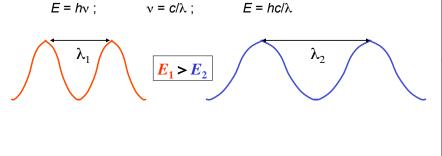
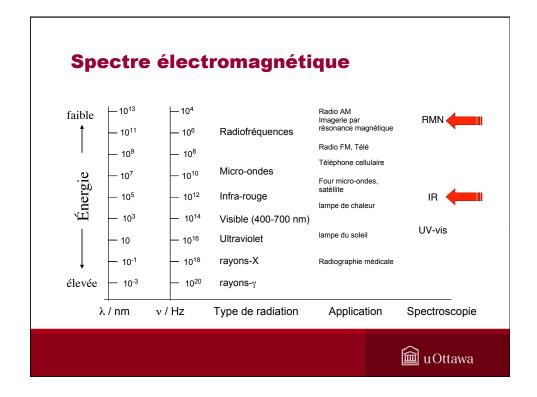


- l'étude de l'interaction entre la matière et l'absorbance, l'émission ou la transmission de ______.
- utilisée pour déterminer la ______(e.g. en synthèse organique)
 - infrarouge (IR, FTIR)
 - résonance magnétique nucléaire (RMN)
 - spectrométrie de masse (SM)

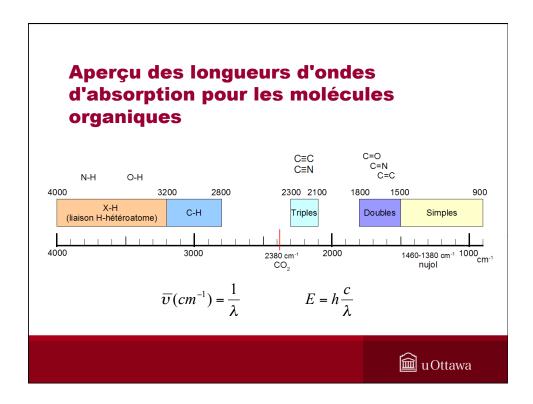


Radiation électromagnétique


voyage à la vitesse de la lumière

$$(c = \sim 3 \times 10^8 \text{ m} \cdot \text{s}^{-1})$$

- caractérisée par sa <u>fréquence (v)</u> ou sa <u>longueur d'onde (λ)</u>
- son énergie est proportionnelle à sa fréquence et inversement proportionnelle à sa longueur d'onde :



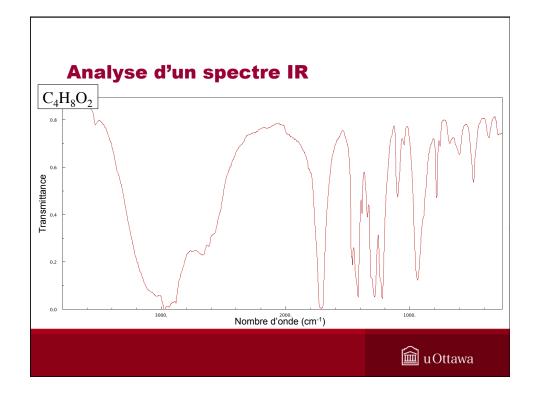
Spectroscopie infrarouge (IR) L'énergie du rayonnement infrarouge (λ=0.78-300 μm) est insuffisante pour exciter des transitions électroniques (telle qu'en spectrophotométrie d'absorption UV-vis). Ce sont plutôt des transitions qui sont induites. (D'après Skoog, West & Holler, Chimie analytique, 7è éd. De Boeck, 1997) Balancement hors du plan (b) Vibrations de déformation d'angle*

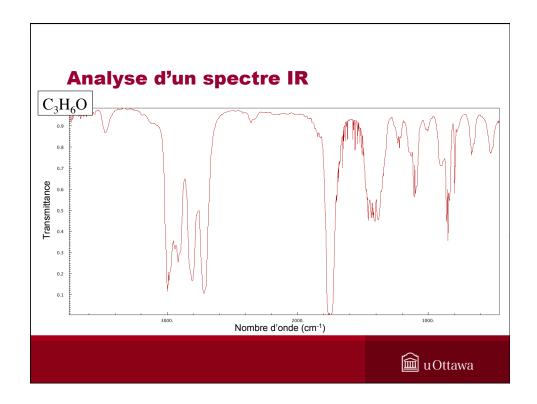
Spectre IR

- un spectre infrarouge (4000 400 cm⁻¹) est caractérisé par des pics d'absorption étroits, très rapprochés, qui résultent de transitions entre les différents niveaux quantiques de vibration.
- le nombre de modes de vibration d'une molécule dépend du nombre de liaisons qu'elle contient.

