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Abstract

Given a UFD R containing the rationals, we study elementary derivations of the polynomial
ring in three variables over R. A consequence of Theorem 2:1, is that the kernel of every
elementary monomial derivation of k [6] (k is a �eld of characteristic zero) is generated over k
by at most six elements. In particular, seven is the lowest dimension in which we can construct
a counterexample to Hilbert fourteenth’s problem of Robert’s type (see, Roberts, J. Algebra 132
(1990) 461–473). c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 13B10; 14L30; 14E09; 13A50

1. Introduction

Throughout, k denotes a �eld of characteristic zero.
It is a well-known fact (see for example [11]) that algebraic Ga-actions on a�ne

spaces An
k are equivalent to locally nilpotent k-derivations of k [n] (see De�nition 2.1

below), the polynomial ring in n variables over k. An important question to look at,
when studying a derivation of k [n], is whether or not its kernel is a �nitely generated
k-algebra. This question was answered positively by Nagata and Nowicki [9] in the case
n ≤ 3. In higher dimensions, many examples of locally nilpotent derivations having
non�nitely generated kernels have been found, and each of these examples represents
a counterexample to the famous 14th problem of Hilbert, that can be stated as follows:
If L is a sub�eld of k(X1; : : : ; Xn) (the quotient �eld of k [n]), is L ∩ k[X1; : : : ; Xn] a

�nitely generated k-algebra?
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The �rst counterexample to Hilbert’s problem was given by Nagata [8] in 1958 and
it was in dimension 32. In 1993, Derksen [3] proved that Nagata’s example can be
realized as the kernel of a derivation of k [32]. The same thing happened with the second
counterexample to Hilbert’s fourteenth found by Roberts in 1990 [10] in dimension
seven, and which was used by Deveney and Finston [5] to show that the kernel of the
derivation

D = X t+1
1

@
@Y1

+ X t+1
2

@
@Y2

+ X t+1
3

@
@Y3

+ (X1X2X3)t
@

@Y4
of k[X1; X2; X3; Y1; Y2; Y3; Y4] is not �nitely generated as a k-algebra for any t ≥ 2:
In 1998, a counterexample in dimension six was constructed by Freudenburg [6] as

the �eld of fractions of the kernel of the derivation
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of k[X1; X2; Y1; Y2; Y3; Y4]:
Then Daigle and Freudenburg [2] constructed a counterexample in dimension �ve

as the �eld of fractions of the kernel of the derivation
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of k[X1; X2; X3; X4; X5]: This leaves Hilbert’s problem open only in dimension four.
A closer look at Robert’s example suggests that we study a special type of derivations

of polynomial rings called elementary derivations (see [13] for important aspects of
elementary derivations).
If n; m ≥ 1, then a derivation D of the polynomial ring B:=k[X1; : : : ; Xn; Y1; : : : ; Ym]

is called elementary if it is of the form

D = a1(X1; : : : ; Xn)
@

@Y1
+ · · ·+ am(X1; : : : ; Xn)

@
@Ym

;

where each ai is in k[X1; : : : ; Xn]. It is called monomial if it is of the form
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:

where each bi is a monomial in X1; : : : ; Xn; Y1; : : : ; Ym. This means that the counter-
example found by Roberts is the �eld of fractions of kerD for some monomial elemen-
tary derivation D of k [7]. Having in mind that every derivation with in�nitely generated
kernel yields a counterexample to Hilbert’s 14th problem, we show that a counter-
example to Hilbert’s problem of Robert’s type cannot be constructed in dimension six.
Namely we will prove the following.

Theorem 1.1. The kernel of any elementary monomial derivation of k [6] is generated
by at most six linear elements in the Y ′

i s:

Note that both derivations d and T are monomial, but not elementary.
Elementary derivations of polynomial rings over k were studied in detail in [13],

where it was shown that the kernel of any elementary derivation of B is a �nitely
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generated k-algebra in the case where n + m ≤ 5: Also it was shown in [13] that if
n ≥ 3 and m ≥ 4; then the kernel of any derivation of Robert’s type is not a �nitely
generated k-algebra. It remains the case where m = 3 and n ≥ 3 about which little is
known (see Question 4:3 in [13]). Theorem 1.1 gives then new information about this
case. In fact in Section 2, we will prove a result (see Theorem 2.1) for the case m=3
in the more general case where B is a polynomial ring over a UFD.
All rings in this paper are commutative and have an identity element. If A is a

ring, the notation B = A[n] means that B is isomorphic to a polynomial ring in n
variables over A. If A⊂B are rings, we say that A is factorially closed in B if, for
x; y ∈ B; xy ∈ A \ {0} implies that x; y ∈ A:

