A Tale of Two Matrices

Recep Çelebi, Kirk Hendricks, and Matthew Jordan
Supervisor: Hadi Salmasian, Ottawa

Fields Institute

August 29, 2015
What Can Two Matrices Tell Us About...
What Can Two Matrices Tell Us About...
Introducing Our Matrices

\[
P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

\[
X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
\]
Introducing Our Matrices

\[P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \]
Introducing Our Matrices

\[P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \]
Natural Next Step: Multiply

\[PX = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = Z \]
What Next?

Natural Next Step: Multiply

\[PX = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = Z \]

Why Not Take Linear Combinations?

\[pP + xX + zZ = \begin{pmatrix} 0 & p & z \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix} := m(p, x, z) \]

where \(p, x, z \in \mathbb{R} \)
Result: A Lie Algebra

\[\left\{ \begin{pmatrix} 0 & p & z \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} = \{ m(p, x, z) : p, x, z \in \mathbb{R} \} \]

is a Lie Algebra.
What Is A Lie Algebra, Anyway?

A vector space with a binary operation called the bracket, denoted $[·,·]$, which satisfies:

1. $[x,x] = 0$
2. $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$
3. $[·,·]$ is linear in both arguments
What Is A Lie Algebra, Anyway?

- Kind of like a group!
What Is A Lie Algebra, Anyway?

- Kind of like a group!
- A vector space with an binary operation called the bracket, denoted $[\cdot, \cdot]$, which satisfies:
What Is A Lie Algebra, Anyway?

- Kind of like a group!
- A vector space with an binary operation called the bracket, denoted $[\cdot, \cdot]$, which satisfies:
 1. $[x, x] = 0$
Result: A Lie Algebra

\[
\left\{ \begin{pmatrix} 0 & p & z \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} = \left\{ m(p, x, z) : p, x, z \in \mathbb{R} \right\}
\]

is a Lie Algebra.

What Is A Lie Algebra, Anyway?

- Kind of like a group!
- A vector space with an binary operation called the bracket, denoted \([\cdot, \cdot]\), which satisfies:
 1. \([x, x] = 0\)
 2. \([x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0\)
Result: A Lie Algebra

\[
\left\{ \begin{pmatrix} 0 & p & z \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} = \{ m(p, x, z) : p, x, z \in \mathbb{R} \}
\]

is a Lie Algebra.

What Is A Lie Algebra, Anyway?

- Kind of like a group!
- A vector space with an binary operation called the bracket, denoted \([\cdot, \cdot]\), which satisfies:
 1. \([x, x] = 0\)
 2. \([x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0\)
 3. \([\cdot, \cdot]\) is linear in both arguments
Examples of Lie Algebras

- The set M_n of all $n \times n$ matrices, with bracket:

$$[A, B] = AB - BA.$$
Examples of Lie Algebras

- The set M_n of all $n \times n$ matrices, with bracket:
 \[[A, B] = AB - BA. \]

- The set of linear maps over a vector space, with bracket:
 \[[f, g] = f \circ g - g \circ f \]
Examples of Lie Algebras

- The set M_n of all $n \times n$ matrices, with bracket:
 \[[A, B] = AB - BA. \]

- The set of linear maps over a vector space, with bracket:
 \[[f, g] = f \circ g - g \circ f \]

Heisenberg Algebra \mathfrak{h}

- The set of all matrices of the form
 \[
 \begin{pmatrix}
 0 & p & z \\
 0 & 0 & x \\
 0 & 0 & 0
 \end{pmatrix}
 = m(p, x, z)
 \]
 with bracket
 \[
 [A, B] = AB - BA.
 \]
 \[
 [(p, x, z), (p', q', z')] = (0, 0, px' - xp')
 \]
Commutation Relations of Heisenberg Algebra \mathfrak{h}

Basis Matrices

\[
\begin{align*}
P &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, &
X &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, &
Z &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\end{align*}
\]

Computing The Bracket

\[
\begin{align*}
\{P, X\} &= PX - XP = Z \\
\{P, Z\} &= PZ - ZP = 0 \\
\{X, Z\} &= XZ - ZX = 0
\end{align*}
\]

These bracket relationships are called the canonical commutation relations.
Commutation Relations of Heisenberg Algebra \mathfrak{h}

Basis Matrices

$$ P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $$

Computing The Bracket

$$ [P, X] = PX - XP = Z $$

These bracket relationships are called the **canonical commutation relations**.

