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Enzyme Kinetics 

Enzyme Catalysis 

Outline:  Enzyme catalysis 

•  enzymes and non-bonding interactions (review) 
•  catalysis (review - see section 9.2 of A&D) 

–  general principles of catalysis 
–  differential binding 
–  types of catalysis 

•  approximation 
•  electrostatic 
•  covalent 
•  acid-base catalysis 
•  strain and distortion 

•  enzyme catalysis and energy diagrams 
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Enzymes 

•  proteins that play functional biological roles  
•  responsible for the catalysis of nearly all chemical reactions that take 

place in living organisms 
–  acceleration of reactions by factors of 106 to 1017 

•  biological catalysts that bind and catalyse the transformation of substrates 
•  the three-dimensional structures of many enzymes have been solved 

(through X-ray crystallography) 
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Reminder:  Amino acid structures 
•  as proteins, enzymes are polymers of amino acids whose side chains 

interact with bound ligands (substrates) 
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Coenzymes and cofactors 

•  indispensable for the activity of some enzymes 

•  can regulate enzymatic activity  

•  the active enzyme-cofactor complex is called a haloenzyme 

•  an enzyme without its cofactor is called an apoenzyme 

5 

Cofactors 

•  metal ions (Mg2+, Mn2+, Fe3+, Cu2+, Zn2+, etc.) 

•  three possible modes of action: 
1.  primary catalytic centre 
2.  facilitate substrate binding (through coordination bonding) 
3.  stabilise the three-dimensional conformation of an enzyme 

6 
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Coenzymes 

•  organic molecules, very often vitamins  
–  e.g.: nicotinic acid gives NAD; pantothenic acid gives CoA 

•  intermediates in the transport of functional groups 
–  e.g. H (NAD), acyl (CoA), CO2 (biotin), etc 

•  also known as prosthetic groups 
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Protein-ligand interactions 

•  covalent bonds 
•  ionic bonds 
•  ion-dipole and dipole-dipole interactions 
•  hydrogen bonds 
•  charge transfer complexes 
•  hydrophobic interactions 
•  van der Waals interactions 

8 
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Covalent bond 

•  the formation of a covalent bond can represent a stabilisation of 
40 to 110 kcal/mol 

 e.g.:

N
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O

R

H2N
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activated	



Ionic bonds 

•  Coulombic attraction between full positive and negative charges 
–  ~5 kcal/mol of stabilisation 

NH2
H

OH O2C

O2C
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O
Nδ+
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Ion-dipole and dipole-dipole interactions  

•  electrostatic interactions that involve partial charges 
–  ~1 kcal/mol of stabilisation 

O

O
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δ−
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Hydrogen bonds 
•  special type of dipole-dipole interaction 

–  donors / acceptors : N, O, F 
–  stabilisation of around 3-10 kcal/mol	
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Charge transfer complex 

•  special type of dipole-dipole interaction 
•  involves π electrons, often in aromatic rings (Phe, Tyr, Trp, His) 

–  stabilisation : < 3 kcal/mol 

13 

Hydrophobic interactions 

•  stabilisation largely due to desolvatation (entropy increase) 
–  stabilisation : ~0.5 kcal/mol 
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van der Waals interactions  

•  special type of dipole-dipole interaction 
–  movement of electrons in electron cloud of alkyl chains induces 

the formation of temporary dipoles 
–  very important over short distances 
–  stabilisation : ~0.5 kcal/mol (per interaction) 

15 

Outline:  General principles of catalysis 

•  see section 9.1 of A&D 
–  principles of catalysis 
–  differential bonding 

16 
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General principles 

•  a catalyst accelerates a reaction without being consumed 

•  the rate of catalysis is given by the turnover number 

•  a reaction may alternatively be “promoted” (accelerated, rather than 
catalysed) by an additive that is consumed 

•  a heterogeneous catalyst is not dissolved in solution; catalysis typically 
takes place on its surface 

•  a homogeneous catalyst is dissolved in solution, where catalysis takes 
place 

•  all catalysis is due to a decrease in the activation barrier, ΔG‡ 

17 

Catalysts 

•  efficient at low concentrations 
–  e.g. [Enz]cell << 10-5 M; [Substrates]cell <  10-4 - 10-5 M 

•  not consumed during the reaction 
–  e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 

molecules of substrate per minute 

•  do not affect the equilibrium of reversible chemical reactions 
–  only accelerate the rate of approach to equilibrium end point 

•  most chemical catalysts operate in extreme reaction conditions while 
enzymes generally operate under mild  conditions (10° - 50 °C, neutral 
pH) 

•  enzymes are specific to a reaction and to substrates; chemical catalysts 
are far less selective 

18 
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Catalysis and free energy 

•  catalysis accelerates a reaction by stabilising a TS relative to the ground 
state 
–  free energy of activation, ΔG‡, decreases 
–  rate constant, k, increases 

•  catalysis does not affect the end point of an equilibrium, but only 
accelerates how quickly equilibrium is attained 
–  free energy of the reaction, ΔG°, remains unchanged 
–  equilibrium constant, Keq, remains unchanged 