2. Elementary derivations of R[Y1; Y2; Y3]

De�nition 2.1. Let B be a domain containing the rationals.
(1) A derivation of B is a map D :B → B satisfying D(x + y) = D(x) + D(y) and

D(xy) = xD(y) + yD(x) for all x; y ∈ B.
(2) The derivation D is called locally nilpotent if for every x ∈ B; there exists n ≥ 0

such that Dn(x) = 0:
(3) If A is a subalgebra of B, then D is called an A-derivation if D(a) = 0 for all

a ∈ A:
(4) A derivation D of B is called irreducible if the only principal ideal of B containing

D(B) is B.

De�nition 2.2. If B=R[Y1; : : : ; Ym] is a polynomial ring in m variables over a domain
R, then a derivation D of B is called R-elementary if it is of the form

D =
m∑
i=1

ai@i

for some ai ∈ R and where @i means the partial derivative with respect to Yi.

With the notations of De�nition 2.2, it is easy to see that an R-elementary derivation
of B is locally nilpotent and an R-derivation. Also, if R is a UFD, then the R-elementary
derivation D =

∑m
i=1 ai@i of B is irreducible if and only if the elements a1; : : : ; am of

R are relatively prime.
For a list of basic facts about locally nilpotent derivations we refer the reader to

Section 1:1 in [1].
For the main theorem of this section, let R be a UFD which is �nitely generated

k-algebra, and B = R[Y1; Y2; Y3] = R[3]. If a1; a2; a3 are relatively prime elements of R,
de�ne gi:=gcd(aj; ak) for i = 1; 2; 3 and {i; j; k}= {1; 2; 3}, and �x the three elements
of B
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with the understanding that gi = 1 and Li = 0 when ai = ak = 0: Then we have the
following easy lemma.

Lemma 2.1. (1) g1; g2; g3 are pairwise relatively prime in R.
(2) If {i; j; k}= {1; 2; 3}; then gigj is a divisor of ak in R.
(3) Write ak=�kgigj for {i; j; k}={1; 2; 3}; then �1; �2; �3 are pairwise relatively prime

in R.
(4) Li ∈ kerD for all i ∈ {1; 2; 3} where D is the elementary derivation a1@1 +a2@2 +

a3@3 of B.

Proof. Left to the reader.

The main theorem in this section is the following.

Theorem 2.1. Let R be a UFD which is a �nitely generated k-algebra; and let B =
R[Y1; Y2; Y3]=R[3]. Let D=a1@1+a2@2+a3@3 be an irreducible R-elementary derivation
of B (i.e. gcd(a1; a2; a3) = 1) and let gi; �i; Li (i = 1; 2; 3) be as above. Assume that
a3 6= 0 and that for every prime divisor p of a3; the ring �R:=R=pR is a UFD. Then
kerD = R[L1; L2; L3] if and only if gcd(�1; �2; �3) = 1 in �R for every prime divisor p
of a3:

Remark 2.1. With the notations of Theorem 2.1, if only one of the ai’s, say a3, is
zero, then Theorem 2:4 of [1] implies that the kernel of the derivation a1@1 + a2@2 of
R[Y1; Y2] is R[a1Y2 − a2Y1] = R[L3], and so kerD = R[L3; Y3] = R[L1; L2; L3] (since in
this case L1 =−Y3 and L2 = Y3). If two of the ai’s are equal to zero, say a1 = a2 = 0;
then clearly kerD = R[Y1; Y2] = R[L1; L2; L3] (since L1 = Y2; L2 = −Y1 and L3 = 0 in
this case). So if one at least of the ai’s is zero, kerD = R[L1; L2; L3]:

The proof of Theorem 2.1 requires the following fact (see also the algorithm of van
den Essen in [12]):

Lemma 2.2. Let E⊆A0⊆A⊆C be integral domains; where E is a UFD. Suppose
that some element d of E \ {0} satis�es:
• (A0)d = (A)d
• pC ∩ A0 = pA0 for each prime divisor p of d;
then A0 = A:

Proof. The assumption pC ∩ A0 = pA0 implies (by an easy induction argument) that
if q is a �nite product of prime factors of d, then qC ∩ A0 = qA0: In particular,
dnC ∩ A0 = dnA0 for all n ≥ 0. Now if y ∈ A, then dny ∈ A0 for some n ≥ 0, so
dny ∈ dnC ∩ A0 = dnA0 and y ∈ A0.

