_2X_3$, $a_2 = X_2^2 - X_1X_3$, $a_3 = X_3^2 - X_1X_2$, and let $R = k[X_1, X_2, X_3]$. Then a_1, a_2, a_3 are pairwise relatively prime elements of R. Consider the two elements of R

$$f = X_3Y_1 + X_1Y_2 + X_2Y_3$$
, $q = X_2Y_1 + X_3Y_2 + X_1Y_3$

and the usual standard linear constants

$$\begin{array}{rclcrcl} L_1 & = & a_3Y_2 - a_2Y_3 & = & X_3^2Y_2 - X_1X_2Y_2 - X_2^2Y_3 + X_1X_3Y_3 \\ L_2 & = & -a_3Y_1 + a_1Y_3 & = & -X_3^2Y_1 + X_1X_2Y_1 + X_1^2Y_3 - X_2X_3Y_3 \\ L_3 & = & a_2Y_1 - a_1Y_2 & = & X_2^2Y_1 - X_1X_3Y_1 - X_1^2Y_2 + X_2X_3Y_2. \end{array}$$

It is immediate that D(f) = D(g) = 0 and that the following relations are true

$$L_1 = -X_2f + X_3g$$
, $L_2 = -X_2f + X_1g$, $L_3 = -X_1f + X_2g$.

Let $R_0 := R[f,g]$, then $R[L_1,L_2,L_3] \subseteq R_0$. It is easy to see that $(R[L_1,L_2,L_3])_{a_3} = (\ker D)_{a_3}$, so $(R_0)_{a_3} = (\ker D)_{a_3}$. We will show that $\ker D = R[f,g]$; so, it is enough (Proposition 1.2) to show that $a_3B \cap R_0 \subseteq a_3R_0$. Let $\overline{R} = R/a_3R$ and consider the ring homomorphism

$$\phi: \overline{R}[T_1, T_2] \longrightarrow \overline{R}[\overline{f}, \overline{g}]$$

sending T_1 to \overline{f} and T_2 to \overline{g} . We claim that ϕ is an isomorphism. Indeed, since the elements \overline{f} and \overline{g} are not algebraic over \overline{R} , the transcendence degree of $\overline{R}[\overline{f},\overline{g}]$ over \overline{R} is either one or two. If it is one, then $\overline{f},\overline{g}$ are linearly dependent over $K:=\operatorname{qt}(\overline{R})$ and so there exists an $\overline{\alpha}\in\operatorname{qt}(\overline{R})^*$ such that $x_3=\overline{\alpha}x_2,\ x_1=\overline{\alpha}x_3,\ x_2=\overline{\alpha}x_1$ (where x_i is the image of X_i in \overline{R}); in particular, $x_2^2=x_1x_3$ in \overline{R} and so

$$X_2^2 = X_1 X_3 + (X_3^2 - X_1 X_2) \Upsilon$$

for some $\Upsilon \in R$. This is absurd. Thus, $\operatorname{trdeg}_{\overline{R}}\overline{R}[\overline{f},\overline{g}] = 2$, and so the height of $\ker \phi$ is zero. This shows that ϕ is injective, and hence an isomorphism. To finish the proof, consider an element $x = \Phi(f,g) = a_3b$ of $a_3B \cap R_0$ ($\Phi \in R[T_1,T_2]$ and

 $b \in B$). Then the image $\overline{\Phi}$ of Φ in $\overline{R}[T_1, T_2]$ is in the kernel of ϕ , and consequently it is zero, so $\Phi = a_3h$ for some $h \in R[T_1, T_2]$, and hence $x = \Phi(f, g) \in a_3R_0$ as desired. We conclude that $\ker D = R[f, g]$.

Next we prove that D is not standard. To see this, it is enough to notice that f is homogeneous of degree 2 in the X_i 's and the Y_j 's while each standard linear constant is homogeneous of degree 3. In other words, $f \in \ker D \setminus R[L_1, L_2, L_3]$ where L_1, L_2, L_3 are the standard linear constants of D.

We finish by proving that the rank of D over $k[X_1, X_2, X_3]$ is 3. Suppose on the contrary that rank D < 3, then D annihilates a variable F of $k[X_1, X_2, X_3, Y_1, Y_2, Y_3]$ over $k[X_1, X_2, X_3]$. By Propostion 3.1, we may assume that $F = \alpha_1 Y_1 + \alpha_2 Y_2 + \alpha_3 Y_3$ for some unimodular row $(\alpha_1, \alpha_2, \alpha_3)$ of $k[X_1, X_2, X_3]$. Since D(F) = 0, we have

$$(3) (X_1^2 - X_2 X_3)\alpha_1 + (X_2^2 - X_1 X_3)\alpha_2 + (X_3^2 - X_1 X_2)\alpha_3 = 0.$$

Sending the variables X_2, X_3 to 0 in (3) simultaneously shows that $\alpha_1(X_1, 0, 0) = 0$, so $\alpha_1 \in (X_1, X_2, X_3)k[X_1, X_2, X_3]$; similarly, $\alpha_2, \alpha_3 \in (X_1, X_2, X_3)k[X_1, X_2, X_3]$ and this contradicts the fact that $1 \in (\alpha_1, \alpha_2, \alpha_3)k[X_1, X_2, X_3]$. \square

Remark 5.1. The main result in [5] treats the case of elementary derivations $D = \sum_{i=1}^{3} a_i \frac{\partial}{\partial Y_i}$ of $R[Y_1, Y_2, Y_3]$ where for some $i \in \{1, 2, 3\}$, R/pR is a UFD for every prime divisor p of a_i . With the notation of Theorem 5.1, each a_i is prime and R/a_iR is not a UFD.

