

Outline: General principles of catalysis

- · see section 9.1 of A&D
 - principles of catalysis
 - differential bonding

🛍 u Ottawa

2

General principles

- a catalyst accelerates a reaction without being consumed
- the rate of catalysis is given by the turnover number
- a reaction may alternatively be "**promoted**" (accelerated, rather than catalysed) by an **additive** that is consumed
- a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface
- a homogeneous catalyst is dissolved in solution, where catalysis takes place
- all catalysis is due to a decrease in the activation barrier, ΔG[‡]

3

Catalysts

- · efficient at low concentrations
 - e.g. [Enz]_{cell} << 10^{-5} M; [Substrates]_{cell} < 10^{-4} 10^{-5} M
- · not consumed during the reaction
 - e.g. each enzyme molecule can catalyse the transformation of 20 36 x 10⁶ molecules of substrate per minute
- · do not affect the equilibrium of reversible chemical reactions
 - only accelerate the rate of approach to equilibrium end point
- most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH)
- enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective

🛍 uOttawa

4

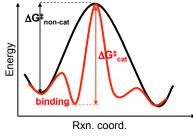
Catalysis and free energy

- catalysis accelerates a reaction by stabilising a TS relative to the ground state
 - free energy of activation, ΔG^{\ddagger} , decreases
 - rate constant, k, increases
- catalysis does not affect the end point of an equilibrium, but only accelerates how quickly equilibrium is attained
 - free energy of the reaction, ΔG° , remains unchanged
 - equilibrium constant, $K_{\rm eq}$, remains unchanged

5

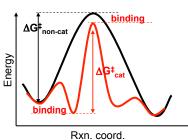
Energy profile of catalysis uncatalysed AG[‡]_{uncat} Reaction coordinate unchanged

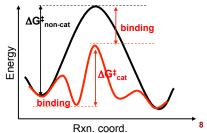
Transition state binding


- interaction between a catalyst and reactant or activated complex can stabilise one or the other
- · if the activated complex is bound more strongly than the substrate, the activation barrier will be decreased
- HOWEVER, the activated complex is not a molecule so the catalysts must first of all interact with the substrate, and then release the product at the end of the reaction:

A + cat
$$\longrightarrow$$
 A•cat \longrightarrow P•cat \longrightarrow P + cat

a uOttawa


7


Differential binding consider 4 scenarios :

Rxn. coord.

Energy

Differential binding to accelerate a reaction, a catalyst must stabilise the TS more than it stabilises the substrate even if this stabilisation takes place over less time than that of a bond vibration, by definition

Outline: Types of catalysis

- · see section 9.2 of A&D
 - approximation
 - electrostatic
 - covalent

a UOttawa

- strain and distortion

🛍 uOttawa

10

product

9

Catalysis by approximation

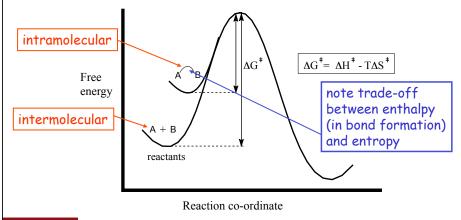
• the catalyst *brings together* the reactants, increasing their *effective* concentrations, and orients them with respect to the reactive groups

Jencks:

 the loss of entropy associated with the restriction of rotation and translation of substrate must be compensated by the *intrinsic energy of* binding (favourable non-bonding interactions)

Bruice / Kirby:

 the magnitude of this effect is given by the effective concentration, determined by comparison if the rate constants of the bimolecular and intramolecular reactions


a UOttawa

11

12

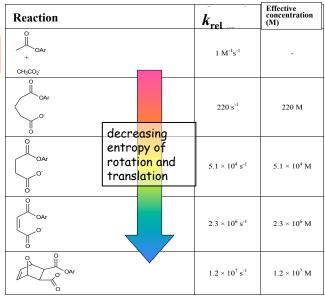
Intramolecular approximation

 an intramolecular reaction implies a smaller decrease in entropy (and therefore a decrease in the free energy of activation)

Example of catalysis by approximation

the catalyst brings together the reactants, increasing their effective concentrations, and orients them with respect to the reactive groups

$$O_2N$$
 O_2N
 O_2N


$$\frac{k_1^{\text{obs}}}{k_2^{\text{obs}}} = 5000 \text{ M} = effective concentration,}$$
or effective molarity (EM)

Example: Ester hydrolysis

parent reaction

â uOt

7 Catalysis

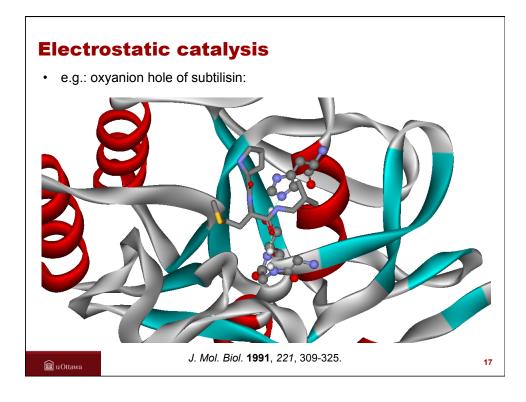
13

14

More notions of catalysis by approximation

- many notions have been advanced by many different researchers, to describe the subtleties of catalysis by approximation:
 - orbital steering: the alignment of orbitals is proposed to accelerate the reaction
 - stereopopulation control: one reactive conformer among several is favoured
 - near attack conformations: conformations are favoured whose spatial orientation lead to the desired reaction

CAUTION: one must not forget the Curtin-Hammett principle!!