Another result needed for the proof of Theorem 2.1 is the following.
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Proposition 2.1. Let a1; : : : ; am; m ≥ 1 be elements of a UFD E containing the
rationals; and let A be the kernel of the corresponding E-elementary derivation
D = a1@1 + · · · + am@m of C: = E[Y1; : : : ; Ym]. Fix i ∈ {1; : : : ; m} such that ai 6= 0
and consider the E-algebra Ai generated by the m− 1 elements

Lij: =
ai

gij
Yj − aj

gij
Yi; j ∈ {1; : : : ; m} \ {i};

where gij = gcd(ai; aj). Then (A)ai = (Ai)ai .

Proof. For the proof, we may clearly assume that i = 1 (so a1 6= 0). Note that if
i 6= j, then D(Lij) = 0 and hence A1:=E[L1j: j¿ 1]⊆A. Let S:={an

1; n ≥ 0}, then S
is a multiplicatively closed subset of E⊆A, and hence D induces a locally nilpotent
derivation S−1D : S−1C → S−1C (de�ned by the quotient rule of derivation) satisfying
Aa1=S−1A=ker S−1D. On the other hand, Y1=a1 is a slice for S−1D (i.e., S−1D(Y1=a1)=
1) and it is a well-known fact (see for example Lemma 2:1 of [4]) that ker S−1D is
equal to im � where � is the homomorphism

S−1C → S−1C

c 7→
∑
j≥0

1
j!

(
−Y1

a1

)j

(S−1D)j(c):

We have �(Y1) = 0 and, for i¿ 1; �(Yi) = Yi − (ai=a1)Y1 = (g1i=a1)L1i, where g1i=a1 is
a unit of Ea1 . So, Aa1 = im �=Ea1 [L12; : : : ; L1m]= (A1)a1 , which proves the proposition.

Corollary 2.1. With the notion of Theorem 2:1; (kerD)ai = (R[L1; L2; L3])ai for any
i ∈ {1; 2; 3}.

The crucial step in the proof of Theorem 2.1 is the following lemma.

Lemma 2.3. With the notations of Theorem 2:1; if p ∈ R is a prime element such
that �R:=R=pR is a UFD; then pB ∩ R[L1; L2; L3] = pR[L1; L2; L3] if and only if the
elements ��1; ��2; ��3 of �R are relatively prime.

Proof. If one of the ai’s is zero, then Remark 2.1 implies that kerD = R[L1; L2; L3]
and hence R[L1; L2; L3] is a factorially closed subring of B and so the equality pB ∩
R[L1; L2; L3] = pR[L1; L2; L3] is true. On the other hand, it is easy to see that one of
the �i’s is invertible in this case, and so gcd ( ��1; ��2; ��3) = 1. Thus, we may, and will
assume that ai 6= 0 for all i.
Let R0 = R[L1; L2; L3]⊆ kerD. Assume �rst that ��1; ��2; ��3 are relatively prime in �R,

we need to prove that pB ∩ R0⊆pR0 (the other inclusion being clear). To see this,
consider the ring homomorphism

� : �R[S; T; U ]→ �R[ �L1; �L2; �L3];

sending S; T; U to �L1; �L2; �L3, respectively, and let ˝ be the kernel of �.
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Claim. ˝= �q �R[S; T; U ] where �q= ��1S + ��2T + ��3U .

Indeed, modulo p we have that �L1 = �3g2Y2− �2g3Y3; �L2 =−�3g1Y1 + �1g3Y3; �L3 =
�2g1Y1− �1g2Y2 and since �1L1 + �2L2 + �3L3 = 0 in �R (in fact �1L1 + �2L2 + �3L3 = 0
in R), then trdeg �R �R[ �L1; �L2; �L3] = 2. Hence the height of ˝ is one, and ˝ is a principal
ideal of �R[S; T; U ] since �R is a UFD. Consider the element �q = ��1S + ��2T + ��3U ∈
�R[S; T; U ], then clearly �( �q) = 0, and since gcd( ��1; ��2; ��3) = 1 by assumption, �q is
irreducible. Thus ˝= �q �R[S; T; U ] as claimed.
From the claim, it follows easily that the kernel of the homomorphism

