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Abstract

Let k be a field of characteristic zero, n any positive integer and let δn be the derivation∑n
i=1Xi

∂
∂Yi

of the polynomial ring k[X1, . . . , Xn, Y1, . . . , Yn] in 2n variables over k. A Conjecture

of Nowicki (Conjecture 6.9.10 in (8)) states the following

ker δn = k[X1, . . . , Xn, XiYj −XjYi; 1 ≤ i < j ≤ n]

in which case we say that δn is standard.
In this paper, we use the elimination theory of Groebner bases to prove that Nowicki’s con-

jecture holds in the more general case of the derivation D =
∑n

i=1X
ti
i

∂
∂Yi

, ti ∈ Z≥0.

In (6), H. Kojima and M. Miyanishi argued that D is standard in the case where ti = t
(i = 1, . . . n) for some t ≥ 3. Although the result is true, we show in Section 4 of this paper that
the proof presented in (6) is not complete.

Key words: Locally nilpotent derivations, Elimination theory.

1. Introduction

Throughout n is a positive integer, k is an algebraically closed field (unless it is used
as an index as in Tk or Tjk in which case it stands for a positive integer).

From a geometric point of view, a locally nilpotent derivation d on the polynomial
ring k[X] := k[X1, . . . , Xn] determines an algebraic action of the additive group (k,+)
(viewed as an algebraic group called Ga) on the affine space Ank over k. Moreover, the
ring of invariants of this action is ker d.
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The study of locally nilpotent derivations and their kernels has a profound roots in
other branches of mathematics like Lie theory, invariant theory, and differential equa-
tions. In particular, the question of finite generation of kernels of derivations on k[X] is
closely related to the famous fourteenth problem of Hilbert that can be stated as follows:

(*) If L is a subfield of k(X) (the field of fractions of k[X]) containing k, is L ∩ k[X]
a finitely generated k-algebra?

More precisely, if d is a k-derivation on k[X] such that A = ker d is not a finitely gener-
ated k-algebra, then the field of fractions of A, Frac(A), is a counterexample to (*) since
Frac(A)∩ k[X] = A. In fact, most counterexamples of (*) found recently are constructed
this way (see for example (2), (3)). Another example that illustrates the importance of
finding generators of the kernel is in the proof (see (7)) of the fact that the hypersurface
x+ x2y + z2 + t3 = 0 is not isomorphic to C3 in C4.

It is well known (see (9)) that if d is a linear k-derivation of k[X] (see the terminology
below), then ker d is finitely generated as a k-algebra. All the known proofs of this fact
are not constructive in the sense that they don’t give a complete description of the kernel.
The derivation we consider in this paper is D =

∑n
i=1X

ti
i

∂
∂Yi

of the polynomial ring in
2n variables k[X,Y ] := k[X1, . . . , Xn, Y1, . . . , Yn]. Note that D is linear if ti = 1 for all
i = 1, . . . n. However, if ti ≥ 2 for some i, even the finite generation of kerD is not clear.
The main result of this paper gives a complete description of kerD for arbitrary n in
terms of its generators over k. This solves a more general form of a Conjecture of Nowicki
(Conjecture 6.9.10 in (8)).

1.1. Terminology

Let R be a UFD containing Q, B be an R-algebra and d : B → B a derivation of B.
The following terminologies will be used throughout this paper.
• If B is a polynomial ring in m variables over R, we write B ∼= R[m].
• If d(R) = 0, then we say that d is an R-derivation of B.
• d is called locally nilpotent if for all b ∈ B, there exists n ∈ N such that dn(b) = 0.
• If B = R[m], then an R-derivation d : B → B is called R-elementary (or simply

elementary) if there exists a coordinate system (Y1, . . . , Ym) of B over R such that
dYi ∈ R for all i. In this case we have:

d =
m∑
i=1

ai
∂

∂Yi
(where ai ∈ R).

Note that if d is elementary, then it is in particular locally nilpotent.
• An R-derivation d of B = R[Y1, . . . , Ym] ∼= R[m] is called R-linear (or simply linear) if
d(Yi) is a linear form (over R) in the Yj ’s for all i.

• Given an R-elementary derivation d =
∑m
i=1 ai

∂
∂Yi

of B = R[Y1, . . . , Ym] ∼= R[m], we
say that d is standard if ker d = R[Lij , 1 ≤ i < j ≤ m] where Lij = ai

gij
Yj− aj

gij
Yi with:

gij =

 gcd(ai, aj) if ai 6= 0 or aj 6= 0

1 if ai = 0 = aj

(Note that R[Lij , 1 ≤ i < j ≤ m] ⊆ ker d)
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• A locally nilpotent derivation d of B is called fixed-point-free if the ideal of B generated
by the image of d is equal to B.
The following is the main result of this paper:

Theorem 1. Let n ∈ Z>0 and t1, . . . , tn ∈ Z≥0. Then the k[X]-elementary derivation

D =
n∑
i=1

Xti
i

∂

∂Yi

of k[X,Y ] is standard.

The special case where all the ti’s are equal to 1 was considered by Nowicki in (8).
Since, in that case, D is k[X]-linear, it is known (see (9)) that kerD is a finitely generated
k[X]-algebra, but no set of generators is known for arbitrary n. Nowicki conjectured
Theorem 1 in that case (ti = 1 for all i), basing his conjecture on his consideration of
the cases n = 2, 3, 4. On the other hand, it was argued in (6) that Theorem 1 holds in
the case where ti = t (i = 1, . . . , n) for some t ≥ 3. However, we show that the proof
presented in (6) has a gap. Note that in the case where ti ≥ 2 for some i (i.e, D is not
linear), it is no longer evident that kerD is finitely generated as a k-algebra. In Section
2, we show that we can restrict ourselves to the linear case.

2. Restriction to the linear case

With the notations of Theorem 1, if ti = 0 for some i then D is in particular fixed-
point-free and hence standard by Theorem 6.1 in (5). Thus, we may assume that ti > 0
for all i. Next, we show that it is enough to treat the linear case.