Remark 5.2. The above theorem shows that the condition "fix-point-free" of Theorem 6.1 below is not superfluous. The Theorem also gives an example of a derivation satisfying condition (ii) above but neither of the conditions (iii), (v) and (vi) (clearly, D is not fix-point-free and hence not surjective).

The above theorem can be used to construct counterexamples to the implication $(ii) \Longrightarrow (i)$ of derivations D satisfying "rank D < n". First some notations. Let m and n be two positive integers such that m < n, $B_n = R[Y_1, \ldots, Y_n]$, $B_m = R[Y_1, \ldots, Y_m]$. Let $D = \sum_{i=1}^m a_i \frac{\partial}{\partial Y_i}$ be an R-elementary derivation of B_m .

Proposition 5.1. D is standard as an R-elementary derivation of B_m if and only if it is standard as an R-elementary derivation of B_n .

Proof. Consider D as a derivation of B_n . The following two facts finish the proof:

• The standard linear constants of D are the L_{ij} 's (as defined above) with $1 \le i < j \le m$ and Y_{m+1}, \ldots, Y_n .

• ker $D = C[Y_{m+1}, ..., Y_n]$ where C is the kernel of D as a derivation of B_m . \square

We prove next that the implication $(ii) \Longrightarrow (iv)$ is true in the case of a noetherian ring. Namely, we have the following proposition.

Proposition 5.2. Let R be a noetherian domain of characteristic zero, $B = R[Y_1, \ldots, Y_m]$ and $D = \sum_{i=1}^m a_i \frac{\partial}{\partial Y_i}$ an R-elementary derivation of B. If ker D is generated over R by linear forms, then it is a finitely generated R-algebra.

Proof. Let M be the set of all linear constants of D, then clearly M is an R-module. If $D = \sum_{i=1}^{m} a_i \frac{\partial}{\partial Y_i}$ where $a_i \in R$, then it is clear that M is isomorphic as an R-module to the submodule

$$N = \left\{ (\alpha_1, \dots, \alpha_m) \in R^m; \ (a_1 \dots a_m) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{pmatrix} = 0 \right\}$$

of R^m . Since R is noetherian, R^m is noetherian and N is finitely generated R-module. \square

6. Fix-point-free R-elementary derivations. Let C be an integral domain containing \mathbb{Q} , and let $D: C \longrightarrow C$ be a locally nilpotent derivation. It is well-known that there is an associated \mathbf{G}_a -action, $\alpha: \mathbf{G}_a \times \operatorname{Spec} C \to \operatorname{Spec} C$, and it turns out that the set of fixed points of α is the closed subset V(I) of $\operatorname{Spec} C$, where I denotes the ideal (DC) of C generated by DC (the image of D). In particular, α is fix-point-free if and only if (DC) = C. This motivates the definition of fix-point-free derivation given in Definition 1.3.

Obviously, if a derivation of B admits a slice then it is fix-point-free. It is well-known that the converse is not true in general. The following proposition proves, among other things, that the converse holds for elementary derivations.

Proposition 6.1. Let R be a domain containing \mathbb{Q} . If $B = R[Y_1, \ldots, Y_m] = R^{[m]}$, and $D: B \to B$ an R-elementary derivation, then:

- 1. If D is fix-point-free, then it admits a slice. Moreover, ker D can be generated by m linear constants.
- 2. If D is fix-point-free and R is Hermite, then there exists a coordinate system (Z_1, \ldots, Z_m) of B over R related to (Y_1, \ldots, Y_m) by a linear change of variables, such that $D = \partial/\partial Z_m$.

Proof. Write $D = \sum_{i=1}^m a_i \partial_i$ where $a_i \in R$ and $\partial_i = \partial/\partial Y_i$. If D is fixpoint-free then $1 \in (DY_1, \dots, DY_m)$ so $\sum_{i=1}^m a_i r_i = 1$ for some $(r_1, \dots, r_m) \in R^m$. Consequently, $s = \sum_{i=1}^m r_i Y_i$ is a slice of D and by Proposition 1.1, $B = A[s] = A^{[1]}$ where $A = \ker D$. Also, Proposition 1.1 shows that $\ker D = R[\zeta(Y_1), \dots, \zeta(Y_m)]$ where ζ is the homomorphism of R-algebras:

$$\begin{array}{cccc} \zeta: & B & \longrightarrow & B \\ & x & \mapsto & \sum_{i>0} \frac{1}{i!} (-s)^i D^i(x) \end{array}.$$

In particular, each $\zeta(Y_i)$ is a linear constant.