a uOttawa

Bandes IR importantes

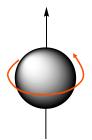

Groupement fonctionnel	Structure	Nombre d'onde (cm ⁻¹)	Élongation
Alcool	RO-H	3650-3200	
Amine	R ₂ N-H	3500-3300	X-H (large)
Acide carboxylique	RC(O)O-H	3300-2500	
Nitrile	RC≡N	2260-2220	C≡N (faible)
Carbonyle	R ₂ C=O	1780-1650	C=O (intense)


• voir aussi S&F 2.16 (tableau 2.7)

CHM 2520 - Automne 2011

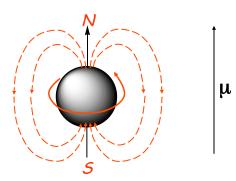
a UOttawa

Une approche possible pour analyser un spectre IR Présence d'un groupe carbonyle? (pic intense dans la région 1600-1850 cm-1) Si **OUI** et Si NON et - Pic très large pour OH (3500-2000 cm⁻¹) et C=O à ~1700 cm⁻¹: acide carboxylique RCO₂H - Pic intense pour OH à ~3500 cm⁻¹: alcool ROH - Pic intense pour OH à ~3500 cm⁻¹ et C=C à 1600 - Pic(s) intense(s) pour NH (3300-3500 cm⁻¹) et C=O à ~1650 cm-1: amide R-CO-N - Pic(s) intense(s) pour NH (3300-3500 cm⁻¹): - C=O à ~1735 cm⁻¹ et pic intense à ~1200 cm⁻¹: ester carboxylique - Pic intense à ~1200 cm⁻¹: éther - Deux pics intenses pour C=O à 1750-1850 cm-1: - C=C à 1600 cm-1 et C-H à 3300 cm-1: anhydride groupe aromatique - C=O à 1800 cm⁻¹ et C-Cl (600-800 cm⁻¹): chlorure - Pics faibles à 1650 cm⁻¹: alcène d'acide R-CO-CI - Pic intense à ~2200 cm⁻¹: acétylène ou nitrile - C=O à ~1700 cm⁻¹ et C-H à ~2800 cm⁻¹: aldéhyde R-CHO - Pic intense < 600 cm⁻¹: halogène C-X - Si seulement C=O à ~1700 cm⁻¹: cétone - Pic intense à 1560 et 1350 cm⁻¹: nitro - Si pas d'autres pics: alcane í uOttawa

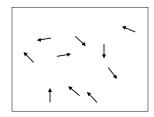

Spectroscopie de RMN

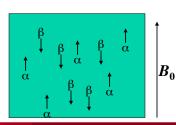
- RMN = Résonance Magnétique Nucléaire
- basée sur l'absorption d'énergie (ondes _____) par certains _____ dans des molécules placées dans un champ _____.
- LA méthode de choix pour déterminer les structures des molécules organiques en solution

Spin nucléaire


- voir S&F 9.3-9.4
- · tous les noyaux sont chargés
- dans certains noyaux, c'est comme si cette charge fait une _____ autour de l'axe nucléaire
- ce ____est à l'origine du signal RMN
 - dans le cadre de ce cours, on va considérer seulement UN noyau visible par RMN, soit le proton, ¹H
 - mais le ¹³C et le ³¹P sont souvent utilisés, aussi

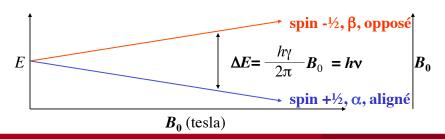
Moment magnétique nucléaire


la « rotation » des noyaux lui confèrent leur propre

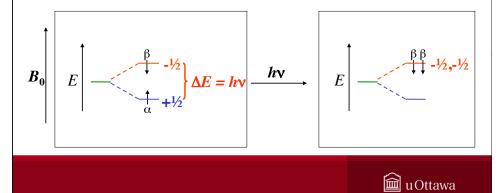

Effet d'un champ magnétique

 en absence d'un champ magnétique externe, les moments magnétiques des noyaux d'un échantillon sont orientés dans toutes les directions :

 en présence d'un champ magnétique externe (B₀), ces moments magnétiques sont soit