15

Electrostatic catalysis

- stabilisation of charge developed at TS
- for example, serine and cysteine proteases favour the formation of a tetrahedral intermediate by stabilising the negative charge developed on oxygen, in an oxyanion hole
 - e.g.: consider papain, a Cys protease

â uOttawa

16

Electrostatic catalysis

- can be very important :
 - consider the triple mutant of subtilisin where each residue of its catalytic triad is replaced (S221A-H64A-D32A)
 - catalyses proteolysis 106-fold less than the native enzyme
 - BUT the reaction with the mutant is still 10³-fold faster than the uncatalysed reaction!!
 - an important part of catalysis is due to the electrostatic environment

â uOttawa

18

Metal catalysis

- electrostatic charges developed at the TS can also be stabilised by metal ions
- coordination of a ligand by a metal (as a Lewis acid) can also lead to polarisation of a ligand
 - e.g. pK_a of metal-bound H_2O is 7.2, making it easier to deprotonate, therby generating ^-OH as a nucleophile
 - for example, zinc-bound water in carbonic anhydrase, a highly efficient metalloenzyme as well as certain enzyme models

19

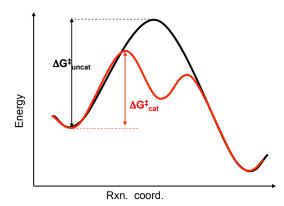
Covalent catalysis

 catalyst forms a covalent intermediate that reacts faster than uncatalysed reaction:

A + B
$$\longrightarrow$$
 P

 νs

A + B + C \longrightarrow AC + B \longrightarrow P + C intermediate


more reactive

a uOttawa

20

Covalent catalysis

• in order for catalysis to be efficient, the activation energy for formation of the intermediate and for its subsequent reaction must both be lower than that of the uncatalysed reaction :

🛍 u Ottawa

21

Covalent catalysis

an example of non-enzymatic covalent catalysis and anchimeric assistance:

- mustard gas
$$CI \xrightarrow{S} CI \xrightarrow{G} CI \xrightarrow{S} OH_2$$

enzymes use nucleophilic groups (e.g. <u>Asp, Glu, Ser, Cys, Lys, His,</u> Arg) and cofactors to form covalent bonds (*nucleophilic catalysis*)

🛍 uOttawa

22

Nucleophilic catalysis • catalyst attacks substrate to form intermediate that is even more susceptible to nucleophilic attack, by a second reactant • e.g. reaction of acid chlorides with alcohols, catalysed by addition of a tertiary amine: R'OH (rapide) NEt₃ R'OH (rapide) NEt₃ RYOH (rapide) NEt₃ RXNn. coord.

Covalent catalysis

- another important example is activation of a <u>carbonyl</u> by formation of an <u>imine</u>
 - very common in organocatalysis
 - used by many enzymes
 - e.g.: acetoacetate decarboxylase :

Chemical reaction:

$$H_3C$$
 H_3C
 H_3C

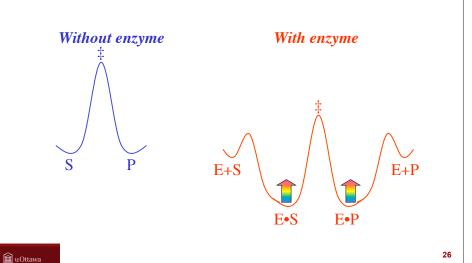
Strain and distortion

 destabilisation of the ground state induced in the substrate or in the catalyst (such as an enzyme)

Koshland:

- induced complementarity hypothesis: the approach of substrate serves to provoke a conformational change in the enzyme, to adopt a form that better binds the substrate, but in a higher energy (strained) form and/or to better orient reactive groups ("orbital steering")
- the substrate can also be deformed to adopt a strained form

Jencks:


- strain and distortion in the substrate are essential for the catalysis
- TSs are stabilised, rather than E•S and E•P complexes (so as not to form overly stable intermediates)
- binding energy must therefore be used to <u>destabilise</u> the E•S and E•P complexes

25

Strain and distortion

binding energy is used to <u>destabilise</u> the E•S and E•P complexes

Strain and distortion • binding energy is used to destabilise the E•S and E•P complexes Without enzyme With enzyme E+S E•S E•P E+P

Productive strain

a UOttawa

- in order for a reaction to be facilitated by strain, two conditions must be met:
 - 1. the strain must be along the reaction pathway
 - strain "pushes" the reactants towards the TS
 - 2. the strain must be at least partly alleviated at the TS
 - if the strain were still present at the TS, it would not contribute to catalysis

🛍 uOttawa

28

27

Outline: Acid-base catalysis

- · see section 9.3 of A&D
 - specific acid/base catalysis
 - general acid/base catalysis
 - kinetic equivalence
 - Brønsted catalysis law
 - prediction of acid-base catalysis
 - energy surfaces of acid-base catalysis

29

Acid-base catalysis

the catalyst (namely an acid or a base) accelerates the reaction through protonation or deprotonation