If R is a Hermite ring, then $(r_1 \ldots r_m)$ is extendible, i.e., it is the first row of a matrix $U \in \mathrm{Gl}_m(R)$ and it follows that s is a variable of B over R by Proposition 2.2. A closer look at the proof of Proposition 2.2 shows that we can write $B = R[s_1, \ldots, s_{m-1}, s]$ for some linear forms s_1, \ldots, s_{m-1} of B. For $1 \leq i \leq m-1$, take $Z_i = \zeta(s_i)$ then Z_i is a linear form in the Y_i 's and by Proposition 1.1 (using $\zeta(s) = 0$) we get that $A = R[Z_1, \ldots, Z_{m-1}]$. Let $Z_m = s$, then by Proposition 2.2 again $B = A[Z_m] = R[Z_1, \ldots, Z_m]$, and $D = \partial/\partial Z_m$. Note that (Z_1, \ldots, Z_m) is a coordinate system of B over R related to (Y_1, \ldots, Y_m) by a linear change of variables. \square

Remark 6.1. Proposition 6.1 shows in particular that if $D: B \to B$ is fix-point-free elementary derivation of B, then D is surjective (since it has a slice) and ker D is finitely generated over R by m linear constants.

Remark 6.2. In the above proposition, R needs not to be a UFD. It suffices that R is any domain containing the rationals.

We prove next that "fix-point-free" implies "standard" in the easy case where the image under D of one of the Y_i 's is a unit. Namely:

Proposition 6.2. Let $R \supseteq \mathbb{Q}$ be a UFD, $B = R[Y_1, \dots, Y_m] = R^{[m]}$ and $D: B \to B$ an R-elementary derivation. If $DY_i \in R^*$ for some i, then $\ker D$ is generated by m-1 standard linear constants.

Proof. We may assume that $DY_1 \in R^*$. Define $s = (DY_1)^{-1}Y_1$, then s is a slice of D and consequently the map $B \ \overline{\zeta} \ B$ defined by $\xi(x) = \sum_{j \geq 0} \frac{1}{j!} (-s)^j D^j(x)$ is a homomorphism of R-algebras with image equal to $\ker D$. Thus $\ker D = R[\zeta(Y_1), \ldots, \zeta(Y_m)]$ and we are done since $\zeta(Y_j) = Y_j - (DY_j)s = L_{1,j}$ for each j. \square

We prove now the main result of this section.

Theorem 6.1. Let $R \supseteq \mathbb{Q}$ be a UFD, $B = R[Y_1, \dots, Y_m] = R^{[m]}$ and $D: B \to B$ an R-elementary derivation. If D is fix-point-free, then it is standard.

Proof. By Proposition 6.1,

$$\ker D = R[\xi(Y_1), \dots, \xi(Y_m)],$$

where each $\xi(Y_i) = Y_i - a_i s$ is a linear constant. We obtain:

(4) $\ker D$ is generated as an R-algebra by m linear constants.

So it suffices to show that each linear constant is a linear combination (over R) of the standard linear constants. In other words, we have to show that the R-module T(D) is trivial, where:

LC(D) = set of linear constants of D (an R-submodule of ker D),

SLC(D) = R-submodule of LC(D) generated by the standard linear constants,

T(D) = LC(D)/SLC(D).

Let \mathfrak{m} be a maximal ideal of R and consider the derivation $D_{\mathfrak{m}}: B_{\mathfrak{m}} \to B_{\mathfrak{m}}$ obtained by localization at the set $R \setminus \mathfrak{m}$. Now $R_{\mathfrak{m}}$ is a UFD, $B_{\mathfrak{m}} = R_{\mathfrak{m}}[Y_1, \ldots, Y_m] = R_{\mathfrak{m}}^{[m]}$ and $D_{\mathfrak{m}} = \sum_{i=1}^m a_i \partial_i$ is an $R_{\mathfrak{m}}$ -elementary derivation. Since D is fix-point-free, we have $(a_1, \ldots, a_m)R \not\subseteq \mathfrak{m}$ so, for some i, a_i is a unit of $R_{\mathfrak{m}}$. By Proposition 6.2, $D_{\mathfrak{m}}$ is standard, so $T(D_{\mathfrak{m}}) = 0$. It is immediate that $LC(D_{\mathfrak{m}}) = LC(D)_{\mathfrak{m}}$ and $SLC(D_{\mathfrak{m}}) = SLC(D)_{\mathfrak{m}}$, so $T(D_{\mathfrak{m}}) = T(D)_{\mathfrak{m}}$ and we have shown:

$$T(D)_{\mathfrak{m}} = 0$$
 for all maximal ideals \mathfrak{m} of R .