 $\underline{\hspace{1cm}}$ (α) ou $\underline{\hspace{1cm}}$ (β) au champ externe :

Équation fondamentale de la RMN


- les noyaux alignés *avec* le champ magnétique externe sont \underline{s} (état α , +½)
- les noyaux alignés contre le champ magnétique externe sont (état β, -½)
- la différence d'énergie entre les deux états de spin est reliée à la force du

a uOttawa

La résonance

- les noyaux de spin α peuvent absorber de l'énergie et subir une _____(en β)
- l'énergie de cette _____ (α→β) a des _____
 pour B₀ de 0,1 10 T

Fréquences de résonance

- voir S&F 9.3
- · détectées par les spectromètres à RMN
- diffèrent faiblement selon_
 des noyaux dans une molécule
 - Δv (en Hz) \propto ~ 10⁻⁶ × \mathbf{B}_0
- permettent de distinguer entre les noyaux ayant des

______, δ (ppm du champ)

 moyennées par des changements de conformation, qui sont rapides par rapport à l'échelle de temps d'inversion de spin

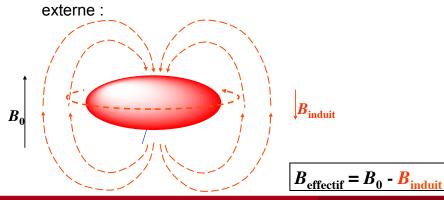
a uOttawa

Référence de déplacement chimique

- déplacement chimique (δ) = fréquence de résonance, normalisée par rapport à
 - échelle indépendante du champ
 - échelle relative au δ du standard interne

$$\delta = \frac{\nu \text{ (noyau de réf.)} - \nu \text{ (noyau d'intérêt)}}{\nu \text{ (appliquée)}} \rightarrow \frac{\Delta \nu \text{ (en Hz)}}{\nu \text{ (en MHz)}} \rightarrow \text{en ppm}$$

$$\text{tétraméthylsilane, TMS}: \text{ H}_{3}\text{C} \longrightarrow \text{Si} \text{CH}_{3}$$


$$\text{CH}_{3} \qquad \delta = 0, \text{ par définition}$$

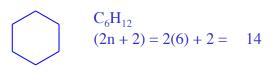
a uOttawa

🛍 u Ottawa

Champs induits

 un champ magnétique externe induit le mouvement d'un nuage électronique qui crée un faible moment magnétique (______) qui est _____ au champ

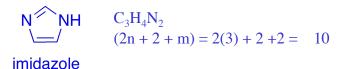
Blindage et déblindage	
les variations de laautour noyaux causent leur blindage ou déblindage par rap au champ magnétique externe	
blindage:	
 du champ effectif ressenti par un noy raison d'unedensité électronique locale 	au, en
 nécessite un champ externe plus; ou une plus fréquence de résonance 	\ \ noyau
déblindage :	
 du champ effectif ressenti par un noya raison d'unedensité électronique locale 	au, en δ champ fort
 nécessite un champ externe plus; ou une plus _ fréquence de résonance 	
noyau déblindé	/
	mp faible δ
	🟛 u Ottawa


Calcul du nombre d'insaturations

- un alcane saturé de n carbones aura 2n + 2 hydrogènes
 - O s'insère sans changer la formule
 - i.e. $C_nH_{2n+2}O_m$
 - F, CI, et Br (les X) remplacent un H
 - i.e. $C_n H_{2n+2-m} X_m$
 - N implique un H additionel
 - i.e. $C_n H_{2n+2+m} N_m$
- on calcule I différence entre le nombre de *H* dans un alcane saturé est le nombre de *H* présents dans la molécule
- on divise cette différence par 2 pour avoir le nombre d'unités d'insaturation
 - chaque unité d'insaturation représente une paire de H qui manque dans la structure, à cause de la présence d'**un cycle** ou d'**un lien** π