19 

Energy profile of catalysis 
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Transition state binding 

•  interaction between a catalyst and reactant or activated complex can 
stabilise one or the other 

•  if the activated complex is bound more strongly than the substrate, the 
activation barrier will be decreased 

•  HOWEVER, the activated complex is not a molecule – so the catalysts 
must first of all interact with the substrate, and then release the product 
at the end of the reaction : 

A + cat A•cat P•cat P + cat
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Differential binding 
•  consider 4 scenarios : 
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Differential binding 
•  to accelerate a reaction, a catalyst must stabilise the TS more than it 

stabilises the substrate 
–  even if this stabilisation takes place over less time than that of a bond 

vibration, by definition 

+ 

substrate 

+ 

product 

transition 
state 

‡ 
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Outline: Types of catalysis 

•  see section 9.2 of A&D 
–  approximation 
–  electrostatic 
–  covalent 
–  strain and distortion 

24 
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Catalysis by approximation 

•  the catalyst brings together the reactants, increasing their effective 
concentrations, and orients them with respect to the reactive groups 

 
Jencks :  
•  the loss of entropy associated with the restriction of rotation and 

translation of substrate must be compensated by the intrinsic energy of 
binding  (favourable non-bonding interactions) 

Bruice / Kirby : 
•  the magnitude of this effect is given by the effective concentration, 

determined by comparison if the rate constants of the bimolecular and 
intramolecular reactions 

25 

Intramolecular approximation 
•  an intramolecular reaction implies a smaller decrease in entropy (and 

therefore a decrease in the free energy of activation) 
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Example of catalysis by approximation 

•  the catalyst brings together the reactants, increasing their effective 
concentrations, and orients them with respect to the reactive groups 

1k     obs

2k     obs = 5000 M  =  la concentration effective

O2N O

O

CH3

+ O2N O-
O

CH3
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+N

+

(H3C)2NCH3

k     = 4,3 M-1s-1obs
2

O2N O

O

CH2

CH2
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+
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1
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effective concentration,	


or effective molarity (EM)	



Example:  Ester hydrolysis 
 
Réaction 
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More notions of catalysis by approximation 

•  many notions have been advanced by many different researchers, to 
describe the subtleties of catalysis by approximation: 
–  orbital steering: the alignment of orbitals is proposed to accelerate the 

reaction 
–  stereopopulation control: one reactive conformer among several is favoured 
–  near attack conformations: conformations are favoured whose spatial 

orientation lead to the desired reaction 

CAUTION: one must not forget the 
Curtin-Hammett principle!! 

29 

Electrostatic catalysis 

•  stabilisation of charge developed at TS 
•  for example, serine and cysteine proteases favour the formation of a 

tetrahedral intermediate by stabilising the negative charge developed 
on oxygen, in an oxyanion hole 
–  e.g.: consider papain, a Cys protease 

O S

N
H

R

Cys25
oxyanion

hole

30 
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Electrostatic catalysis 
•  e.g.: oxyanion hole of subtilisin: 

J. Mol. Biol. 1991, 221, 309-325.  31 

Electrostatic catalysis 

•  can be very important : 
–  consider the triple mutant of subtilisin where each residue of its 

catalytic triad is replaced (S221A-H64A-D32A) 
•  catalyses proteolysis 106-fold less than the native enzyme 
•  BUT the reaction with the mutant is still 103-fold faster than the 

uncatalysed reaction!! 
•  an important part of catalysis is due to the electrostatic 

environment 

32 
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Metal catalysis 

•  electrostatic charges developed at the TS can also be stabilised by metal 
ions 

•  coordination of a ligand by a metal (as a Lewis acid) can also lead to 
polarisation of a ligand 
–  e.g.  pKa of metal-bound H2O is 7.2, making it easier to deprotonate, therby 

generating –OH as a nucleophile 
•  for example, zinc-bound water in carbonic anhydrase, a highly efficient 

metalloenzyme as well as certain enzyme models 

33 

Covalent catalysis 

•  catalyst forms a covalent intermediate that reacts faster than uncatalysed 
reaction : 

A B P+

vs

intermédiare

A B C AC B P+ + + C+

more reactive 
intermediate 
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Covalent catalysis 

•  in order for catalysis to be efficient, the activation energy for formation of 
the intermediate and for its subsequent reaction must both be lower than 
that of the uncatalysed reaction : 

E
ne

rg
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cat
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Covalent catalysis 

•  an example of non-enzymatic covalent catalysis and anchimeric 
assistance : 
–  mustard gas 

•  enzymes use nucleophilic groups (e.g. Asp, Glu, Ser, Cys, Lys, 
His, Arg) and cofactors to form covalent bonds (nucleophilic 
catalysis)  

36 
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Nucleophilic catalysis 

•  catalyst attacks substrate to form intermediate that is even more 
susceptible to nucleophilic attack, by a second reactant 
–  e.g. reaction of acid chlorides with alcohols, catalysed by addition of a 

tertiary amine: 

R Cl

O R'OH

R O

O
R'(lente)