Proposition 2. Let R be a ring, R′ a subring of R such that R is a free R′-module. Then
every polynomial ring R[Y1, . . . , Yt] over R is a free R′[Y1, . . . , Yt]-module. Moreover, if
B is a basis of R over R′, then B is also a basis of R[Y1, . . . , Yt] over R′[Y1, . . . , Yt].

Proof. Clearly, it is enough to assume that t = 1. Let f =
∑
aiY

i
1 ∈ R[Y1] (ai ∈ R).

Since each aj can be written uniquely as
∑
αibi with αi ∈ R′ and bi ∈ B, then f can be

written uniquely as a finite sum

f =
∑

fi(Y1)bi

where fi(Y1) ∈ R′[Y1] and bi ∈ B for all i. This shows that B is a basis of R[Y1] over
R′[Y1]. 2

With assumptions and notations as in Proposition 2, let D =
∑t
i=1 ai∂/∂Yi be an

R-elementary derivation of R[Y1, . . . , Yt] such that ai ∈ R′ for all i and let D′ be the
restriction of D to R′[Y1, . . . , Yt]. We have the following.

Lemma 3. If B is a basis of R over R′, then kerD is a free kerD′-module with basis B.
In particular, if G ⊂ R′[Y1, . . . , Yt] generates kerD′ as an R′-algebra, then G generates
kerD as an R-algebra.
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Proof. Let f ∈ R[Y1, . . . , Yt] and write f =
∑
fibi where fi ∈ R′[Y1, . . . , Yt] and bi ∈ B.

Since bi ∈ R, we have that D(f) =
∑
D(fi)bi =

∑
D′(fi)bi. Therefore,

f ∈ kerD ⇔ ∀i,D′fi = 0⇔ ∀i, fi ∈ kerD′.

2

In our case, let R = k[X1, . . . , Xn] and R′ = k[Xt1
1 , . . . , X

tn
n ]. Then R is a free R′-

module with basis B = {Xs1
1 · · ·Xsn

n ; 0 ≤ si < ti, i = 1 . . . n}, and R′ ∼= k[n]. Now let
Zi = Xti

i , then the restriction D′ of D to R′[Y1, . . . , Yn] is the derivation
∑n
i=1 Zi∂/∂Yi.

If {ZiYj − YiZj : 1 ≤ i < j ≤ n} generates kerD′ over R′, then Lemma 3 implies that
the same set generates kerD over R.

Thus the proof of Theorem 1 reduces to that of:

Theorem 4. Let n be a positive integer. Then the derivation

D =
n∑
i=1

Xi
∂

∂Yi

of the polynomial ring k[X,Y ] is standard.

Theorem 4 can be easily verified if n = 1, 2. The case n = 3 was treated in (8). This
case follows also from the main result in (4). Hence we may (and will) assume in what
follows that n is an integer greater than or equal to 4. Let k[X,Y, T ] denote the following
polynomial ring in n(n+5)

2 variables over k:

k[X1, . . . , Xn, Y1, . . . , Yn, T1, . . . , Tn, Tij : 1 ≤ i < j ≤ n].

If α = (α1, . . . , αn) ∈ Zn≥0, let |α| denote the total degree of α (|α| =
∑n
i=1 αi). If P is

a monomial in k[X,Y, T ], we identify P with a vector αP ∈ Z
n(n+5)

2
≥0 and we define the

total degree |P | of P as being the total degree of αP .
Let <grevlex denote the graded reversed lexicographic ordering on k[X,Y, T ] with

X1 > . . . > Xn > Y1 > . . . > Yn > T1 > . . . > Tn > Tij

for all i, j with 1 ≤ i < j ≤ n and

Tij > Tkl ⇐⇒


i < k

or

i = k and j < l.

Let < denote the 2n-elimination monomial ordering on k[X,Y, T ]. This is the monomial
ordering on k[X,Y, T ] defined as follows: for any monomials P , P ′ in k[X,Y ] and M,M ′

in k[T ] := K[T1, . . . , Tn, Tij : 1 ≤ i < j ≤ n]:

PM < P ′M ′ ⇔


|P | < |P ′|

or

|P | = |P ′| and PM <grevlex P
′M ′
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With respect to this monomial ordering, any monomial involving any of the Xi’s or the
Yi’s is greater than any monomial in k[T ].

Next, consider the ideal I of k[X,Y, T ] generated by the elements

X1, Ti −Xi, Tjk − Ljk, for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n.

Proposition 5. With respect to the monomial ordering < on k[X,Y, T ] defined above,
a Groebner basis for the ideal I is given by the union of the following seven families of
elements of k[X,Y, T ] (the underlined elements are the leading monomials):

F1 = {X1, T1} ∪ {−Ti +Xi; 2 ≤ i ≤ n}

F2 = {TiT1j − TjT1i; 2 ≤ i < j ≤ n}

F3 = {T1i + Y1Ti; 2 ≤ i ≤ n}

F4 = {Tij + YiTj − YjTi; 2 ≤ i < j ≤ n}

F5 = {TijTkl − TikTjl + TilTjk; 1 ≤ i < j < k < l ≤ n}

F6 = {YiTjk − YjTik + YkTij ; 1 ≤ i < j < k ≤ n}

F7 = {TiTjk − TjTik + TkTij ; 2 ≤ i < j < k ≤ n}

3. Proof of Proposition 5

First we prove that the ideal I can be generated by
⋃7
i=1 Fi.

Lemma 6. With the above notations, I is generated (as an ideal of k[X,Y, T ]) by G :=
∪7
i=1Fi.

Proof. Let I1 be the ideal of k[X,Y, T ] generated by G.
I ⊆ I1: Clearly, Ti −Xi ∈ I1 for all i ∈ {1, . . . , n}.

For 2 ≤ i ≤ n, we have

T1i − L1i = (T1i + Y1Ti)− Y1(Ti −Xi)− YiX1

∈ I1.

For 2 ≤ i < j ≤ n, we have
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Tij − Lij = Tij −XiYj +XjYi

= (Tij + YiTj − YjTi) + Yj(Ti −Xi)− Yi(Tj −Xj)

∈ I1.