â uOttawa

30

Specific acid-base catalysis

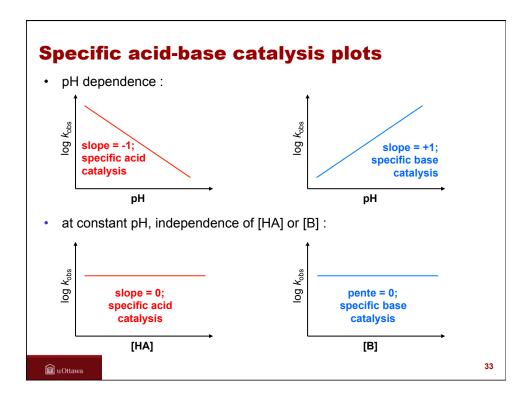
 catalysis by H⁺ or ⁻OH, controlled only by pH, where a fast equilibrium precedes the rls :

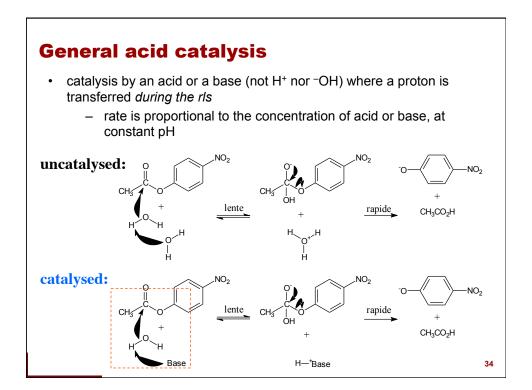
🛍 uOttawa

31

Rate laws of specific acid-base catalysis

when a substrate must be protonated before its reaction in the rls, this
appears as a pH dependence in the rate law:


- e.g.:
$$v = k[R] \times [H^+]/K_{a.RH}$$

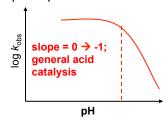

• when a substrate must be deprotonated *before* its reaction in the rls, this appears as a pH dependence in the rate law:

- e.g.:
$$v = k[RH] \times K_{a,RH}/[H^+]$$

🛍 uOttawa

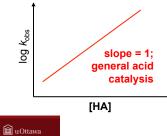
32

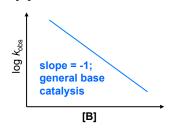
Rate laws

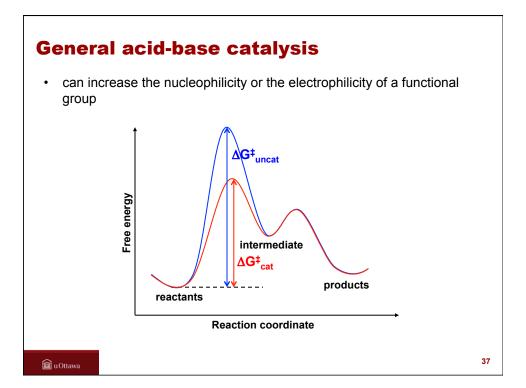

- if a substrate is protonated *during* the rls, this appears as a dependence on [HA] in the rate law :
 - e.g.: $v = k[R] \times [HA] \rightarrow = k_{obs}[R]$ where $k_{obs} = k[HA]$
- if a substrate is deprotonated *during* the rls, this appears as a dependence on [B] in the rate law:
 - e.g.: $v = k[R] \times [B] \rightarrow = k_{obs}[R]$ where $k_{obs} = k[B]$

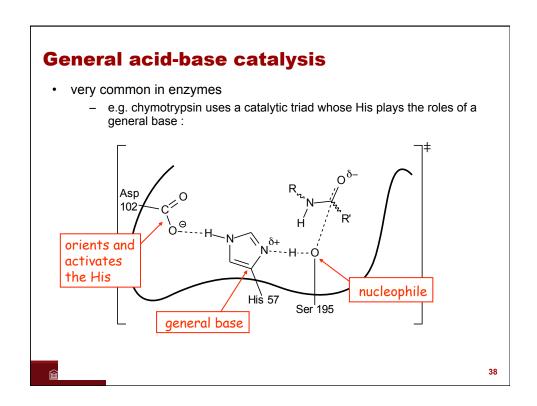
🛍 u Ottawa

35


General acid-base catalysis plots


• pH dependence :


slope = 1 → 0; general acid catalysis


at constant pH, dependence on [HA] or [B]:

36

Kinetic equivalence

- · one cannot distinguish, kinetically, between:
 - 1. general acid catalysis;

$$v = k_{\text{obs}}[R][HA]$$
:

 $H = A$
 OH
 $H = A$
 OH
 OH

2. specific acid catalysis followed by general base catalysis;

39

Kinetic equivalence

- · by analogy, one cannot distinguish between:
 - 1. general base catalysis and
 - 2. specific base catalysis followed by general acid catalysis

$$V = k_{obs}[R][B] = k_{obs}[R][OH^{-}][HB^{+}]$$

🛍 uOttawa

40

Brønsted

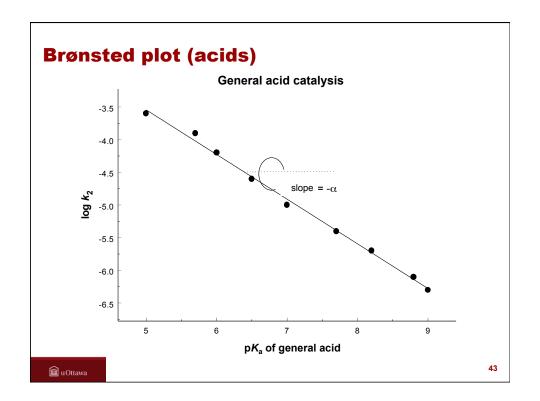
- Johannes Brønsted (1879-1947)
 - Danish physical chemist (Copenhagen)
 - studied protonic theory of acid-base reactions (as did Lowry)
 - acid-base catalysis