 : R[S; T; U ]→ R[L1; L2; L3]→ �R[ �L1; �L2; �L3]

is the ideal (�1S + �2T + �3U;p) of R[S; T; U ]. Now we prove the inclusion pB ∩
R0⊆pR0. Let x ∈ pB ∩ R0 and choose � ∈ R[S; T; U ] and b ∈ B such that x =
pb=�(L1; L2; L3), then clearly � ∈ ker( ) and hence we can write �= (�1S + �2T +
�3U )�1+p�2 for some �1; �2 ∈ R[S; T; U ]. This shows that x=p�2(L1; L2; L3) ∈ pR0.
Next, we prove the other direction. Assume that pB ∩ R0 = pR0, we show that gcd

( ��1; ��2; ��3) = 1 in �R. Let g ∈ R be such that �g=gcd( ��1; ��2; ��3) in �R and write ��i = ��i �g
for some �i ∈ R, and gcd( ��1; ��2; ��3) = 1 in �R. Also, choose �i ∈ R such that

�i = �ig+ �ip (1)

for i ∈ {1; 2; 3}. Now since �1L1 + �2L2 + �3L3 = 0, then either �g=0 or �1L1 +�2L2 +
�3L3 = 0. If, �g = 0, then g = rp for some r ∈ R, and Eq. (1) implies that p|�i for
all i, which gives a contradiction to the fact that the �i’s are relatively prime (Lemma
2.1). We deduce that �1L1 + �2L2 + �3L3 ∈ pB ∩ R0 = pR0. Choose � ∈ R[S; T; U ]
such that �1L1 +�2L2 +�3L3 =p�(L1; L2; L3) and write �=�0 +�1 + · · ·+�n where
�i is the homogeneous component of � of degree i. Since each Li is homogeneous of
degree 1, then each �i(L1; L2; L3) is also homogeneous of degree i, and this means that
�i(L1; L2; L3) = 0 for all i 6= 1. Thus, �1L1 + �2L2 + �3L3 = p�(L1; L2; L3) = p(1L1 +
2L2 + 3L3) where i ∈ R for all i and this gives the equation

(�1 − p1)L1 + (�2 − p2)L2 + (�3 − p3)L3 = 0:

Let �i: = �i − pi for all i ∈ {1; 2; 3}, then we have the equations
�1L1 + �2L2 + �3L3 = 0; (2)

�1L1 + �2L2 + �3L3 = 0: (3)

Let K be the �eld of fractions of R, then clearly Li; Lj are linearly independent over
K as vectors of the K-vector space

V = {P ∈ K[Y1; Y2; Y3] |P is homogeneous of degree one}:
Also, since ��i 6= 0 for at least one i ∈ {1; 2; 3} (otherwise, the �i’s would not be
relatively prime), we deduce that �i 6= 0 for at least one i. Assume that �1 6= 0, then
from Eqs. (2) and (3) above we can deduce that

�2
�1

L2 +
�3
�1

L3 =
�2
�1

L2 +
�3
�1

L3
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as elements of V . This gives the two equations

�i�1 = �1�i; i = 2; 3: (4)

Now since �1; �i are relatively prime for i = 2; 3 (Lemma 2.1), then Eq. (4) shows
that �i divides �i for i= 1; 2; 3, and Eq. (4) implies that �i = ��i for i= 1; 2; 3; where
� = �1=�1 ∈ R. Hence �i − pi = ��i = �(�ig+ �ip) for all i = 1; 2; 3. In other words,
��i(1− �g) = 0 for all i ∈ {1; 2; 3}. Choose i such that ��i 6= 0, then �g= 1 and hence
�g ∈ �R

∗
. This shows that ��1; ��2; ��3 are relatively prime in �R and the lemma is proved.

The main theorem of this section can now be deduced easily from the above lemma.

Proof of Theorem 2.1. If kerD = R[L1; L2; L3], then in particular, R[L1; L2; L3] is fac-
torially closed in B (as the kernel of a locally nilpotent derivation of B). Let p be a
prime divisor of a3 and let x ∈ pB ∩ R[L1; L2; L3], and write x = pb for some b ∈ B,
then b ∈ R[L1; L2; L3] since the latter is factorially closed, and so pB ∩ R[L1; L2; L3] =
pR[L1; L2; L3]. Then Lemma 2.3 gives that gcd ( ��1; ��2; ��3) = 1. Conversely, assume
that for each prime divisor p of a3, the elements ��1; ��2; ��3 of �R: = R=pR are relatively
prime, then by Lemma 2.3, pB∩ R[L1; L2; L3] =pR[L1; L2; L3] for all prime divisors p
of a3. By Corollary 2.1 and Lemma 2.2, we deduce that kerD = R[L1; L2; L3].