I1 ⊆ I: This can be shown using the following identities:
1. − Ti +Xi = −(Ti −Xi); 2 ≤ i ≤ n and T1 = (T1 −X1) +X1.

2. TiT1j−TjT1i = T1j(Ti−Xi)−T1i(Tj−Xj)+Xi(T1j−L1j)−Xj(T1i−L1i)+X1Lij ; 2 ≤
i < j ≤ n.

3. T1i + Y1Ti = (T1i − L1i) + YiX1 + Y1(Ti −Xi); 2 ≤ i ≤ n.

4. Tij + YiTj − YjTi = (Tij − Lij) + Yi(Tj −Xj)− Yj(Ti −Xi); 2 ≤ i < j ≤ n.

5. TijTkl − TikTjl + TilTjk = Tkl(Tij − Lij)− Tjl(Tik − Lik) + Tjk(Til − Lil) + Lij(Tkl −
Lkl)− Lik(Tjl − Ljl)− Lil(Tjk − Ljk); 1 ≤ i < j < k < l ≤ n.

6. YiTjk − YjTik + YkTij = Yi(Tjk − Ljk)− Yj(Tik − Lik) + Yk(Tij − Lij);
1 ≤ i < j < k ≤ n.

7. TiTjk−TjTik +TkTij = Tk(Tij −Lij)−Tj(Tik−Lik) +Ti(Tjk−Ljk) +Ljk(Ti−Xi)−
Lik(Tj −Xj) + Lij(Tk −Xk); 2 ≤ i < j < k ≤ n.

2

Next we show that G is indeed a Groebner basis for I with respect to the monomial
ordering < considered above. We will proceed as follows: given i, j ∈ {1, . . . , 7} (i and
j not necessarily distinct), we consider two elements fi ∈ Fi and fj ∈ Fj and we prove
that their S-polynomial

S(fi, fj) :=
LCM(LM(fi),LM(fj))

LT(fi)
fi −

LCM(LM(fi),LM(fj))
LT(fj)

fj

is in standard form relative to G, i.e., S(fi, fj) =
∑
g∈G agg with ag ∈ k[X,Y, T ] and

agg ≤ S(fi, fj) whenever ag 6= 0. Here, LT(f), LM(f) denote the leading term and
the leading monomial of f respectively (with respect to the above monomial ordering)
for each f ∈ [X,Y, T ], and if f, g ∈ k[X,Y, T ] are such that LT(f) ≤ LT(g) we sim-
ply write f ≤ g. This process will be denoted by case “(Fi,Fj)”. To show that G is a
Groebner basis of I, it is enough to verify that S(fi, fj) is in standard form relative to
G for each fi, fj ∈ G satisfying gcd(LT(fi),LT(fj)) = 1 by Buchberger’s first criterion.
Also note that if S(fi, fj) is in standard form relative to G, then so is S(fj , fi) since
S(fi, fj) = −S(fj , fi).

As it turns out, case (F5,F5) will play a crucial role in simplifying many of the cases
(Fi,Fj). So we start with this case.
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3.1. Case (F5,F5)

In all what follows, Tij should be treated as 0 when i = j.

Lemma 7. F5 is a Groebner basis for the ideal it generates in k[Tij ; 1 ≤ i < j ≤ n] with
respect to the above monomial order. Moreover, if f, g ∈ F5 then S(f, g) has a standard
representation with respect to F5 of the form S(f, g) =

∑
Tijρij with

(1) ρij ∈ F5 and Tijρij ≤ S(f, g);
(2) S(f, g) and each Tijρij are homogeneous and have the same total degree in terms

of the T1k’s.

Proof. Let

f = TabTcd − TacTbd + TadTbc, g = TijTkl − TikTjl + TilTjk

1 ≤ a < b < c < d ≤ n, 1 ≤ i < j < k < l ≤ n

be two distinct elements of F5. Since LT(f) = TadTbc and LT(g) = TilTjk, it is enough (by
Buchberger’s first criterion and the relation S(f, g) = −S(g, f)) to consider the following
cases

(1) (a, d) = (i, l) (2) (a, d) = (j, k) (3) (b, c) = (j, k).

In case (1), S(f, g) = TabTcdTjk − TacTbdTjk − TajTbcTkd + TakTbcTjd. Using the relation
S(f, g) = −S(g, f), one can restrict to the following subcases:

(1.1) 1 ≤ a = i < b < c ≤ j < k < d = l ≤ n

(1.2) 1 ≤ a = i < b ≤ j < c ≤ k < d = l ≤ n

(1.3) 1 ≤ a = i < b < j < k < c < d = l ≤ n.

In all the above subcases, LT(S(f, g)) = −TacTbdTjk. On the other hand, we have the
following expressions of S(f, g) in standard forms relative to F5 in each of the three
subcases:

In case (1.1) :

S(f, g) =−Tkd(TabTcj − TacTbj + TajTbc) + Tjd(TabTck − TacTbj + TakTbc)

−Tac(TbjTkd − TbkTjd + TbdTjk) + Tab(TcjTkd − TckTjd + TcdTjk).

In case (1.2) :

S(f, g) = Tkd(TabTjc − TajTbc + TacTbj) + Tjd(TabTck − TacTbk + TakTbc)

−Tac(TbjTkd − TbkTjd + TbdTjk)− Tab(TjcTkd − TjkTcd + TjdTck).

In case (1.3) :

S(f, g) = Tkd(TabTjc − TajTbc + TacTbj)− Tjd(TabTkc − TakTbc + TacTbk)

−Tac(TbjTkd − TbkTjd + TbdTjk) + Tab(TjkTcd − TjcTkd + TjdTkc).

In case (2), we have the only possibility:

1 ≤ i < a = j < b < c < k = d < l ≤ n,
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in which case S(f, g) = TilTabTcd− TilTacTbd− TiaTbcTdl + TidTalTbc with TidTalTbc as a
leading term. The following shows a standard form of S(f, g) relative to F5:

S(f, g) = Tcd(TiaTbl − TibTal + TilTab)− Tbd(TiaTcl − TicTal + TilTac)

+Tal(TibTcd − TicTbd + TidTbc)− Tia(TbcTdl − TbdTcl + TblTcd).