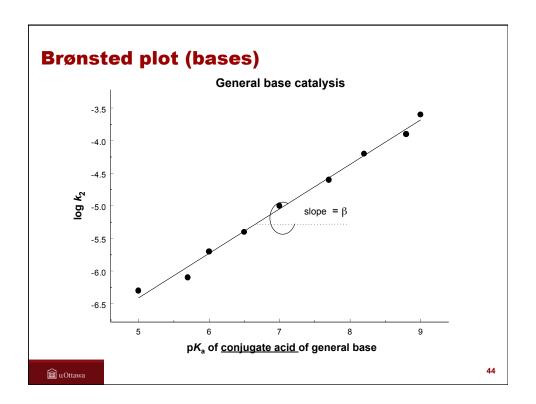
41

Brønsted catalysis law

• Brønsted noted that the rate constants for reactions catalysed by a general acid (having a proton *in flight* in the rate limiting transition state) are proportional to the acidity constants of the general acids:

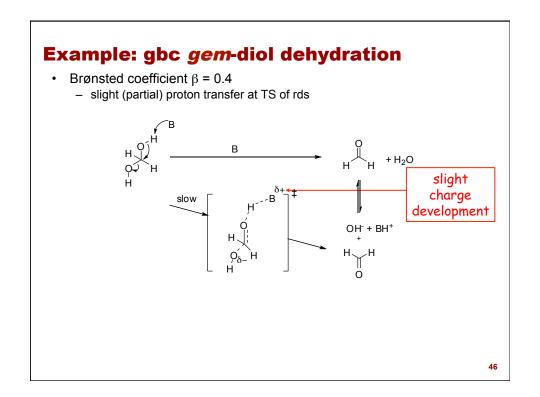
$$k_{\rm obs} \propto K_{\rm a}^{\alpha} \left[\log k_{\rm obs} = \alpha \cdot \log K_{\rm a} = -\alpha \cdot {\rm p} K_{\rm a} \right]$$

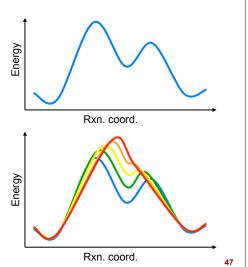

and for general bases:


$$k_{\text{obs}} \propto K_b^{\beta} \left[\log k_{\text{obs}} = \beta \cdot \log K_b = -\beta \cdot pK_b \right]$$

- Brønsted plots (log k vs pK) have slopes between 0 and 1:
 - slope of 0 : no proton transfer in rds
 - · slope of 1 : proton already transferred before rds
 - intermediate slope: proportional with charge developed at TS of rds

🛍 uOttawa

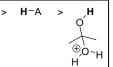

42



45

Step-wise vs concerted mechanism

- in general, a reaction will take place by a *step-wise* mechanism unless it is *forced* to take place by a concerted mechanism
 - if the intermediates of a reaction pathway are all fairly stable, this pathway will have the lowest energy....
 - but when an intermediate becomes too unstable to exist, it becomes a TS:

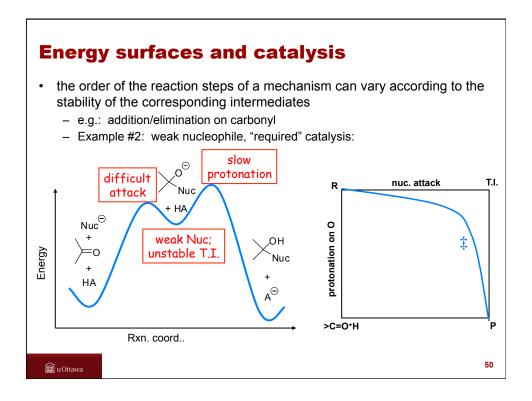

Prediction of general acid-base catalysis

- catalysis by a general acid or base is a concerted mechanistic step
 - proton transfer AND heavy atom bond formation/cleavage, in one step
 - cf specific acid/base catalysis, which is step-wise
- concerted catalysis becomes necessary when proton transfer to or from the reactant is only possible at the TS, owing to changes in heavy atom bonding
 - predictable, according to relative acidities

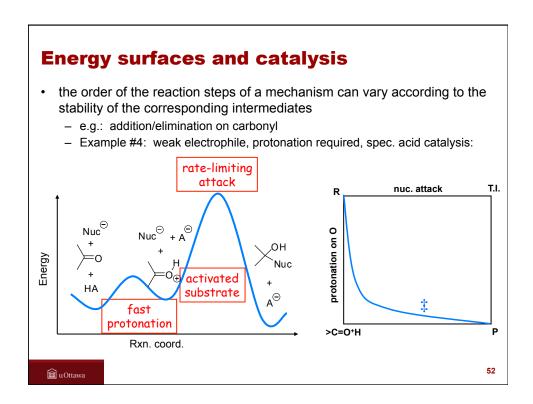
ABIO H

Rxn. co-ord.