An important consequence of the above theorem is the following.

Corollary 2.2. If R = k[X1; : : : ; Xn] is a polynomial ring in n variables (n ≥ 1) over
k; then the kernel of any elementary monomial derivation of R[Y1; Y2; Y3] is equal to
R[L1; L2; L3].

Proof. Let D = a1@1 + a2@2 + a3@3 be an elementary monomial derivation of B =
R[Y1; Y2; Y3]. We may assume that D is irreducible and (by Remark 2.1) that ai 6= 0
for all i. Let �i; Li be as above. For any i ∈ {1; : : : ; n}, we can choose j 6= k such that
�j; �k are not divisible by Xi (since the �i’s are pairwise relatively prime). This means
that

�j; �k ∈ k[X1; : : : ; Xi−1; Xi+1; : : : ; Xn] ∼= k[X1; : : : ; Xn]=(Xi)

and therefore the �i’s are relatively prime modulo Xi for any i. The corollary follows
now from Theorem 2.1.

Note that the elementary derivations encountered in this section satisfy the following
conjecture.

Conjecture. If the kernel of an R-elementary derivation D of B = R[Y1; Y2; Y3] is a
�nitely generated R-algebra; then the generators of kerD can be chosen to be linear
in the Yi’s.



76 J. Khoury / Journal of Pure and Applied Algebra 156 (2001) 69–79

3. Elementary monomial derivations in dimension six

The purpose of this section is to prove Theorem 1.1.
Let B: = k[X1; : : : ; Xn; Y1; : : : ; Ym]; n; m ≥ 1; n+ m= 6; R= k[X1; : : : ; Xn] and D the

R-elementary derivation a1@1 + · · ·+ am@m of B (ai ∈ R and @i is the partial derivative
with respect to Yi).
For the proof of Theorem 1.1, we will consider several cases. It is known [13] that if

n=1; 2; 4; 5, then the kernel of any elementary derivation D of B is a �nitely generated
k-algebra. If in addition we assume that D is monomial, then we will show that its
kernel is generated by at most six elements that are linear in the Yi’s. As for the case
n = m = 3, even the fact that the kernel is a �nitely generated k-algebra seems to be
a new result. Note also that for the proof of the Theorem 1.1 we may clearly assume
that the derivation D is irreducible. Also, if ai = �iX a

1 X
b
2 X

c
3 for some �i ∈ k∗, and

a; b; c ∈ N, then we may assume that �i = 1. We start with a proposition.

Proposition 3.1. Let R be a UFD containing the rationals; a1; : : : ; am ∈ R; and let
D be the R-elementary derivation a1@=@Y1 + · · · + am@=@Ym of B: = R[Y1; : : : ; Ym]. If
ai ∈ R∗ for some i; then kerD is generated by m− 1 elements linear in Y1; : : : ; Ym (in
fact kerD is a polynomial ring in m− 1 variables over R).

Proof. We may clearly assume that a1 = 1. In this case consider the elements

f1 = a2Y1 − Y2; f2 = a3Y1 − Y3; : : : ; fm−1 = amY1 − Ym

of B. Clearly A′: = R[f1; : : : ; fm−1]⊆C: = kerD, and since Yj = ajY1 − fj−1 for all
j ≥ 2, we can easily see that B=A′[Y1]. Since A′ ⊆C ⊂B and C is algebraically closed
in B, it follows that A′ = C.

Corollary 3.1. Theorem 1:1 is true if n= 1 or if ai = 1 for some i.

Proof. If n= 1, then D= X n1
1 @1 + · · ·+ X n5

1 @5, and by the irreducibility of D we may
assume that a1 = 1 and we are done by the above proposition.

By Corollary 2.2, Theorem 1.1 is true in the case n=m=3. We study next the case
n = 2; m = 4. In this case, we will prove a more general result (the generalization is
due to D. Daigle). Namely we have the following.

Theorem 3.1. If R=k[U; V ]=k [2] and a1; : : : ; am; m ≥ 1 are monomials in U; V (not all
zero); then the kernel of the elementary derivation D=

∑m
i=1 ai@i of B=R[Y1; : : : ; Ym]

is a polynomial ring in m − 1 variables over R. Moreover; the m − 1 generators of
kerD can be chosen to be of the form biYi−bjYj where 1 ≤ i¡ j ≤ m and bi; bj ∈ R.

