Area of accumulation, mountain ice sheet, Rocky Mountains
Area of accumulation

Valley glacier – Athabaska

Firn line
Athabaska glacier, area of ablation

Ground moraine

Lateral moraine
Rundle glacier, Baffin Island
Highway Glacier, Baffin, with moraine from Little Ice Age
Calving bay of the Laurentide Ice Sheet, Gatineau Hills in background
Larsen Ice Shelf collapse, Antarctic
U-shaped valley carved by Pleistocene outlet glacier from Penny Ice Cap, Baffin Island
Last Glacial Maximum, ca 21,500
view from orbiter
Figure 4.7 The distribution of the principal ice sheets and mountain glacier complexes. The thick line (after Broecker and Deton 1990a) indicates the last glacial maximum is depressed along a north-south transect (open boxed line) during the last glacial maximum (left). The worldwide lowering of equilibrium line during the last glacial maximum (right). The worldwide lowering of equilibrium line.
Figure 4.8 Part of the northern hemisphere today, showing existing large glaciers, sea ice, selected ocean currents, and storm tracks. (Data from various sources.)

Figure 4.9 Part of the northern hemisphere during a glacial age, showing large glaciers, sea ice, and storm tracks. (Data from various sources.)
Figure 4.1 Late Valdai glaciation of the Soviet Union (after Velichko et al. 1984). The extent of ice in the West Siberian Lowlands (A) is uncertain.
Plate 2 Reconstruction of geography of northern North Sea region for the last glacial maximum. Photo H.-P. Sejrup.
<table>
<thead>
<tr>
<th>Ice volume</th>
<th>Minimum Reconstruction</th>
<th>Maximum Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total volume ($10^6 \text{ km}^3$)</td>
<td>Volume causing lower sea level ($10^6 \text{ km}^3$)</td>
</tr>
<tr>
<td>Ice sheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurentide</td>
<td>30.900</td>
<td>30.500</td>
</tr>
<tr>
<td>Cordilleran</td>
<td>0.260</td>
<td>0.260</td>
</tr>
<tr>
<td>Innuitian</td>
<td>1.130</td>
<td>0.983</td>
</tr>
<tr>
<td>Greenland$^a,b$</td>
<td>2.920$^a$</td>
<td>0.287$^b$</td>
</tr>
<tr>
<td>Greenland$^b,c$</td>
<td>0.287$^c$</td>
<td>0.287$^b$</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>British Isles</td>
<td>0.801</td>
<td>0.773</td>
</tr>
<tr>
<td>Scandinavian</td>
<td>7.250</td>
<td>7.060</td>
</tr>
<tr>
<td>Barents–Kara</td>
<td>0.955</td>
<td>0.865</td>
</tr>
<tr>
<td>Putorana</td>
<td>0.581</td>
<td>0.581</td>
</tr>
<tr>
<td>Antarctica</td>
<td>37.700</td>
<td>9.810</td>
</tr>
<tr>
<td>West</td>
<td>13.500</td>
<td>6.480</td>
</tr>
<tr>
<td>Glaciers and ice caps</td>
<td>1.184</td>
<td>1.830</td>
</tr>
<tr>
<td>Totals</td>
<td>84.174</td>
<td>51.300</td>
</tr>
</tbody>
</table>

**After Denton and Hughes (1981)**

- $^a$ Total Late Wisconsin–Weichselian ice.
- $^b$ Additional Late Wisconsin–Weichselian ice contributing to lower Late Wisconsin–Weichselian sea level.
- $^c$ Additional Late Wisconsin–Weichselian ice.
- $^d$ Without hydro-isostatic sea floor rise, using present ocean area ($361 \times 10^6 \text{ km}^2$).
- $^e$ With hydro-isostatic sea floor rise.
Figure 8.1  Simplified sketch of a valley lobe of drift, showing the terminal and lateral elements of an end moraine, an area of ground moraine, and a body of outwash. At first the latter was fed by streams originating along an extensive segment of the end moraine. Later, after the margin of the glacier had retreated a short distance, outwash was deposited inside the end moraine, over the ice. After further retreat, the proximal part of the outwash collapsed, forming an outwash head. Not to scale.
Figure 5.2 - Segment de moraine de poussée appartenant à la Moraine de Saint-Narcisse, près du lac Noir (d’après Pagé, 1977).
Figure 8-2  Ideal radial section showing relations of an end moraine, ground moraine, and drift sheet. Dotted profiles suggest three earlier phases of upbuilding of the end moraine. (A more complex sequence of end moraines is shown in Lüttig, 1964b, pl. 7.)
Oak Ridges Moraine Study Web Site

Content

PDF documents
Open File documentation
Product listings
Geology - Hydrogeology - Geophysics
GIS-Database

http://sts.gsc.nrcan.gc.ca/orm/index
Regional Geological Model

of a glacial aquifer system
3-D GEOLOGICAL MAPPING

- Anchor Boreholes
- Training Framework

>50% MOEE records corrected

Geology polygons
Figure 5-10  Drumlin field, Green Bay lobe of Wisconsin drift, southeastern Wisconsin. Radial flow within the former glacier lobe is indicated by diverging axial trends of drumlins. The east-west trend of the small group west of Milwaukee reflects westward flow in the adjacent Lake Michigan glacier lobe. (W. C. Alden.)
Figure 5-11 Sections through three drumlins showing bedrock surface beneath till. Horizontal and vertical scales are identical.