We conclude that T(D) = 0 and the result follows. \square

So far we have shown that the implications $(iii) \Longrightarrow (i)$, $(iii) \Longrightarrow (ii)$, $(iii) \Longrightarrow (iv)$ and $(iii) \Longrightarrow (v)$ are all true. By Proposition 6.1, we also know that $(iii) \Longrightarrow (vi)$ is true in the case of Hermite rings. In this case, we can actually say a lot more: the rank of the derivation is one and hence it is "conjugate to a partial derivative".

If R is not Hermite, we don't know if $(iii) \Longrightarrow (vi)$ is true or not. However, the following gives an example of a fix-point-free elementary derivation which is not "conjugate to a partial derivative" of B.

Proposition 6.3. Let $R = \mathbb{R}[x,y,z]$ be as in Example 2.1 above, and let $B = R[Y_1,Y_2,Y_3] \cong R^{[3]}$. Let $D = x\frac{\partial}{Y_1} + y\frac{\partial}{Y_2} + z\frac{\partial}{Y_3}$. Then D is fix-point-free R-elementary derivation of B satisfying rank $D \geq 2$.

Proof. Let $s=xY_1+yY_2+zY_3\in B$, then $D(s)=x^2+y^2+z^2=1$ in R, and s is then a slice of D. In particular D is fix-point-free, and $B=A[s]\cong A^{[1]}$ where $A=\ker D$. We prove next that rank $D\geq 2$. Clearly rank $D\neq 0$, so it suffices to show that rank $D\neq 1$. Assume that rankD=1, then one can find a coordinate system (F,G,H) of B over R such that $D=\Phi(F,G,H)\frac{\partial}{\partial H}$ for some $\Phi\in R^{[3]}$. Clearly, A=R[F,G] and so $B=A[s]=\mathbb{R}[F,G,s]$. Thus, s is a variable of B over R. By Prosition 2.2, (x,y,z) is an extendible unimodular row. This is a contradiction (see Example 2.1) \square

7. The case where ker D is finitely generated as an R-algebra.

It was conjectured in [5] that if D is an R-elementary monomial derivation of $R[Y_1, Y_2, Y_3]$ such that ker D is a finitely generated R-algebra then the generators of ker D can be chosen to be linear in the Y_i 's. In this section we prove that this is not always the case. Theorem 7.1 gives a counterexample to the implications $(iv) \Longrightarrow (i), (iv) \Longrightarrow (ii), (iv) \Longrightarrow (iii).$

Theorem 7.1. The kernel of the derivation

$$D = X_1^2 \frac{\partial}{\partial Y_1} + X_2^2 \frac{\partial}{\partial Y_2} + X_3^2 \frac{\partial}{\partial Y_3} + X_2 X_3 \frac{\partial}{\partial Y_4}$$

of $k[X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4] \cong k^{[7]}$ is a finitely generated $k[X_1, X_2, X_3]$ -algebra which cannot be generated over $k[X_1, X_2, X_3]$ by linear forms in the Y_i 's.

To that end we will use Proposition 1.2 and the elimination theory of Groebner bases. Regarding Groebner bases, S-polynomials and Buchberger's criteria, the reader may refer to ([1]).

Consider the following elements of $\ker D$

$$\begin{split} L_{12} &= X_1^2 Y_2 - X_2^2 Y_1 & L_{13} &= X_1^2 Y_3 - X_3^2 Y_1 \\ L_{14} &= X_1^2 Y_4 - X_2 X_3 Y_1 & L_{24} &= X_2 Y_4 - X_3 Y_2 \\ L_{34} &= X_3 Y_4 - X_2 Y_3 & L_{24} &= X_2 Y_4 - X_3 Y_2 \\ f &= X_1^2 Y_4^2 - X_1^2 Y_2 Y_3 + X_3^2 Y_1 Y_2 + X_2^2 Y_1 Y_3 - 2 X_2 X_3 Y_1 Y_4. \end{split}$$

We will prove that $\ker D = k[X_1, X_2, X_3, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}]$. For this, let k[X, Y, T] denote the polynomial ring

$$k[X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4, T_1, T_2, T_3, T_4, T_{12}, T_{13}, T_{14}, T_{24}, T_{34}]$$

in 16 variables and let I be the ideal of k[X,Y,T] generated by the elements

$$T_1 - X_1, T_2 - X_2, T_3 - X_3, T_4 - f, T_{12} - L_{12}, T_{13} - L_{13},$$

 $T_{14} - L_{14}, T_{24} - L_{24}, T_{34} - L_{34}, X_1.$

The next lemma gives a Groebner basis for the ideal I. The elements of this basis will be used in computing the generators of $\ker D$. The proof of the lemma is left to the reader.