Unités d'insaturation

• l'absence d'une *paire d'hydrogènes* par rapport au nombre dans la molécule *saturée* représente une *unité d'insaturation*



cyclohexane

Unités d'insaturation

• l'absence d'une paire d'hydrogènes par rapport au nombre dans la molécule saturée représente une unité d'insaturation

a uOttawa

Unités d'insaturation

• l'absence d'une paire d'hydrogènes par rapport au nombre dans la molécule *saturée* représente une *unité d'insaturation*

$$C_6H_6$$

(2n + 2) = 2(6) + 2 = 14

benzène

Environnement magnétique

- affecté principalement par :
 - densité électronique
 - électronégativité (effet inductif)
 - hybridation
 - résonance
 - anisotropie magnétique

Degré de substitution

- en général, plus il y a d'atomes d'hydrogène sur un carbone, plus les noyaux de ces hydrogènes sont
 - blindage des noyaux (δ)

• e.g.:

CHR ₃	CH ₂ R ₂	CH₃R
δ 1,47	δ 1,29	δ 0,91

u Ottawa

Effet de densité électronique

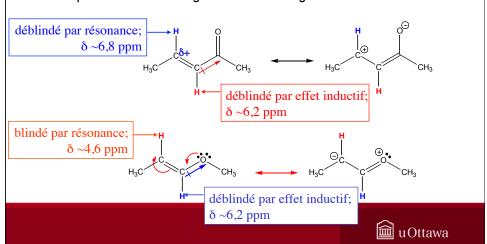
- des substituants dans le voisinage d'un noyau et leur effet inductif affectent la
 - _autour du noyau
 - diminution de la densité électronique :
 - déblindage des noyaux (δ
 - augmentation de la densité électronique :
 - blindage des noyaux (δ ______)
 - e.g.:

CH₃F	CH₃CI	CH₃Br	CH₃I	Si(CH ₃) ₄
δ 4,26	δ 3,05	δ 2,68	δ 2,16	δ 0,00

CH ₃ NO ₂	CH ₃ O ₂ CR	CH ₃ C(O)R
δ 4,29	δ 3,68	δ 2,09

a UOttawa

Effet d'hybridation


- en général, les insaturations ont un effet
 - déblindage des noyaux (δ ______)e.g.:

Ar-H	R ₂ C=C H R	RCH ₂ C H ₃
δ 7,26	δ 5,20	δ 0,91

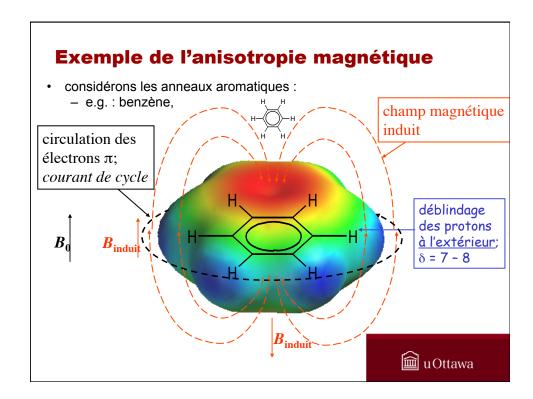
Effet de la résonance

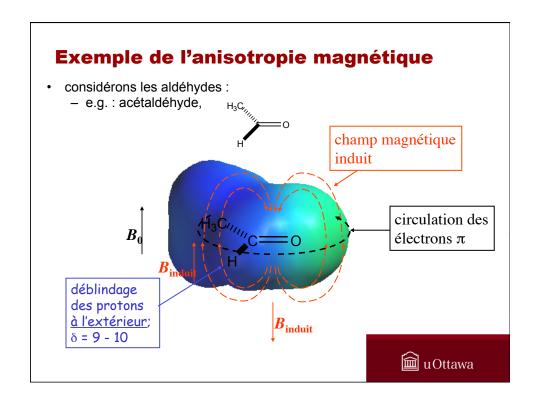
- les formes de résonance d'une molécule montrent comment la densité électronique peut être
 - possibilité de blindage ou de déblindage

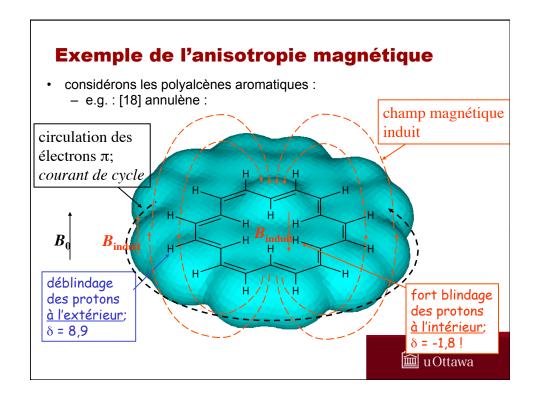
Effet de substituants aromatiques

- un substituant électrodonneur (soit par forme de résonance ou par effet inductif) sur un carbone sp² aura un effet
 - blindage des noyaux (δ)
 - e.g.:


NO ₂	H	OMe
δ 8,26	δ 7,26	δ 6,99




Effet de l'anisotropie magnétique


- l'application d'un champ magnétique externe (B₀) induit une circulation des électrons, perpendiculaire à B₀, ce qui crée un champ induit (B_{ind}) opposé
 - déjà vu sur une petite échelle pour les atomes
 - pour les groupes fonctionnels riches en densité électronique (liaisons π), l'effet peut être très important
- l'effet est induit seulement lorsqu'une molécule est perpendiculaire à *B*₀, alors il dépend de l'*anisotropie*
 - seulement une petite fraction des molécules dans un échantillon seront perpendiculaires à B_0 , mais le déplacement chimique (δ) moyen est affecté par ceux des molécules alignées

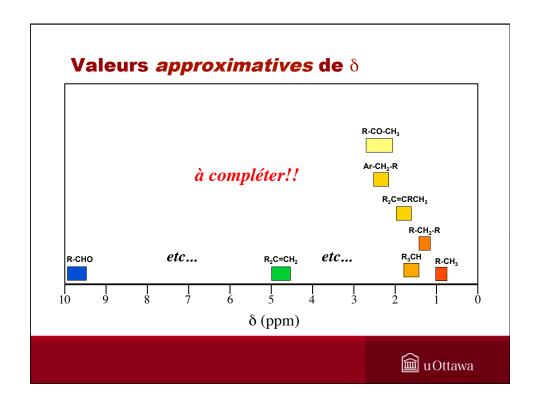


Tableau des valeurs δ de ¹H

 en tenant compte des effets précedants on peut donner des valeurs approximatives de δ pour certains groupes fonctionnels :

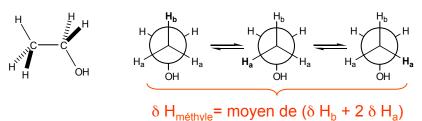
Type d'hydrogène	δ _(ppm)	Type d'hydrogène	δ _(ppm)
Type u nyurogene		Type u nyurogene	
R—CH ₃	0,8-1,0	R-CH ₂ -F	4,3-4,4
R—CH ₂ -R	1,2-1,4	R—CHO ₂	5,8-5,9
R I R-CH-R	1,4-1,7	R—C≡CH	1,7-3,1
$R_2C = \begin{pmatrix} CH_3 \\ R \end{pmatrix}$	1,6-1,9	R ₂ C=CH ₂	4,6-5,0
Ar—CH ₂ -R	2,2-2,5	R ₂ C=CH-R	5,2-5,7
°C—CH₃	2,1-2,6	Ar—H	6,0-9,5
R — CH_2 - NR_2	2,1-3,0	о °С—н К	9,5-9,9
R—CH₂-OR	3,3-3,9	б, С-ОН	10-13
R—CH ₂ -I	3,1-3,3	R—OH	0,5-5,5
R-CH ₂ -Br	3,2-3,6	R-NH ₂	0,5-5,5
R-CH ₂ -CI	3,4-3,8	Ar — OH	4-8
		i ≘ l uOtta	wa

Équivalence chimique

- voir S&F 9.7
- les noyaux qui sont chimiquement équivalents
 (grâce à la _______ et/ou _______)
 présentent ______ au
 même déplacement chimique (δ)
 - exemples typiques:
 - benzène (C₆H₆): 6 H équivalents → 1 signal
 - groupement méthyle (CH₃): 3 H équivalents → 1 signal
 - groupement méthylène (CH₂): 2 H équivalents → 1 signal