To check that S(f, g) is in standard form relative to F5 in case (3), we can clearly restrict
ourselves to the following two cases:

(3.1) 1 ≤ a ≤ i < b = j < c = k < l ≤ d ≤ n

(3.2) 1 ≤ a ≤ i < b = j < c = k < d ≤ l ≤ n.

In both cases, S(f, g) = TabTilTcd−TacTilTbd−TadTibTcl +TadTicTbl with LT(S(f, g)) =
TadTicTbl. In case (3.1),

S(f, g) = Tbl(TaiTcd − TacTid + TadTic)− Tcd(TaiTbl − TabTil + TalTib)

−Tib(TacTld − TalTcd + TadTcl) + Tac(TibTld − TilTbd + TidTbl)

In case (3.2),

S(f, g) = Tbl(TaiTcd − TacTid + TadTic)− Tcd(TaiTbl − TabTil + TalTib)

+Tib(TacTdl − TadTcl + TalTcd)− Tac(TibTdl − TidTbl + TilTbd)

This shows that S(f, g) is in standard form relative to F5 in case (3).

The last conclusion of the Lemma is clear from the above calculations. 2

3.2. Cases (F5,F6), (F5,F7), (F6,F6) and (F7,F7)

We exploit the properties of the Groebner basis for the family F5 described in Lemma
7 above to avoid many unnecessary computations of S-polynomials.

Let (J,<) be a finite totally ordered set (with at least four elements), let m = min J
and M = max J . Let k[X,Y, T ](J) be the polynomial ring

k[Xm, . . . , XM , Ym, . . . , YM , Tm, . . . , TM , Tij : m ≤ i < j ≤M ]

= k[{Xi}i∈J ∪ {Yi}i∈J ∪ {Ti}i∈J ∪ {Tij}i,j∈J, i<j ].

One can clearly extend the monomial ordering defined on k[X,Y, T ] above to a monomial
ordering on k[X,Y, T ](J). Moreover, for each i ∈ {5, 6, 7}, one can define a family Fi(J) ⊂
k[Y, T ](J) by replacing, in the definition of Fi given in the statement of Proposition 5,
each occurrence of “1” by “m” and each occurrence of “n” by “M”. Then a closer look
at the result of Lemma 7 above shows that F5(J) is a Groebner basis for the ideal it
generates in k[Tij : m ≤ i < j ≤M ](J).
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Now, let J = {1, 2, . . . , n}, J ′ = {0, 1, . . . , n} and consider the homomorphisms of
k-algebras:

φ1, φ2 : k[X,Y, T ](J)→ k[X,Y, T ](J ′), ψ1, ψ2 : k[X,Y, T ](J ′)→ k[X,Y, T ](J)

where
• φ1 is the identity on k[X,T ](J) and φ1(Yi) = T0i.
• φ2 is the identity on k[X,Y, Tkl; 1 ≤ k < l ≤ n] and φ2(Ti) = T0i.
• ψ1 sends X0, Y0, T0 to 0, it restricts to the identity on k[X,Y, T ](J) ⊂ k[X,Y, T ](J ′)

and ψ1(T0i) = Yi for 1 ≤ i ≤ n.
• As for ψ2, it also sends X0, Y0, T0 to 0, restricts to the identity on k[X,Y, T ](J) ⊂
k[X,Y, T ](J ′) but ψ2(T0i) = Ti for 1 ≤ i ≤ n.
Clearly ψt ◦ φt is the identity on k[X,Y, T ](J) for t = 1, 2.

Consider the monomial orderings on k[Yi, Ti, Tkl : i, k, l ∈ J, k < l] and k[Tij : i <
j ∈ J ′] induced by the elimination orderings on k[X,Y, T ](J) and k[X,Y, T ](J ′) defined
above. Then we have the following easy Lemma:

Lemma 8. Let α, β ∈ k[Yi, Ti, Tkl : i, k, l ∈ J, k < l], λ, µ ∈ k[Tij : i < j ∈ J ′] be four
nonzero polynomials such that α and β are homogeneous and have the same totaldegree in
the Yi’s (respectively in the Ti’s), and λ, µ are homogeneous and have the same totaldegree
in the T0i’s. Then:

(1) φ1 (LCM(α, β)) = LCM(φ1(α), φ1(β)) (respectively φ2 (LCM(α, β)) =
LCM(φ2(α), φ2(β)))

(2) if α ≤ β, then φ1(α) ≤ φ1(β) (respectively φ2(α) ≤ φ2(β))
(3) if λ ≤ µ, then ψi(λ) ≤ ψi(µ) for i = 1, 2.

As a Corollary, we have

Lemma 9. Let f, g ∈ F5(J) ∪ F6(J) ∪ F7(J) then for i = 1, 2:

φi (S(f, g)) = S (φi(f), φi(g)) .

Proof. This is a direct consequence of the definition of S(f, g), of the homogeneousness
of elements of the families F6(J),F7(J) and the above Lemma. 2

Using the properties of φi and ψi and the results of Lemma 7, one no longer needs
to carry out the computations of S(f, g) in the cases (F5,F6), (F5,F7), (F6,F6) and
(F7,F7). Here is why:

Let f ∈ F5(J) ∪ F6(J), g ∈ F6(J). We want to show that S(f, g) is in standard form
relative to G. Since φ1(f), φ1(g) ∈ F5(J ′), then Lemma 7 above shows that

S (φ1(f), φ1(g)) =
∑

Tijρij (1)

where 0 ≤ i < j ≤ n, ρij ∈ F5(J ′) and

Tijρij ≤ S (φ1(f), φ1(g)) (2)
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with Tijρij and S(φ1(f), φ1(g)) are homogeneous and have the same totaldegree in terms
of the T0k’s. Applying ψ1 to relation (1), we get (by Lemmas 8 and 9):

S(f, g) =
∑

ψ1(Tij)ψ1(ρij) (3)

with ψ1(Tij) ∈ k[Y, Tij : 1 ≤ i < j ≤ n] and ψ1(ρij) ∈ F5(J) ∪F6(J). Moreover, Lemma
8 applied to relation (2) gives that

ψ1(Tij)ψ1(ρij) ≤ S(f, g). (4)

Now relations (3) and (4) show that S(f, g) is in standard form relative to G.