relative \oplus H > H-, acidities:



🛍 u Ottawa


e.g.:

48

Energy surfaces and catalysis • the order of the reaction steps of a mechanism can vary according to the stability of the corresponding intermediates - e.g.: addition/elimination on carbonyl - Example #1: strong nucleophile, no acid catalysis: rate-limiting attack .o[⊝] T.I. nuc. attack. fast `Nuc protonation $\mathsf{Nuc}^{\scriptsize{\boxdot}}$ protonation on O + HA Energy Nuc good Nuc; stable T.I. >C=O+H Rxn. coord. 49 a uOttawa

Energy surfaces and catalysis • the order of the reaction steps of a mechanism can vary according to the stability of the corresponding intermediates - e.g.: addition/elimination on carbonyl - Example #3: both nuc. attack AND protonation are difficult, and concerted protonation nuc. attack T.I. at T.S.; gac difficult attack Nuc⊖ protonation on OΗ Energy Nuc Nuc intermediate HA so unstable it becomes T.S. >C=O+H Rxn. coord. 51 a uOttawa

Outline: Enzyme catalysis

- see section 9.4 of A&D
 - enzymes and non-bonding interactions (review)
 - Michaelis-Menten kinetics
 - significance of kinetic parameters
 - energy diagrams
 - enzyme catalysis and "supramolecular"
 - example: chymotrypsin and an enzyme model

53

Enzymes

- · proteins that play functional biological roles
- responsible for the catalysis of nearly all chemical reactions that take place in living organisms
 - acceleration of reactions by factors of 10⁶ to 10¹⁷
- biological catalysts that <u>bind</u> and catalyse the <u>transformation</u> of substrates
- the three-dimensional structures of many enzymes have been solved (through X-ray crystallography)

🛍 uOttawa

54

Rappel: Structures des acides aminés

• as proteins, enzymes are polymers of amino acids whose side chains interact with bound ligands (substrates)

	ÇO ₂ H	R	Name	3 Letter	1 Letter	R	Name	3 Letter	1 Letter
1 ₂ N-	—н			Code	Code			Code	Code
	Ŕ	н	Glycine	Gly	G	CH ₂ SH	Cysteine	Cys	С
	••	СН₃	Alanine	Ala	A	CH ₂ CH ₂ SCH ₃	Methionine	Met	M
		CH(CH ₃) ₂	Valine	Val	V	(CH ₂) ₄ NH ₂	Lysine	Lys	K
		CH ₂ CH(CH ₃) ₂	Leucine	Leu	L	NH (CH ₂) ₃ NHCNH ₂	Arginine	Arg	R
		CHCH ₂ CH ₃ I CH ₃	Isoleucine	Ile	I	H ₂ C H	Histidine	His	Н
		CH ₂ —	Phenylalanine	Phe	F	H ₂ C	Tryptophan	Trp	W
		CO ₂ H HN H	Proline	Pro	P	н О П Сн₂сон	Aspartic acid	Asp	D
		CH₂OH	Serine	Ser	S	O CH ₂ CNH ₂	Asparagine	Asn	N
		снон сн₃	Threonine	Thr	T	о сн ₂ сн ₂ сон	Glutamic acid	Glu	Е
		он,—Он	Tyrosine	Tyr	Y	o II	Glutamine	Gln	Q
		On ₂ —On				CH₂CH₂ÖNH₂			5

Coenzymes and cofactors

- indispensable for the activity of some enzymes
- · can regulate enzymatic activity
- the active enzyme-cofactor complex is called a haloenzyme
- an enzyme without its cofactor is called an apoenzyme

🛍 u Ottawa

56

Cofactors

- metal ions (Mg²⁺, Mn²⁺, Fe³⁺, Cu²⁺, Zn²⁺, etc.)
- three possible modes of action:
 - 1. primary catalytic centre
 - 2. facilitate substrate binding (through coordination bonding)
 - 3. stabilise the three-dimensional conformation of an enzyme

57

Coenzymes

- · organic molecules, very often vitamins
 - e.g.: nicotinic acid gives NAD; pantothenic acid gives CoA
- · intermediates in the transport of functional groups
 - e.g. H (NAD), acyl (CoA), CO₂ (biotin), etc
- also known as *prosthetic groups*

a uOttawa

58

Enzymes as catalysts

Jencks:

· enzymes use binding energy to effect catalysis

Wolfenden:

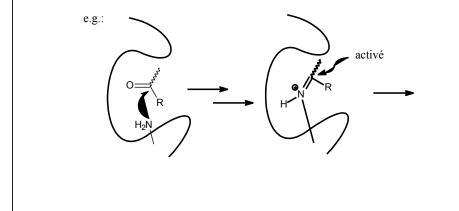
- reaction acceleration is proportional to the affinity of an enzyme for the transition state of the catalysed reaction
- the reaction rate is proportional to the concentration of substrate in the activated complex at the TS
- substrate affinity is therefore also important and enzymes use protein conformational changes during the reaction to better stabilise the TS

Knowles:

• often the various steps of an enzymatic reaction are stabilised so as to *level* the energies of the various ground states and TSs