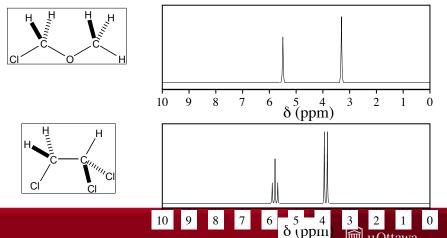
Symétrie moléculaire

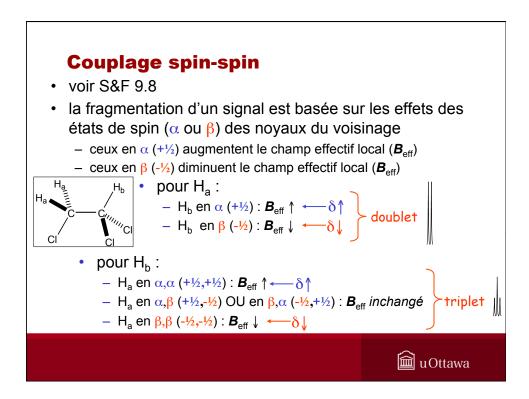
- si une molécule possède un axe ou un plan de symétrie, certains hydrogènes peuvent être
 ayant le même
- les hydrogènes qui sont chimiquement équivalents présentent ont également le même _____.

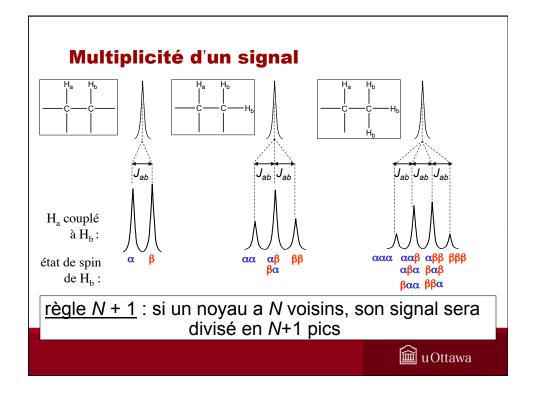


CHM 2520 - Automne 2011

Conformation vs inversion de spin


- la rotation autour des liens C-C est plus rapide que le phénomène de l'inversion de spin
- donc, le déplacement chimique observé pour un noyau est déterminé par ______parmi tous les conformères
 - e.g. le groupe méthyle d'éthanol présente un seul signal :



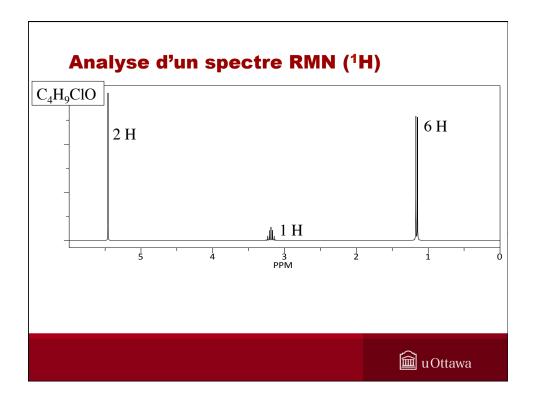

u Ottawa

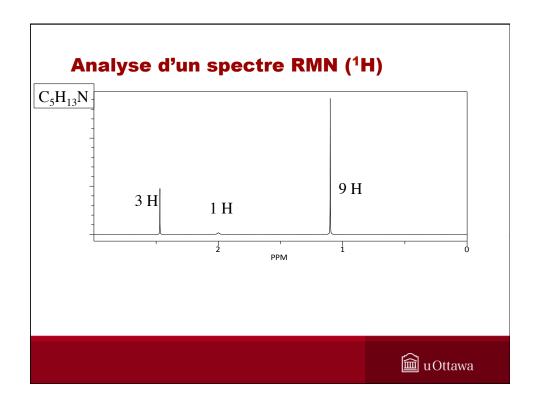
Fragmentation du signal

 résulte de l'effet des champs magnétiques des noyaux non équivalents du voisinage (≤ 3 liens σ)

Triangle de Pascal

 rapports des intensités relatives des pics individuels dans les multiplets


Nombre de H voisins, N	Nombre de pics, N + 1	Nom du multiplet (abrév)	Rapports d'aire des pics
0	1	singulet (s)	1
1	2	doublet (d)	1:1
2	3	triplet (t)	1:2:1
3	4	quadruplet (q)	1:3:3:1
4	5	quintuplet (quin)	1:4:6:4:1
5	6	sextuplet (sex)	1:5:10:10:5:1
6	7	septuplet (sept)	1:6:15:20:15:6:1




Analyse des spectres de RMN

- 1) intégration :
 - nombre de protons équivalents
- 2) déplacement chimique (δ) :
 - environnement
- 3) multiplicité:
 - nombre de protons voisins
- 4) constantes de couplage (*J*) :
 - informations structurales

a uOttawa