Lemma 7.1. A Groebner basis for I with respect to the lexicographic order on k[X, Y, T] with

$$X_1 > X_2 > X_3 > Y_1 > \dots > Y_4 > T_1 > \dots > T_4 > T_{12} > T_{13} > T_{14} > T_{24} > T_{34}$$

```
is given by the elements
```

$$g_1 = -T_2 + X_2$$

$$g_2 = -T_3 + X_3$$

$$g_3 = X_1$$

$$g_4 = Y_1 T_2^2 + T_{12}$$

$$g_5 = Y_1 T_3^2 + T_{13}$$

$$g_5 = Y_1 T_3^2 + T_{13}$$

$$g_6 = Y_1 T_2 T_3 + T_{14}$$

$$g_7 = T_1$$

$$g_8 = -Y_4 T_2 + T_{24} + T_3 Y_2$$

$$g_9 = Y_3T_2 - Y_4T_3 + T_{34}$$

$$g_{10} = Y_2 T_{13} + Y_3 T_{12} - 2Y_4 T_{14} + T_4$$

$$g_{11} = -T_3T_{12} + T_{14}T_2$$

$$g_{12} = T_2 T_{13} - T_3 T_{14}$$

$$g_{13} = T_4 + Y_1 T_3 T_{24} + Y_3 T_{12} - Y_4 T_{14}$$

$$g_{14} = -Y_2 T_{14} + Y_1 T_2 T_{24} + Y_4 T_{12}$$

$$g_{15} = Y_1 T_2 T_{34} - Y_3 T_{12} + Y_4 T_{14}$$

$$g_{16} = -Y_3 T_{14} + Y_1 T_3 T_{34} + Y_4 T_{13}$$

$$g_{17} = T_3 Y_3 T_{12} - T_3 Y_4 T_{14} + T_{14} T_{34}$$

$$g_{18} = Y_3 T_{12} T_{34} + Y_3 T_{14} T_{24} - Y_4 T_{13} T_{24} - Y_4 T_{14} T_{34} + T_4 T_{34}$$

$$g_{19} = -T_{14}^2 + T_{12}T_{13}$$

$$g_{20} = -T_{14}T_{34} + T_3T_4 - T_{13}T_{24}$$

$$g_{21} = T_2 T_4 - T_{14} T_{24} - T_{12} T_{34}$$

$$g_{22} = -T_{13}Y_4T_3 + T_{13}T_{34} + Y_3T_3T_{14}$$

$$g_{23} = r_1 r_{24} - r_2 r_3 r_{12} - r_2 r_4 + r_4 r_{12}$$

$$g_{23} = Y_1 T_{24}^2 - Y_2 Y_3 T_{12} - Y_2 T_4 + Y_4^2 T_{12}$$

$$g_{24} = Y_1 T_{24} T_{34} + Y_3 Y_2 T_{14} + Y_4 T_4 - Y_4^2 T_{14}$$

$$g_{25} = T_{14}^2 Y_2 - 2Y_4 T_{14} T_{12} + T_4 T_{12} + Y_3 T_{12}^2$$

$$g_{26} = Y_1 T_{34}^2 + Y_3^2 T_{12} - 2Y_3 Y_4 T_{14} + Y_4^2 T_{13}$$

$$g_{27} = T_{34} Y_2 T_{14} - T_{34} Y_4 T_{12} - T_{24} Y_3 T_{12} + T_{24} Y_4 T_{14}$$

$$g_{28} = T_{13} Y_3 T_{14} T_{24} + Y_3 T_{34} T_{14}^2 - Y_4 T_{13}^2 T_{24} - T_{13} Y_4 T_{14} T_{34} + T_{13} T_4 T_{34}.$$

We prove next that $\ker D = k[X_1, X_2, X_3, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}].$

Let k[T] and k[X,Y] denote respectively the polynomial rings $k[T_1,T_2,T_3,T_4,T_{12},T_{13},T_{14},T_{24},T_{34}]$ and $k[X_1,X_2,X_3,Y_1,Y_2,Y_3,Y_4]$. Let $A_0=k[X_1,X_2,X_3,f,L_{12},L_{13},L_{14},L_{24},L_{34}]$, then $A_0\subseteq\ker D$ and $(A_0)_{X_i}=(\ker D)_{X_i}$ for i=1,2,3. By Proposition 1.2, it is enough to show that $X_1k[X,Y]\cap A_0\subseteq X_1A_0$ (the other inclusion being obvious). So let $x\in X_1k[X,Y]\cap A_0$ and choose $z\in k[X,Y], \Phi\in k[T]$ such that $x=\Phi(X_1,X_2,X_3,f,L_{12},L_{13},L_{14},L_{24},L_{34})=X_1z$. This means that Φ is in the kernel of the homomorphism

$$\theta: k[T] \xrightarrow{\psi} A_0 \hookrightarrow k[X,Y] \xrightarrow{\pi} k[X,Y]/(X_1)$$

where π is the canonical epimorphism and ψ sends T_i to X_i , $i = 1, 2, 3, T_4$ to f and T_{jk} to L_{jk} . Also, consider the homomorphism

$$\kappa: k[X, Y, T] \xrightarrow{\sigma} k[X, Y] \xrightarrow{\pi} k[X, Y]/(X_1)$$

where σ is the homomorphism sending X_i to X_i , Y_i to Y_i (i = 1, 2, 3, 4), T_i to X_i (i = 1, 2, 3), T_4 to f, and T_{ij} to L_{ij} . It is clear that θ is the restriction of κ to k[T] and hence