The same arguments applied to f ∈ F5(J) ∪ F7(J), g ∈ F7(J) with φ1, ψ1 replaced
by φ2, ψ2 respectively shows that S(f, g) is in standard form relative to G in this case
as well.

3.3. The other cases

In this subsection, we investigate the other cases (Fi,Fj) necessary to complete the
proof of Proposition 5. As mentioned above, we only need to consider cases where Buch-
berger’s first criterion does not apply.

Case (F2,F2)
Let

f = TiT1j − TjT1i, g = TaT1b − TbT1a

2 ≤ i < j ≤ n, 2 ≤ a < b ≤ n
be two distinct elements of F2. By Buchberger’s first criterion, it is enough to consider
the following cases

(1) j = b (2) i = a.

In case (1), it is enough to consider the case

2 ≤ i < a < j = b ≤ n,

for which we get

S(f, g) =−T1aTiT1j + TaT1iT1j

=−T1j(TiT1a − TaT1i).

In case (2), we may restrict to

2 ≤ i = a < j < b ≤ n

and one can verify that

S(f, g) =−TiTbT1j + TiTjT1b

= Ti(TjT1b − TbT1j).
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In both cases, S(f, g) is in standard form relative to G.
Case (F2,F3)

Let
f = TiT1j − TjT1i ∈ F2, g = T1a + Y1Ta ∈ F3

2 ≤ i < j ≤ n, 2 ≤ a ≤ n.
The leading monomials of f and g are relatively prime except when a = j. In this case,

S(f, g) =−Y1TiT1j − T1iT1j

=−T1j(T1i + Y1Ti).

Case (F2,F4)
Let

f = TiT1j − TjT1i ∈ F2, g = Tab + YaTb − YbTa ∈ F4

2 ≤ i < j ≤ n, 2 ≤ a < b ≤ n.
The leading monomials of f and g are relatively prime except when a = j. In this case,

S(f, g) =−YbTiT1j + TjbT1i + YjTbT1i

= (T1iTjb − T1jTib + T1bTij) + T1j(Tib − YbTi + YiTb)

+ Tb(Y1Tij + YjT1i − YiT1j)− Tij(T1b + Y1Tb).

Case (F2,F5)
Let

f = TiT1j − TjT1i ∈ F2, g = TabTcd − TacTbd + TadTbc ∈ F5

2 ≤ i < j ≤ n, 1 ≤ a < b < c < d ≤ n.
The only case where the leading monomials of f and g are not relatively prime is when
a = 1 and i = d. In this case

S(f, g) =−TdT1jTbc − TjT1bTcd + TjT1cTbd

=−Td(T1bTcj − T1cTbj + T1jTbc)− T1b(TcTdj − TdTcj + TjTcd)

+ T1c(TbTdj − TdTbj + TjTbd)− Tdj(TbT1c − TcT1b).

Case (F2,F6)
Let

f = TiT1j − TjT1i ∈ F2, g = YaTbc − YbTac + YcTab ∈ F6

2 ≤ i < j ≤ n, 1 ≤ a < b < c ≤ n.
Only the case a = 1, i = b needs to be considered. Two subcases arise:

(1.1) 2 ≤ i = b < j ≤ c ≤ n

(1.2) 2 ≤ i = b < c < j ≤ n.
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In both cases, S(f, g) = −YcTbT1j − Y1TjTbc + YbTjT1c.

In case (1.1), the leading term of S(f, g) is −YcTbT1j and

S(f, g) =−Tb(Y1Tjc − YjT1c + YcT1j) + Y1(TbTjc − TjTbc + TcTbj)

+ T1c(Tbj + YbTj − YjTb)− Tbj(T1c + Y1Tc).

In case (1.2), the leading term of S(f, g) is YbTjT1c. Moreover

S(f, g) = Tb(Y1Tcj − YcT1j + YjT1c)− Y1(TbTcj − TcTbj + TjTbc)

+ T1c(Tbj + YbTj − YjTb)− Tbj(T1c + Y1Tc).

This shows that S(f, g) is in standard form relative to G.
Case (F2,F7)

Let
f = TiT1j − TjT1i ∈ F2, g = TaTbc − TbTac + TcTab ∈ F7

2 ≤ i < j ≤ n, 2 ≤ a < b < c ≤ n.
The leading monomials of f and g are relatively prime except when j = c in which case
we have the three possibilities:

(1) 2 ≤ i ≤ a < b < c = j ≤ n

(2) 2 ≤ a < i ≤ b < c = j ≤ n

(3) 2 ≤ a < b < i < c = j ≤ n.

In all the above three cases, S(f, g) = −TiT1cTab−TaT1iTbc+TbT1iTac with leading term
equals to −TiT1cTab. In case (1),

S(f, g) =−Ti(T1aTbc − T1bTac + T1cTab) + Tbc(TiT1a − TaT1i)

− Tac(TiT1b − TbT1i).

In case (2),

S(f, g) =−Ti(T1aTbc − T1bTac + T1cTab)− Tbc(TaT1i − TiT1a)

− Tac(TiT1b − TbT1i).

In case (3),

S(f, g) =−Ti(T1aTbc − T1bTac + T1cTab)− Tbc(TaT1i − TiT1a)

+ Tac(TbT1i − TiT1b).

These are expressions of S(f, g) in standard form relative to G in each of the above three
cases.

Case (F3,F3)
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Let
f = T1i + Y1Ti, g = T1a + Y1Ta

2 ≤ i ≤ n, 2 ≤ a ≤ n.
be two distinct elements of F3. We can clearly assume that 2 ≤ a < i ≤ n in which case
S(f, g) = TaT1i − TiT1a ∈ F2. In particular, S(f, g) is in standard form relative to G.

Case (F3,F4)
Let

f = T1i + Y1Ti ∈ F3, g = Tab + YaTb − YbTa ∈ F4

2 ≤ i ≤ n, 2 ≤ a < b ≤ n.
The only case where the leading monomials of f and g are not relatively prime is when
i = a. In this case

S(f, g) = YbT1a + Y1Tab + Y1YaTb

= Ya(T1b + Y1Tb) + (Y1Tab − YaT1b + YbT1a).