59

Protein-ligand interactions

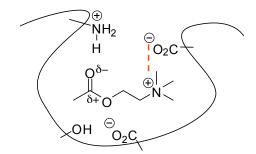

- · covalent bonds
- · ionic bonds
- · ion-dipole and dipole-dipole interactions
- hydrogen bonds
- charge transfer complexes
- · hydrophobic interactions
- · van der Waals interactions

🛍 uOttawa

60

Covalent bond

 the formation of a covalent bond can represent a stabilisation of 40 to 110 kcal/mol



61

lonic bonds

Coulombic attraction between full positive and negative charges
 ~5 kcal/mol of stabilisation

a uOttawa

62

Ion-dipole and dipole-dipole interactions

- electrostatic interactions that involve partial charges
 - ~1 kcal/mol of stabilisation

🛍 uOttawa

63

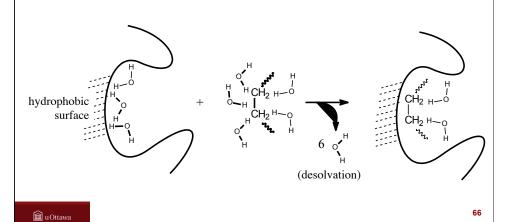
Hydrogen bonds

- special type of dipole-dipole interaction
 - donors / acceptors : N, O, F
 - stabilisation of around 3-10 kcal/mol

a uOttawa

64

Charge transfer complex


- special type of dipole-dipole interaction
- involves π electrons, often in aromatic rings (Phe, Tyr, Trp, His)
 - stabilisation : < 3 kcal/mol</p>

🛍 u Ottawa

65

Hydrophobic interactions

- stabilisation largely due to desolvatation (entropy increase)
 - stabilisation : ~0.5 kcal/mol

van der Waals interactions

- · special type of dipole-dipole interaction
 - movement of electrons in electron cloud of alkyl chains induces the formation of temporary dipoles
 - very important over short distances
 - stabilisation : ~0.5 kcal/mol (per interaction)

67

Enzyme kinetics

- same rules, laws and methods as analysis of non-enzymatic ("chemical") kinetics
- treated separately simply to emphasise the kinetic equations of enzyme activity and inhibition that are so pertinent in bioorganic and medicinal chemistry

🛍 u Ottawa

68

Steady state

$$E + S \xrightarrow{k_1} E \cdot S \xrightarrow{k_2} E \cdot P \longrightarrow E + P$$

- at the beginning of an enzymatic reaction, there is an induction period (see the treatment of consecutive reactions) where the concentrations of intermediates build to a certain level
- when the rate of formation of these intermediates equals their rate of disappearance, they are said to be in a *steady state*
- enzymatic reaction rates are typically measured during this time period

69

Initial rates

- normally, [E]₀ << [S]
- at the beginning of the reaction (<10%), [S] \approx [S]₀
- under these conditions, [E•S] doesn't change appreciably and the rate is therefore considered to be constant

a uOttawa

70

Saturation kinetics

- the rate of an enzymatic reaction is linearly proportional to the concentration of enzyme
- however, these rates show *saturation kinetic* (hyperbolic) behaviour with respect to the concentration of substrate
 - at low concentrations of S, the rate increases linearly with [S]
 - at higher concentrations of S, the rate increases less and less with increasing [S]
 - at saturating concentrations of S, the rate approaches a limiting value called the *maximum rate*, ${\bf V_{max}}$

71

Michaelis

- **Leonor Michaelis** (1875 1949)
 - German biochemist and physician (Berlin, Johns Hopkins, Rockefeller)
 - develop enzyme kinetic equations with Menten
 - studied urinary tract infections
 - developed chemical denaturation of keratin ('perm'!) and depilation

🛍 uOttawa

72

Menten

- **Maude Menten** (1879-1960)
 - Canadian medical scientist
 - MD/PhD with Michaelis
 - developed enzyme kinetics equations
 - later became pathologist (Pittsburgh)
 - developed enzyme assays and electrophoretic separation of proteins

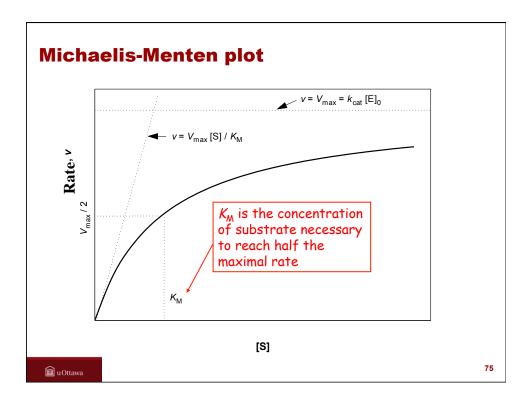
73

Michaelis-Menten equation

- in 1913, Michaelis and Menten proposed the following simplified kinetic scheme:
 - NB: rapid equilibrium to form the *Michaelis complex*, followed by its reaction in the slow step

$$E + S \xrightarrow{K_S} E \cdot S \xrightarrow{k_{cat}} E + P$$

$$v = k_{\text{cat}}[E \cdot S]$$
 and $K_S = \frac{[E][S]}{[E \cdot S]}$ and $[E]_0 = [E] + [E \cdot S]$