(5)
$$\ker \theta = \ker \kappa \cap k[T].$$

We claim that $\ker \kappa$ is the ideal I (considered above) of k[X,Y,T] generated by the elements

$$X_1, T_1 - X_1, T_2 - X_2, T_3 - X_3, T_4 - f, T_{12} - L_{12}, T_{13} - L_{13},$$

 $T_{14} - L_{14}, T_{24} - L_{24}, T_{34} - L_{34}.$

Indeed, let $\Gamma = (\gamma_1, \dots, \gamma_{16})$ be the 16-tuple

$$(X_1, X_2, X_3, Y_1, Y_2, Y_3, Y_4, T_1 - X_1, T_2 - X_2, T_3 - X_3, T_4 - f, T_{12} - L_{12}, T_{13} - L_{13}, T_{14} - L_{14}, T_{24} - L_{24}, T_{34} - L_{34}).$$

Clearly, Γ is a coordinate system of k[X, Y, T], that is

$$k[X, Y, T] = k[\gamma_1, \dots, \gamma_{16}].$$

The domain and codomain of κ are respectively $k[\Gamma]$ and $k[\gamma_1, \ldots, \gamma_7]/(\gamma_1)$ and κ is defined by

$$\kappa(\gamma_i) = \begin{cases} 0, & \text{if } i = 1 \text{ or } i > 7\\ \gamma_i + (\gamma_i), & \text{if } 2 \le i \le 7. \end{cases}$$

So we have

$$\ker \kappa = \langle \gamma_1, \gamma_8, \gamma_9, \dots, \gamma_{16} \rangle = I,$$

and the claim is proved.

Using the elimination theory, we know that the set $\Sigma = \{g_7, g_{11}, g_{12}, g_{19}, g_{20}, g_{21}\}$ generates the ideal $I \cap k[T]$ of k[T]. Hence,

(6)
$$\Phi = \sum \xi_i h_i(T)$$

where $\xi_i \in k[T]$ and $h_i \in \{g_7, g_{11}, g_{12}, g_{19}, g_{20}, g_{21}\}$. On the other hand, one can easily verify the following identities:

$$\psi(g_7) = X_1
\psi(g_{11}) = -X_3L_{12} + X_2L_{14} = X_1^2L_{24}
\psi(g_{12}) = -X_3L_{14} + X_2L_{13} = -X_1^2L_{34}
\psi(g_{19}) = -L_{14}^2 + L_{12}L_{13} = X_1^2f
\psi(g_{20}) = -L_{14}L_{34} + X_3f - L_{13}L_{24} = 0
\psi(g_{21}) = X_2f - L_{14}L_{24} - L_{12}L_{34} = 0.$$

This means that $x = \Phi(X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}, f) \in X_1A_0$, and consequentely

$$\ker D = k[X_1, X_2, X_3, f, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}].$$

The next two lemmas show that ker D cannot be generated over $k[X_1, X_2, X_3]$ by linear forms in the Y_i 's.

Lemma 7.2. With the above notation, if L is an element of ker D of the form

$$L = \alpha_1 Y_1 + \dots + \alpha_4 Y_4$$

for some $\alpha_1, \ldots, \alpha_4 \in k[X_1, X_2, X_3]$, then

$$L \in k[X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}].$$

Proof. If L is a linear form in the Y_i 's over k[X1, X2, X3] in ker D, then L has the form

$$L = \alpha_1 Y_1 + \alpha_2 Y_2 + \alpha_3 Y_3 + \alpha_4 Y_4$$

where $\alpha_i \in k[X_1, X_2, X_3]$ $i \in \{1, 2, 3, 4\}$. Since $L \in \ker D$, we have

(7)
$$\alpha_1 X_1^2 + \alpha_2 X_2^2 + \alpha_3 X_3^2 + \alpha_4 X_2 X_3 = 0.$$

Let $\phi = \alpha_1 X_1^2 + \alpha_2 X_2^2 + \alpha_3 X_3^2$, then equation (7) shows that both X_2 and X_3 are divisors of ϕ . Taking equation (7) modulo X_2 gives that

$$(8) X_1^2 \alpha_{12} + X_3^2 \alpha_{32} = 0$$

where $\alpha_{12}=\alpha_1\mid_{X_2=0}$ and $\alpha_{32}=\alpha_3\mid_{X_2=0}$. Since X_1 and X_3 are relatively prime, equation (8) implies that $\alpha_1=-X_3^2\beta_{32}+X_2\beta_1$ and $\alpha_3=X_1^2\beta_{32}+X_2\beta_3$ for some $\beta_1,\beta_3\in k[X_1,X_2,X_3]$ and β_{32} in $k[X_1,X_3]$. After simplification we find