The proof uses Lemma 3.1 (see below) which holds in the following more general
situation: R is a UFD, B= R[Y1; : : : ; Ym] and D : B → B an R-elementary derivation of
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B, i.e., of the form

D =
m∑
i=1

ai@i;

where ai ∈ R and @i means the partial derivative with respect to Yi. Also, for each pair
(i; j) ∈ N2 with 1 ≤ i¡ j ≤ m, de�ne

Li; j =

{
( aj
gcd(ai ;aj)

)Yi − ( aj
gcd(ai ;aj)

)Yj if ai 6= 0 or aj 6= 0;
0 if ai = aj = 0:

Then clearly Li; j ∈ kerD. For any integer k ≥ 0, we say that “D has the property
P(k)” if D = 0 or kerD can be generated (as R-algebra) by k-elements of the Li; j’s.
With these notations, we have the following.

Lemma 3.1. Suppose that for some i ∈ {1; : : : ; m}; we have
1. The restriction Di of D to Bi=R[Y1; : : : ; Yi−1; Yi+1; : : : ; Ym] has the property P(k);
2. aj | ai for some j 6= i;
then D has the property P(k + 1).

Proof. If D=0, there is nothing to prove, so we may assume D 6= 0 and consequently,
we may choose j 6= i such that aj 6= 0 and aj | ai. Then the element L = Yi − ai=aj Yj

belongs to kerD and clearly B= Bi[L], so kerD= (kerDi)[L] and D has the property
P(k + 1).

Proof of Theorem 3.1. We proceed by induction on m, the case m=1 being obvious.
By the induction hypothesis and Lemma 3.1, we may assume that ai does not divide
aj whenever i 6= j; in particular ai 6= 0 for all i so, multiplying each ai (or rather Yi)
by a unit if necessary, we may assume that ai =UuiV vi for all i. We may also relabel
the Yi’s in such a way that

u1¿ · · ·¿um and v1¡ · · ·¡vm:

Note that Li; j = V vj−vi Yi −Uui−uj Yj, where Lij is as above. Let A= R[Li; i+1 : 1 ≤ i ≤
m− 1], we will show that kerD = A.
A simple calculation shows that

Li; j = Uui−ui+1 Li+1; j + V vj−vi+1 Li; i+1;

whenever j− i¿ 1. In particular, Li; j belongs to the R-module generated by Li+1; j and
Li; i+1, and hence to the R-module generated by the set {Li; i+1 | 1 ≤ i ≤ m − 1}. This
shows that Li; j ∈ A for all i; j satisfying i¡ j. Also, it follows from Proposition 2.1
that AU = (kerD)U (by the irreducibility of D, we can �nd i ∈ {1; : : : ; m} such that
ai=U� for some � ≥ 1), and consequently, it su�ces (by Theorem 2.1) to prove that

A ∩ UB= UA: (5)

Clearly, UA⊆A ∩ UB. Conversely, let x ∈ A ∩ UB and write x = �(L1;2; : : : ; Lm−1;m),
where � ∈ R[T1; : : : ; Tm−1] is a polynomial in m − 1 variables. Let �R = R=UR;
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�B = B=UB = �R[Y1; : : : ; Ym] and let us take the images via B → �B. Since x 7→ 0 and
Li; i+1 7→ V vi+1−viYi, this gives

��(V v2−v1Y1; : : : ; V vm−vm−1 Ym−1) = 0

and consequently ��= 0. This means that each coe�cient of � is divisible by U , and
so x ∈ UA and Eq. (5) is proved.

In particular, Theorem 3.1 shows that D has the property P(m− 1), and this means
that if n=2 and m=4, then kerD is generated over k by at most �ve linear elements
in the Yi’s. It remains now to consider the cases n = 4; m = 2 and n = 5; m = 1. In
the �rst case, the derivation has the form D = a1@1 + a2@2, where ai ∈ k[X1; : : : ; X4]
and in this case, Proposition 4:1 of [13] shows that the kernel of D is k[X1; : : : ; X4;
a2Y1 − a1Y2]. In the case where n = 5; m = 1, it is easy to verify that the kernel is
simply k[X1; : : : ; X5]. This �nishes the proof of Theorem 1.1.

Remark. One can easily notice the similarity between the main result of this paper
and Maubach’s result in [7].
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