





| CO₂H | R                                                         | Name          | 3 Letter | 1 Letter | R                                                                                  | Name          | 3 Letter | 1 Lette |
|------|-----------------------------------------------------------|---------------|----------|----------|------------------------------------------------------------------------------------|---------------|----------|---------|
| 1——H |                                                           |               | Code     | Code     |                                                                                    |               | Code     | Code    |
| Ŕ    | н                                                         | Glycine       | Gly      | G        | CH2SH                                                                              | Cysteine      | Cys      | С       |
|      | _ <sub>сн3</sub>                                          | Alanine       | Ala      | А        | CH2CH2SCH3                                                                         | Methionine    | Met      | М       |
|      | CH(CH <sub>3</sub> ) <sub>2</sub>                         | Valine        | Val      | V        | (CH <sub>2</sub> ) <sub>4</sub> NH <sub>2</sub>                                    | Lysine        | Lys      | K       |
|      | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>         | Leucine       | Leu      | L        | NH                                                                                 | Arginine      | Arg      | R       |
|      | снсн <sub>2</sub> сн <sub>3</sub><br> <br>сн <sub>3</sub> | Isoleucine    | Ile      | Ι        | H2C H                                                                              | Histidine     | His      | Н       |
|      | CH2-                                                      | Phenylalanine | Phe      | F        |                                                                                    | Tryptophan    | Trp      | W       |
|      |                                                           | Proline       | Pro      | Р        | н́<br>о<br>Ц<br>сн₂сон                                                             | Aspartic acid | Asp      | D       |
|      | сн₂он                                                     | Serine        | Ser      | S        | 0                                                                                  | Asparagine    | Asn      | Ν       |
|      | CHOH                                                      | Threonine     | Thr      | Т        | CH <sub>2</sub> CNH <sub>2</sub><br>0<br>  <br>CH <sub>4</sub> CH <sub>4</sub> COH | Glutamic acid | Glu      | Е       |
|      | ,<br>                                                     | Tyrosine      | Tvr      | v        |                                                                                    | Glutamine     | Gln      | 0       |













































































## 





## Strain and distortion destabilisation of the ground state induced in the substrate or in the ٠ catalyst (such as an enzyme) Koshland : - induced complementarity hypothesis: the approach of substrate serves to provoke a conformational change in the enzyme, to adopt a form that better binds the substrate, but in a higher energy (strained) form and/or to better orient reactive groups ("orbital steering") - the substrate can also be deformed to adopt a strained form Jencks : - strain and distortion in the substrate are essential for the catalysis - TSs are stabilised, rather than E•S and E•P complexes (so as not to form overly stable intermediates) - binding energy must therefore be used to destabilise the E•S and E•P complexes 46 💼 uOttawa