(9)
$$\phi = X_1^2 X_2 \beta_1 + X_2 X_3^2 \beta_3 + \alpha_2 X_2^2.$$

Since X_3 is a divisor of ϕ , equation (9) implies that

$$X_1^2 X_2 \beta_1 \mid_{X_3=0} + X_2^2 \alpha_2 \mid_{X_3=0} = 0.$$

Consequently, $\alpha_2 = X_1^2 u + X_3 v$ and $\beta_1 = -X_2 u + X_3 w$ for some $u \in k[X_1, X_2]$ and $v, w \in k[X_1, X_2, X_3]$. Replacing these values of α_2 and β_1 in the expression (9) of ϕ , we get

$$\phi = X_2 X_3 (X_1^2 w + X_3 \beta_3 + X_2 v)$$

and consequently $\alpha_4 = -\phi/(X_2X_3) = -(X_1^2w + X_3\beta_3 + X_2v)$. Hence,

$$\alpha_1 = -X_2^2 u - X_3^2 \beta_{32} + X_2 X_3 w$$

$$\alpha_2 = X_1^2 u + X_3 v$$

$$\alpha_3 = X_1^2 \beta_{32} + X_2 \beta_3$$

$$\alpha_4 = -(X_1^2 w + X_3 \beta_3 + X_2 v)$$

and so

$$L = \alpha_1 Y_1 + \alpha_2 Y_2 + \alpha_3 Y_3 + \alpha_4 Y_4$$

$$= u(X_1^2 Y_2 - X_2^2 Y_1) + \beta_{32}(X_1^2 Y_3 - X_3^2 Y_1)$$

$$+ v(X_3 Y_2 - X_2 Y_3) - w(X_1^2 Y_4 - X_2 X_3 Y_1)$$

$$+ \beta_3 (X_2 Y_3 - X_3 Y_2)$$

$$\in k[X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}]. \square$$

Lemma 7.3. With the above notation,

$$f \notin k[X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}].$$

Proof. If $f \in k[X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}]$, we can choose a polynomial Φ in

$$E := k[X_1, X_2, X_3, U_1, U_2, U_3, U_4, U_5]$$

such that

(10)
$$f = \Phi(X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34}).$$

Consider the \mathbb{N}^2 -grading on k[X,Y] defined by declaring $k \subseteq k[X,Y]_{(0,0)}$ and $\deg(X_i) = (1,0)$, $\deg(Y_j) = (0,1)$ for $i \in \{1,2,3\}$ and $j \in \{1,2,3,4\}$. Also define a similar \mathbb{N}^2 -grading on E by $k \subseteq E_{(0,0)}$ and $\deg(X_i) = (1,0)$, $\deg(U_j) = (2,1)$ for $j \in \{1,2,3\}$, and $\deg(U_4) = \deg(U_5) = (1,1)$. Write

$$\Phi = \Phi_{d_1} + \Phi_{d_2} + \cdots + \Phi_{d_r}$$

where Φ_{d_i} is the homogeneous component of Φ of degree $d_i \in \mathbb{N}^2$. Since the elements $L_{12}, L_{13}, L_{14}, L_{24}, L_{34}$ are all homogeneous with respect to the \mathbb{N}^2 -grading on k[X,Y] defined above, it is easy to check that

$$\Phi_{d_i}(X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34})$$

is either zero or homogeneous of degree d_i , for all $i \in \{1, ..., r\}$. Also, since f is a homogeneous element of degree (2, 2) of k[X, Y], equation (10) implies that

$$f = \Phi_{(2,2)}(X_1, X_2, X_3, L_{12}, L_{13}, L_{14}, L_{24}, L_{34})$$

and this can only happen if

$$f = aL_{24}^2 + bL_{34}^2 + cL_{24}L_{34}$$

for some $a, b, c \in k$. Indeed, a homogeneous element of degree (2, 2) of E can only be a linear combination of U_4^2 , U_5^2 and U_4U_5 because of the degrees of the X_i 's and the U_i 's defined above.

Now equation (11) implies that $f \in k[X_2, X_3, Y_2, Y_3, Y_4]$, which is absurd. \square

Theorem 7.1 is now a direct consequence of the above two lemmas.

8. The property of being elementary. Let $B = R^{[m]}$, where R is a UFD containing the rationals; given an irreducible locally nilpotent derivation D of B, can we determine whether D is R-elementary? (That is, can we decide whether there exists a coordinate system (Y_1, \ldots, Y_m) of B over R satisfying $DY_i \in R$ for all i?)

An answer in general seems to be hard. The present section answers the question in the case where R is a PID and m=2.

We start with two well known facts:

Proposition 8.1 ([2]). Let R be a UFD containing \mathbb{Q} and let $D \neq 0$ be a locally nilpotent R-derivation of $B = R[Y_1, Y_2] \cong R^{[2]}$. Then there exists $P \in B$ and $\alpha \in \ker D$ such that $\ker D = R[P]$ and $D = \alpha \left(P_{Y_2} \frac{\partial}{\partial Y_1} - P_{Y_1} \frac{\partial}{\partial Y_2}\right)$.