$$[E] = \frac{K_{\mathrm{S}}[\mathrm{E} \bullet \mathrm{S}]}{[\mathrm{S}]} = [\mathrm{E}]_{0} - [\mathrm{E} \bullet \mathrm{S}] \qquad K_{\mathrm{S}}[\mathrm{E} \bullet \mathrm{S}] = [\mathrm{E}]_{0}[\mathrm{S}] - [\mathrm{E} \bullet \mathrm{S}][\mathrm{S}] \qquad [\mathrm{E} \bullet \mathrm{S}] = \frac{[\mathrm{E}]_{0}[\mathrm{S}]}{K_{\mathrm{S}} + [\mathrm{S}]}$$

hyperbolic equation $v = \frac{[E]_0[S]k_{cat}}{K_S + [S]}$ $V_{max} = k_{cat}[E]_0$

$$V_{\text{max}} = k_{\text{cat}}[E]_0$$

a UOttawa

74

M-M equation cf M-M mechanism

- the Michaelis-Menten <u>equation</u> (hyperbolic) accurately describes the kinetics observed for most enzymatic reactions
- however, the <u>mechanism</u> suggested by the simplistic Michaelis-Menten scheme (fast equilibrium binding, followed by *one* slow step) is rarely appropriate
- a more rigorous kinetic treatment of the same scheme invokes the *steady* state approximation

🛍 uOttawa

76

Steady state equation

$$E + S \xrightarrow{k_1} E \cdot S \xrightarrow{k_2} E + P$$

 at the steady state, the rate of formation of E•S equals that of its disappearance:

$$\frac{d[E \cdot S]}{dt} = k_1[E][S] - (k_2 + k_{-1})[E \cdot S] = 0 \qquad \frac{k_2 + k_{-1}}{k_1} = \frac{[E][S]}{[E \cdot S]}$$

• this is the only difference compared to the previous treatment; $K_{\rm S}$ is simply replaced by $K_{\rm M}$, the *Michaelis constant*:

$$\frac{k_2 + k_{-1}}{k_1} = K_{\rm M}$$

$$v = \frac{[E]_0[S]k_{cat}}{K_M + [S]}$$

$$v = \frac{V_{\text{max}}[S]}{K_{\text{M}} + [S]}$$

$$V_{\text{max}} = k_{\text{cat}}[E]_0$$

77

Mechanistic implication

- saturation kinetics refers to the the hyperbolic relation between the reaction rate and the concentration of reactant (substrate)
- in general, this is consistent with (and often due to) the *rapid pre- formation of a complex* before its reaction to give product

$$A + C \longrightarrow A \cdot C \longrightarrow P + C$$

a UOttawa

78

Constant catalytic: k_{cat}

- in general, k_{cat} represents the rate constant of the rds, the slowest step of the enzymatic reaction
 - more strictly speaking, it is affected by first order rate constants of all steps in the mechanism
- also called the turnover number because it represents the number of substrate molecules converted into product, per enzyme active site, per unit of time

79

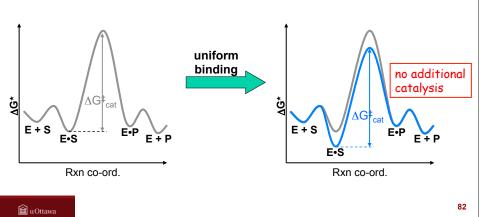
Apparent equilibrium constant : K_{M}

- related to K_S, the dissociation constant
- can be considered as an apparent dissociation constant
 - more strictly, it is the dissociation constant for the sum of all enzyme species bound by substrate
 - related to the affinity of the enzyme for the substrate
 - lower K_M corresponds to higher affinity
 - less substrate necessary to saturate enzyme
- always represents the concentration of substrate necessary to give half of the maximal rate
 - (derives mathematically from the hyperbolic equation)

🛍 u Ottawa

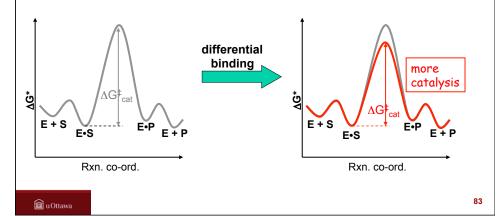
80

Specificity constant : $k_{\text{cat}} / K_{\text{M}}$

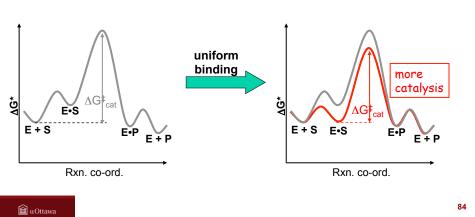

- second order rate constant for the reaction of enzyme and substrate
- since the value of (k_{cat} / K_M) varies for each substrate and its affinity for the enzyme, this ratio is also called the *specificity* constant
- can be considered as an indicator of the <u>efficiency</u> of the reaction of free enzyme with a given substrate

🛍 u Ottawa

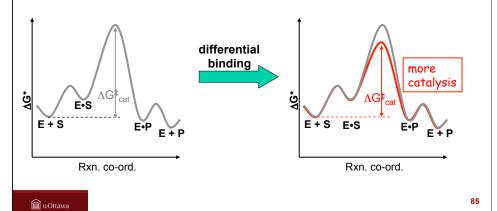
81


Energy diagrams

- consider energy profiles for enzymatic reactions, at the native concentration of substrates:
- for [S] >> K_M
 - the *uniform* binding of substrate and activated complex would not lead to catalysis:


Energy diagrams

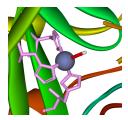
- consider energy profiles for enzymatic reactions, at the native concentration of substrates:
- for [S] >> K_M
 - the differential binding of substrate and activated complex can lead to catalysis:


Energy diagrams

- consider energy profiles for enzymatic reactions, at the native concentration of substrates:
- for [S] < K_M
 - the *uniform* binding of substrate and activated complex can lead to catalysis:

Energy diagrams

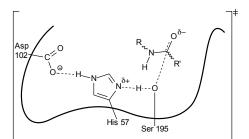
- consider energy profiles for enzymatic reactions, at the native concentration of substrates:
- for [S] < K_M
 - the differential binding of substrate and activated complex can lead to catalysis:


"Perfect" enzymes

- some enzymes are so efficient, their k_{cat}/K_M values approach the diffusion-controlled limit, at [S]<K_M
 - e.g.: triosephosphate isomerase

- e.g. carbonic anhydrase

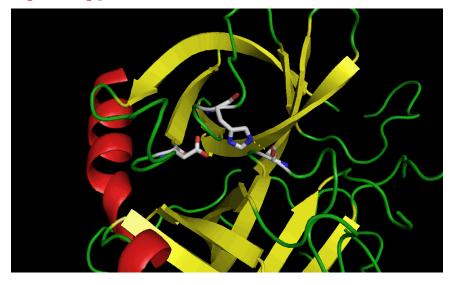
$$K_{cat}/K_{M} = 8.3 \times 10^{7} \text{ M}^{-1} \text{s}^{-1}$$
 $K_{M} = 12 \text{ mM}$
 $+_{2}CO_{3}$
 $+_{2}CO_{2} + H_{2}CO_{3}$



86

🛍 u Ottawa

Serine proteases

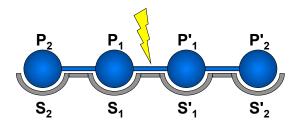

- catalyses the hydrolysis of proteins and peptides
 - esters, too
- studied for over 40 years, their mechanism is very well known
 - especially true for trypsin, chymotrypsin, elastase and subtilisin
- contain a catalytic triad, composed of Ser, His and Asp

🛍 u Ottawa

87

Chymotrypsin

a UOttawa

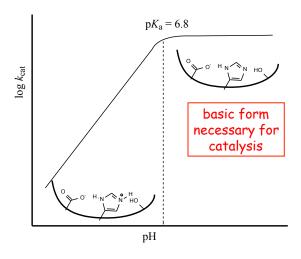

J. Mol. Biol. 1985, 184, 703-711.

88

Chymotrypsin

- secreted by the pancreas, it aids in the digestion proteins in the intestine
- catalyses the hydrolysis of the peptide bond on the C-terminal side of an amino acid having a side chain containing an aromatic group:

$$-P_1$$
 = Phe, Trp, Tyr



🛍 uOttawa

89

pH-rate profile of chymotrypsin

 plateau in pH-rate profile implies dependence on ionisation state of one residue (His57)

a uOttawa

90

Bender's model (Acc. Chem. Res. 1987, 20, 146)

- Bender coupled a binding site model (a cyclodextrin) with a model of the catalytic triad of the serine proteases
- one of the first enzyme models to incorporate all the components of an enzymatic system in the same molecule
- participates in an intermolecular reaction with a model substrate, p-tbutylphenyl acetate
 - caution! a phenyl ester is not an amide!

🛍 u Ottawa

92

Cyclodextrin

- cyclic oligomer of 1,4- α -D-glucose units - 6 glucoses = α -CD, 7 glucoses = β -CD, 8 glucoses = γ -CD
- hydrophobic cavity, with OH groups around the entry, often used as sites for attachment of other functional groups

👜 u Ottawa

93

94

Bender's model (*Acc. Chem. Res.* 1987, *20*, 146)

Bender's model (Acc. Chem. Res. 1987, 20, 146)

- · saturation kinetics observed
 - consistent with formation of a bound complex
 - allows the measurement of $k_{\rm cat}$ and $K_{\rm M}$ values
- 1 mmol of catalyst effected the hydrolysis of > 10 mmol of substrate
 - regeneration of catalyst; true catalysis

95

Bender's model (Acc. Chem. Res. 1987, 20, 146)

- reaction is three-fold slower in D₂O than in water
 - proton in flight at TS
 - consistent with general base catalysis
 - not consistent with nucleophilic catalysis (which is also possible with imidazoles)
- pH-k_{cat} profile plateaus above pH 10
 - basic form is active
 - supports a role for a general base

a uOttawa

96

Bender's model (Acc. Chem. Res. 1987, 20, 146)

- comparisons (made by the author) between chymotrypsin and his "artificial chymotrypsin":
 - model is more stable with respect to pH and temperature
 - model is more efficient than the enzyme, with respect to their molecular weights
 - starting point for the synthesis of "artificial enzymes"
 - "the ultimate proof of the mechanism of chymotrypsin catalysis"
- HOWEVER, chymotrypsin catalyses the hydrolysis of amides at pH 7...
- note that other authors have used more realistic substrate models, namely amides
 - see Brown et al., JACS 1989, 111, 1445:

🛍 u Ottawa

97