R N

O
Et
Et

Et

R'OH
(rapide)

NEt3 NEt3
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ΔG‡
uncat

 

ΔG‡
cat
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Acid-base catalysis 

•  the catalyst (namely an acid or a base) accelerates the reaction through 
protonation or deprotonation 

38 
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Specific acid-base catalysis 

•  catalysis by H+ or –OH, controlled only by pH, where a fast equilibrium 
precedes the rls : 

–  e.g.: 

39 
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Rate laws of specific acid-base catalysis 

•  when a substrate must be protonated before its reaction in the rls, this 
appears as a pH dependence in the rate law: 
–  e.g.:  v = k[R]×[H+]/Ka,RH 

•  when a substrate must be deprotonated before its reaction in the rls, this 
appears as a pH dependence in the rate law: 
–  e.g.:  v = k[RH]×Ka,RH /[H+] 

40 
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•  pH dependence : 

Specific acid-base catalysis plots 
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General acid catalysis 
•  catalysis by an acid or a base (not H+ nor –OH) where a proton is 

transferred during the rls 
–  rate is proportional to the concentration of acid or base, at 

constant pH 
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Rate laws 

•  if a substrate is protonated during the rls, this appears as a dependence 
on [HA] in the rate law : 
–  e.g.:  v = k[R]×[HA]  à  = kobs[R]  where  kobs = k[HA] 

•  if a substrate is deprotonated during the rls, this appears as a 
dependence on [B] in the rate law: 
–  e.g.:  v = k[R]× [B]  à  = kobs[R] where  kobs = k[B] 

43 

•  pH dependence : 

General acid-base catalysis plots 
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General acid-base catalysis 
•  very common in enzymes 

–  e.g. chymotrypsin uses a catalytic triad whose His plays the role of a 
general base : 

Ser 195

OH

His 57

N
NH

Asp
102 C

O

O

N

O

R'H

R
δ−

δ+

 nucleophile 

 general base 

orients and 
activates 
the His 
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Strain and distortion  

•  destabilisation of the ground state induced in the substrate or in the 
catalyst (such as an enzyme) 

Koshland : 
–  induced complementarity hypothesis: the approach of substrate serves to 

provoke a conformational change in the enzyme, to adopt a form that better 
binds the substrate, but in a higher energy (strained) form and/or to better 
orient reactive groups ("orbital steering") 

–  the substrate can also be deformed to adopt a strained form 

Jencks : 
–  strain and distortion in the substrate are essential for the catalysis 
–  TSs are stabilised, rather than E•S and E•P complexes (so as not to form 

overly stable intermediates) 
–  binding energy must therefore be used to destabilise the E•S and E•P 

complexes 

46 



CHM 8304	



Enzyme Catalysis	

 24	



Strain and distortion 
•  binding energy is used to destabilise the E•S and E•P 

complexes 

Without enzyme	

 With enzyme	



S	

 P	



‡	



E+S	

 E+P	



E•S	

 E•P	



‡	
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Strain and distortion 

Without enzyme	

 With enzyme	



S	

 P	



‡	



E•S	

 E•P	

E+S	

 E+P	



‡	



•  binding energy is used to destabilise the E•S and E•P 
complexes 
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Productive strain 

•  in order for a reaction to be facilitated by strain, two conditions must be 
met: 

1.  the strain must be along the reaction pathway 
–  strain “pushes” the reactants towards the TS 

2.  the strain must be at least partly alleviated at the TS 
–  if the strain were still present at the TS, it would not contribute 

to catalysis 

49 

Enzymes as catalysts 

Jencks :  
•  enzymes use binding energy to effect catalysis 

Wolfenden :  
•  reaction acceleration is proportional to the affinity of an enzyme for the 

transition state of the catalysed reaction 
•  the reaction rate is proportional to the concentration of substrate in the 

activated complex at the TS 
•  substrate affinity is therefore also important and enzymes use protein 

conformational changes during the reaction to better stabilise the TS 

Knowles : 
•  often the various steps of an enzymatic reaction are stabilised so as to 

level the energies of the various ground states and TSs 

50 
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Energy diagrams 
•  consider energy profiles for enzymatic reactions, at the native 

concentration of substrates: 
•  for KM << [S] (binding of substrate heavily favoured)  

–  the uniform binding of substrate and activated complex would not 
lead to catalysis : 
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Energy diagrams 
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•  consider energy profiles for enzymatic reactions, at the native 
concentration of substrates: 

•  for KM << [S] (binding of substrate heavily favoured) 
–  the differential binding of substrate and activated complex can lead 

to catalysis : 
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Energy diagrams 
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•  consider energy profiles for enzymatic reactions, at the native 
concentration of substrates: 

•  for KM > [S] (binding of substrate not favoured) 
–  the uniform binding of substrate and activated complex can lead to 

catalysis : 

Energy diagrams 
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•  consider energy profiles for enzymatic reactions, at the native 
concentration of substrates: 

•  for KM > [S] 
–  the differential binding of substrate and activated complex can lead 

to catalysis : 