Case (F3,F7)
Let

f = T1i + Y1Ti ∈ F3, g = TaTbc − TbTac + TcTab ∈ F7

2 ≤ i ≤ n, 1 ≤ a < b < c ≤ n.
When i = c, one has

S(f, g) = T1cTab − Y1TaTbc + Y1TbTac

= Tac(T1b + Y1Tb) + (T1aTbc − T1bTac + T1cTab)

− Tbc(T1a + Y1Ta).

Case (F4,F4)
Let

f = Tij + YiTj − YjTi, g = Tab + YaTb − YbTa
2 ≤ i < j ≤ n, 2 ≤ a < b ≤ n

be two distinct elements of F4. The leading monomials of f and g are relatively prime
except in either one of the following two cases:

(1) i = a (2) j = b.

In case (1), we may assume 1 ≤ i = a < j < b ≤ n. In this case S(f, g) = −YaYbTj +
YaYjTb + YjTab − YbTaj and one can easily verify that

S(f, g) =−(YaTjb − YjTab + YbTaj) + Ya(Tjb + YjTb − YbTj).

In case (2), we may assume 1 ≤ i < a < j = b ≤ n, in which case S(f, g) = YaTiTb −
YiTaTb + TiTab − TaTib. Also, one can verify that
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S(f, g) = (TiTab − TaTib + TbTia)− Tb(Tia + YiTa − YaTi).

Case (F4,F6)
Let

f = Tij + YiTj − YjTi ∈ F4, g = YaTbc − YbTac + YcTab ∈ F6

2 ≤ i < j ≤ n, 1 ≤ a < b < c ≤ n.
The leading monomials of f and g are relatively prime except in the case where j = c.
Three subcases are possible:

(1) 2 ≤ i ≤ a < b < c = j ≤ n

(2) 1 ≤ a < i ≤ b < c = j ≤ n

(3) 1 ≤ a < b < i < c = j ≤ n.

In all these cases S(f, g) = −TicTab − YiTcTab − YaTiTbc + YbTiTac with leading term
equals to −YiTcTab. In case (1),

S(f, g) =−(TiaTbc − TibTac + TicTab)− Yi(TaTbc − TbTac + TcTab)

− Tac(Tib + YiTb − YbTi) + Tbc(Tia + YiTa − YaTi).

In case (2),

S(f, g) = (TaiTbc − TabTic + TacTib)− Yi(TaTbc − TbTac + TcTab)

− Tac(Tib + YiTb − YbTi)− Tbc(Tai + YaTi − YiTa).

In case (3),

S(f, g) = (TaiTbc − TabTic + TacTib)− Yi(TaTbc − TbTac + TcTab)

+ Tac(Tbi + YbTi − YiTb)− Tbc(Tai + YaTi − YiTa).

This proves that S(f, g) is in standard form relative to G in this case.
Case (F4,F7)

Let
f = Tij + YiTj − YjTi ∈ F4, g = TaTbc − TbTac + TcTab ∈ F7

2 ≤ i < j ≤ n, 1 ≤ a < b < c ≤ n.
The leading monomials of f and g are relatively prime except in the case where i = c.
This leaves us with one possibility:

1 ≤ a < b < c = i < j ≤ n.

In this case, S(f, g) = −TabTcj − YcTjTab− YjTaTbc + YjTbTac with −YcTjTab as leading
term. Moreover, the following is a representation of S(f, g) in standard form relative to
G.
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S(f, g) =−Tac(Tbj + YbTj − YjTb)− (TabTcj − TacTbj + TajTbc)

+ Tbc(Taj + YaTj − YjTa)− Tj(YaTbc − YbTac + YcTab).

Case (F6,F7)
Let

f = YaTbc − YbTac + YcTab ∈ F6, g = TiTjk − TjTik + TkTij ∈ F7

1 ≤ a < b < c ≤ n, 1 ≤ i < j < k ≤ n
Since LT(f) = YcTab and LT(g) = TkTij , it is enough to consider the following case

1 ≤ a = i < b = j < c ≤ k ≤ n.

In this case, S(f, g) = YaTkTbc−YbTkTac−YcTaTbk+YcTbTak has −YbTkTac as a leading
term. On the other hand, the following shows that S(f, g) is in standard form relative to
G:

S(f, g) =−Yb(TaTck − TcTak + TkTac)− Tak(Tbc − YbTc + YcTb)

+ Tbc(Tak + YaTk − YkTa) + Ta(YbTck − YcTbk + YkTbc).

This finishes the proof of Proposition 5.

3.4. The proof of Theorem 4

In (4), the following tool for finite generation of the kernel of a locally nilpotent
derivation was given. We include the proof for the reader’s benefit.

Proposition 10. (Lemma 2.2, (4)) Let E ⊆ A0 ⊆ A ⊆ C be integral domains, where
E is a UFD. Suppose that some element d of E\{0} satisfies:
• (A0)d = Ad
• pC ∩A0 = pA0 for each prime divisor p of d, (in E)
then A0 = A.

Proof. The assumption pC ∩A0 = pA0 implies (by an easy induction argument) that if
q is a finite product of prime factors of d, then qC ∩A0 = qA0. In particular, dnC ∩A0 =
dnA0 for all n ≥ 0. Now if y ∈ A, then dny ∈ A0 for some n ≥ 0, so dny ∈ dnC ∩ A0 =
dnA0 and y ∈ A0. 2

With the notations of Proposition 10, E plays the role of k[X], A plays the role of
kerD, A0 is a subalgebra of kerD (which is a candidate for kerD) and C plays the role
of k[X,Y ].