Proposition 8.2 ([7]). Let R be a \mathbb{Q} -algebra, let $P \in B = R[Y_1, Y_2] \cong R^{[2]}$ and define $\Delta_P = P_{Y_2} \frac{\partial}{\partial Y_1} - P_{Y_1} \frac{\partial}{\partial Y_2} : B \to B$. Then the following are equivalent.

- 1. P is a variable of B over R
- 2. D is locally nilpotent, has a slice and $\ker D = R[P]$.

Lemma 8.1. Let R be PID containing \mathbb{Q} , $B = R^{[m]}$ and $D: B \to B$ an irreducible R-derivation. The following are equivalent:

- 1. D is R-elementary
- 2. $D = \partial/\partial Z_1$ for some coordinate system (Z_1, \ldots, Z_m) of B over R.

Proof. If D is R-elementary, then there exists a coordinate system (Y_1,\ldots,Y_m) of B over R satisfying $DY_i\in R$ for all i. Let $a_i=DY_i$ for each i. Since R is a PID, $(a_1,\ldots,a_m)B$ is a principal ideal of B and it follows that $(a_1,\ldots,a_m)B=B$ by the irreducibility of D; so D is fix-point-free. As R is Hermite (every PID is Hermite), Proposition 6.1 implies that condition (2) holds. The converse is clear. \square

Proposition 8.3. Let R be PID containing \mathbb{Q} , $B = R^{[2]}$ and $D : B \to B$ an irreducible R-derivation. The following are equivalent:

- 1. D is R-elementary
- 2. D is locally nilpotent and fix-point-free.

Proof. By Lemma 8.1, it is clear that (1) implies (2). If (2) holds, let (Y_1, Y_2) be any coordinate system of B over R; then Propositions 8.1 and 8.2 imply that, for some variable P of B over R, we have $\ker D = R[P]$ and $D = P_{Y_2} \frac{\partial}{\partial Y_1} - P_{Y_1} \frac{\partial}{\partial Y_2}$. Choose Q such that B = R[P, Q], then $D(Q) \in R^*$ and $D(P) = 0 \in R$, so D is R-elementary. \square

Example 8.1. Choose $f(X) \in k[X]$ and $g(X,Y) \in k[X,Y]$ such that

$$\gcd(f(X), g(X, Y)) = 1$$

and let D be the k-derivation of k[X, Y, Z] defined by

$$D(X) = 0$$
, $D(Y) = f(X)$, $D(Z) = g(X,Y)$.

Then D is an irreducible locally nilpotent k[X]-derivation of k[X, Y, Z]. By Propsition 8.3, D is k[X]-elementary if and only if

$$(f(X), g(X, Y))k[X, Y] = k[X, Y].$$

We conclude with the following:

Proposition 8.4. If R is a PID containing \mathbb{Q} , then any nonzero R-elementary derivation of $B = R[Y_1, \ldots, Y_m]$ is standard.

Proof. Let $D = \sum_{i=1}^m a_i \frac{\partial}{\partial Y_i}$ be such a derivation of B ($a_i \in R$ for all i). Write $D = \alpha D'$ where $\alpha \in B$ and $D' : B \to B$ is an irreducible derivation. Note that $\alpha D'(Y_i) \in R$ for all i; it follows that $\alpha \in R$ and that D' is R-elementary. By Lemma 8.1, D' is standard and hence D is also standard. \square

REFERENCES

- [1] D. Cox, J. Little, D. O'Shea. Ideals, Varieties, and Algorithms. Springer-Verlag, New York, 1992.
- [2] D. DAIGLE, G. FREUDENBURG. Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k[X_1, \ldots, X_n]$. J. Algebra, **204** (1998), 353–371.
- [3] J. DEVENEY, D. FINSTON. G_a actions on \mathbf{C}^3 and \mathbf{C}^7 . Comm. Algebra **22**, 15 (1994), 6295–6302.

- [4] M. HOCHSTER. Nonuniqueness of coefficient rings in a polynomial ring. *Proc. Amer. Math. Soc.* **34**, 1 (1972), 81–82.
- [5] J. Khoury. On some properties of locally nilpotent derivations in dimension six. J. Pure Appl. Algebra 156/1 (2001), 69–79.
- [6] P. ROBERTS. An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth Problem. J. Algebra 132 (1990) 461–473.
- [7] Arno van den Essen, Peter van Rossum. Coordinates in two variables over a Q-algebra. Trans. Amer. Math. Soc. **356** (2004), 1691–1703.
- [8] D. Wright. On the jacobian conjecture. *Illinois J. Mathematics* **25** (1981), 423–440.

Department of Mathematics and Statistics University of Ottawa 585 King Edward Ave. Ottawa, ON K1N 6N5 Canada email: jkhoury@matrix.cc.uottawa.ca

Received June 18, 2004 Revised July 26, 2004