Let A0 = k[X1, . . . , Xn, Lij : 1 ≤ i < j ≤ n]. Then A0 ⊆ kerD and (A0)Xi =
(kerD)Xi

for i = 1, . . . , n. By Proposition 10, it is enough to show that X1k[X,Y ] ∩
A0 ⊆ X1A0 (the other inclusion being obvious). So let x ∈ X1k[X,Y ] ∩ A0 and choose
z ∈ k[X,Y ], Φ ∈ k[T ] such that x = Φ(X1, . . . , Xn, Lij : 1 ≤ i < j ≤ n) = X1z. This
means that Φ is in the kernel of the homomorphism

θ : k[T ] ε→ A0 ↪→ k[X,Y ] π→ k[X,Y ]/(X1)
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where π is the canonical epimorphism and ε sends Ti to Xi, i = 1, . . . , n and Tjk to Ljk,
1 ≤ j < k ≤ n. Also, consider the homomorphism

κ : k[X,Y, T ] σ→ k[X,Y ] π→ k[X,Y ]/(X1)

where σ is the homomorphism sending Xi, Ti to Xi, Yi to Yi (i = 1, . . . , n) and Tij to
Lij . It is clear that θ is the restriction of κ to k[T ] and hence

ker θ = kerκ ∩ k[T ]. (5)

We claim that kerκ is the ideal I (considered above) of k[X,Y, T ] generated by the
elements

X1, Ti −Xi, Tjk − Ljk, for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n.
Indeed, let N = n(n+5)

2 , and let Γ = (γ1, . . . , γN ) be the N -tuple

(X1, . . . , Xn, Y1, . . . , Yn, T1 −X1, . . . , Tn −Xn, T12 − L12, . . . , Tn,n−1 − Ln,n−1),

then Γ is clearly a coordinate system of k[X,Y, T ] (that is k[X,Y, T ] = k[γ1, . . . , γN ]).
Let λ : k[γ1, . . . , γN ]→ k[γ2, . . . , γ2n] be the homomorphism of k-algebras defined by the
following commutative diagram

k[X,Y, T ] κ→ k[X,Y ]/(X1) ∼= k[γ1, . . . , γ2n]/(γ1)

↓ ∼= ↓ ∼=

k[Γ] λ→ k[γ2, . . . , γ2n].

So

λ(γi) =

 γi if 2 ≤ i ≤ 2n

0 if i = 1 or i > 2n
This means that kerλ = kerκ = 〈γ1, γ2n+1, γ2n+2, . . . , γN 〉 = I, and the claim is proved.
Since G = ∪7

i=1Fi is a Groebner basis for the ideal I, the elimination theory together
with (5) implies in particular that the set

H := {T1} ∪ F2 ∪ F5 ∪ F7

generates ker θ as an ideal of k[T ] and hence

Φ =
∑

(ξihi(T )) + T1ρ(T ) (6)

for ξi, ρ ∈ k[T ] and hi ∈ F2 ∪ F5 ∪ F7. On the other hand, one can easily verify the
following identities:

XiL1j −XjL1i = X1Lij ∈ X1A0, 2 ≤ i < j ≤ n

LijLkl − LikLjl + LilLjk = 0, 1 ≤ i < j < k < l ≤ n

XiLjk −XjLik +XkLjk = 0, 1 ≤ i < j < k ≤ n.

This means that x = Φ(X,L) ∈ X1A0, and the theorem is proved.
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4. On the proof of (6)

We start with a sufficient condition for theGa-invariant subring to be finitely generated
over k given by H. Kojima and M. Miyanishi in (6). First some notation. Let C be
a noetherian domain, A =

∑
n≥0A

n a finitely generated graded C-algebra which is
an integral domain. Let δ : A → A be a locally nilpotent C-derivation of A which is
homogeneous of degree −1; that is δ(An+1) ⊆ An for each n > 0. Let A0 and A1 be
the subrings δ−1(0) and (δ2)−1(0) of A, respectively. Let R = A[T ] be a polynomial
in one variable over A, c ∈ C\{0} and let R0 = ∆−1(0) where ∆ denote the locally
nilpotent C-derivation c ∂

∂T + δ of R. Write δ(A1) ∩ C =
∑r
i=1 δ(ui)C with ui ∈ A1 and

let civi = δ(ui)T − cui for some ci ∈ C and vi ∈ R, where ci is a factor of δ(ui) and c.
Let R′ = A0[v1, . . . , vr], then R′ is a graded subalgebra of R, which one can regard as a
graded ring by setting Rn =

∑
i+j=nA

iT j with deg T = 1.

Theorem 11. (Theorem 1.1, (6)) With the above notations and assumptions, we as-
sume further that:
• (1) A0 is finitely generated over C;
• (2) depth℘R ≥ 2 and depth℘R′ ≥ 2 for every ℘ ∈ SpecC with ℘ ⊇ δ(A1) ∩ C.
Then R′ = R0. Hence R0 is finitely generated over C.

This tool for finite generation of R0 is then used to prove the following

Theorem 12. (Theorem 1.2, (6)) Let m ≥ 2, let A = k[X1, . . . , Xm, Y1, . . . , Ym] be
a polynomial ring in 2m variables and let ∆ =

∑m
i=1X

t+1
i ∂/∂Yi be a locally nilpotent

k-derivation of A, where t ≥ 2. Then the invariant subring A0 := ∆−1(0) is given as

A0 = k[X1, . . . , Xm, X
t+1
i Yj −Xt+1

j Yi : 1 ≤ i < j ≤ m]

∼=
k[X1, . . . , Xm, Uij : 1 ≤ i < j < k ≤ m]

(Xt+1
i Ujk −Xt+1

j Uik +Xt+1
k Uij : 1 ≤ i < j < k ≤ m)

.

Here, in the second presentation of the ring A0, we adjoin variables Uij to the polynomial
ring k[X1, . . . , Xm] for all possible pairs (i, j) with 1 ≤ i < j ≤ m and consider the residue
ring modulo the ideal generated by the elements

Xt+1
i Ujk −Xt+1

j Uik +Xt+1
k Uij

for all possible triplets (i, j, k) with 1 ≤ i < j < k ≤ m.

In what follows we show that the proof of the above theorem, as it is given in (6), fails
at one stage. We begin by describing roughly the proof of the theorem propsed in (6). In
our argument we use m = 4 for simplicity.

Let D = k[X1, X2, X3, X4, Y1, Y2, Y3]. Then with the notation of Theorem 12, A =
D[Y4], and ∆ = δ + Xt+1

4
∂
∂Y4

where δ =
∑3
i=1X

t+1
i

∂
∂Yi

. In (6), the authors used an
induction hypothesis to assume that the kernel D0 of δ has the form described in the
theorem. Since we are using a specific value for m, we can use a result from (4) to assume
that D0 = k[X1, X2, X3, X4, X

t+1
i Yj −Xt+1

j Yi : 1 ≤ i < j ≤ 3] and the isomorphism
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D0
∼= k[X1, X2, X3, X4, U12, U13, U23]/(Xt+1

1 U23 −Xt+1
2 U13 +Xt+1

3 U12) (7)

follows easily. Write
D0 = k[x1, x2, x3, u12, u13, u23][X4]

where xi, ukl are the images in D0 of Xi and Ukl: 1 ≤ i ≤ 3, 1 ≤ k < l ≤ 3 respectively.

For the passage from m = 3 to m = 4, the authors used Theorem 11 to show that A0

is isomorphic to
A′ := D0[Xt+1

i Y4 −Xt+1
4 Yi : 1 ≤ i ≤ 3].

To achieve this, the authors needed to know that the following quotient ring:

B := D0[U1, U2, U3]/(Xt+1
i Uj −Xt+1

j Ui +Xt+1
4 Uij : 1 ≤ i < j ≤ 3)

is isomorphic to A′ via the naturalD0-homomorphism φ : B → A′ sending Ui toXt+1
i Y4−

Xt+1
4 Yi (1 ≤ i ≤ 3). Clearly φ is onto, and to show that it is injective, the authors argued

first that B is an integral domain and then use the relation

height(kerφ) + dim(B/ kerφ) = dimB

together with the fact that dimA′ = dimB to deduce that kerφ = 0. So, the only detail
that remains to be checked is the fact that B is indeed a domain. To do this, the authors
argued that the image x4 of X4 in B is a nonzero divisor of B and that the quotient ring
B/x4B is a domain. In the following subsection, we prove that B is not a domain.

4.1. Proof of the fact that B is not a domain

Let k[X][Y ][U1, U2, U3] be the polynomial ring in eleven variables over k, where X =
{X1, X2, X3, X4}, Y = {Y1, Y2, Y3, Y4} are the sets of variables. For each i, j ∈ {1, 2, 3, 4},
we set

Li,j = Xt+1
i Yj −Xt+1

j Yi, Mi,j = Xt+1
i Yj −Xt+1

j Yi +Xt+1
4 Li,j .

Then B = S/P where

S = k[X][L1,2, L1,3, L23][U1, U2, U3]

and P is the ideal of S generated by M1,2, M1,3 and M2,3. Consider the homomorphism
of k[X,Y ]-algebras

φ′ : k[X,Y ][U1, U2, U3]→ k[X,Y ][L1,4, L2,4, L3,4]

defined by φ′(Ui) = Li,4 for i = 1, 2, 3. In view of the relations:

L2,3 = X−t−1
1 (Xt+1

2 L1,3 −Xt+1
3 L1,2), Li,4 = X−t−1

1 (Xt+1
i L1,4 −Xt+1

4 L1,i)

for i = 2, 3, we know that the transcendence degree of

φ′(S) = k[X][L1,2, L1,3, L2,3][L1,4, L2,4, L3,4]
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over k is seven. Here, the transcendence degree of a k-domain R is defined to be the
transcendence degree of the field of fractions of R over k. Clearly, φ′(S) is isomorphic to
S/(S ∩ kerφ′). It follows that

φ′(Mi,j) = Xt+1
i Lj,4 −Xt+1

j Li,4 +Xt+1
4 Li,j = 0

for 1 ≤ i < j ≤ 3, so P is contained in the prime ideal S ∩ kerφ′. Hence, X1 is not in P
since φ′(X1) 6= 0. Thus, the image x1 of X1 in B is not zero.
Now suppose to the contrary that B is a domain, then in particular P is a prime ideal
of S. Moreover

B ⊆ B[x−1
1 ] = S[X−1

1 ]/P ′ ∼= k[X][X−1
1 , L1,2, L1,3, L2,3, U1]

= k[X][X−1
1 , L1,2, L1,3, U1],

where P ′ is the ideal of S[X−1
1 ] generated by

X−t−1
1 M1,i = Ui − (X−1

1 Xi)t+1U1 + (X−1
1 X4)t+1L1,i

for i = 2, 3. From this, we know that the transcendence degree of B is seven. Conse-
quently, we must have P = S ∩ kerφ′, since the transcendence degree of S/(S ∩ kerφ′) is
also seven. A direct computation shows that

f := Y1M2,3 − Y2M1,3 + Y3M1,2 = −L2,3U1 + L1,3U2 − L1,2U3.

Hence, f ∈ S ∩ kerφ′. We show that f does not belong to P by contradiction. Note
that the monomial Y1X

t+1
2 U3 appears in f with a nonzero coefficient. Suppose that

f = f1M2,3 + f2M1,3 + f3M1,2 for some f1, f2, f3 ∈ S. Then Y1X
t+1
2 U3 must appear

in f1X
t+1
2 U3 or f ′ := −f1Xt+1

3 U2 + f1X
t+1
4 L2,3 + f2M1,3 + f3M1,2. It is easy to check

that each monomial appearing in f ′ is divisible by one of Xt+1
1 , Xt+1

3 , Xt+1
4 , U1 and U2

in k[X][Y ][U1, U2, U3], while Y1X
t+1
2 U3 is not. Hence Y1X

t+1
2 U3 appears in f1X

t+1
2 U3.

This implies that the monomial Y1 appears in f1. However, it follows from the definition
of S that the monomial Y1 does not appear in any element of S, a contradiction. Thus,
f does not belong to P , and so we get that P 6= S ∩ kerφ′. This is a contradiction.

This proves that B is not a domain.

Acknowledgment. The simple proof of the fact that B is not a domain appearing
in the last section is due to the referee of this paper. In the original version of the paper,
the author proved that B/x4B was not a domain, but was not sure about the fact that B
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comments and suggestions.
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