In Summary...
Basis Matrices

\[
P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

Computing The Bracket

\[
[P, X] = PX - XP = Z
\]

\[
[P, Z] = PZ - ZP = 0
\]
Commutation Relations of Heisenberg Algebra \mathfrak{h}

Basis Matrices

\[
P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

Computing The Bracket

\[
[P, X] = PX - XP = Z
\]

\[
[P, Z] = PZ - ZP = 0
\]

\[
[X, Z] = XZ - ZX = 0
\]

These bracket relationships are called the **canonical commutation relations**.
Commutation Relations of Heisenberg Algebra \mathfrak{h}

Basis Matrices

\[
P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

Computing The Bracket

\[
[P, X] = PX - XP = Z
\]

\[
[P, Z] = PZ - ZP = 0
\]

\[
[X, Z] = XZ - ZX = 0
\]

These bracket relationships are called the canonical commutation relations.
Commutation Relations of Heisenberg Algebra \mathfrak{h}

Basis Matrices

\[
P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

Computing The Bracket

\[
[P, X] = PX - XP = Z
\]

\[
[P, Z] = PZ - ZP = 0
\]

\[
[X, Z] = XZ - ZX = 0
\]

These bracket relationships are called the canonical commutation relations.

In Summary...

\[
[P, X] = Z
\]

\[
[P, Z] = 0
\]

\[
[X, Z] = 0
\]
The Heisenberg algebra has an elegant structure.
Algebras vs. Groups

- The Heisenberg algebra has an elegant structure
- But groups are more interesting algebraic objects
Algebras vs. Groups

- The Heisenberg algebra has an elegant structure
- But groups are more interesting algebraic objects
- We can create a group out of a Lie algebra by using the exponential map
Algebras vs. Groups

- The Heisenberg algebra has an elegant structure
- But groups are more interesting algebraic objects
- We can create a group out of a Lie algebra by using the exponential map

Definition: The Exponential Map

Given a matrix Lie algebra defined by \(\{A\} \), we obtain a Lie group by the matrix exponential:

\[
\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 + \ldots.
\]
$\mathfrak{h} = \{pP + xX + zZ\}$
Let’s Exponentiate!

\[\mathfrak{h} = \{ pP + xX + zZ \} \]

\[\exp(P) = I + P + P^2 + \ldots \]

\[P_{\mathcal{H}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Let’s Exponentiate!

$$h = \{pP + xX + zZ\}$$

$$\exp(P) = I + P + P^2 + \ldots$$
$$P_{\mathcal{H}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\exp(X) = I + X + X^2 + \ldots$$
$$X_{\mathcal{H}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
Let’s Exponentiate!

\[\mathfrak{h} = \{ pP + xX + zZ \} \]

\[
\begin{align*}
\exp(P) &= I + P + P^2 + \ldots \\
\exp(X) &= I + X + X^2 + \ldots \\
\exp(Z) &= I + Z + Z^2 + \ldots
\end{align*}
\]

\[
P_{\mathcal{H}} = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
X_{\mathcal{H}} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
Z_{\mathcal{H}} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]
Let’s Exponentiate!

\[\mathcal{H} = \{ pP + xX + zZ \} \]

\[
\exp(P) = I + P + P^2 + \ldots \\
P_{\mathcal{H}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

\[
\exp(X) = I + X + X^2 + \ldots \\
X_{\mathcal{H}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\]

\[
\exp(Z) = I + Z + Z^2 + \ldots \\
Z_{\mathcal{H}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\]

Take Linear Combinations

\[\mathcal{H} = pP_{\mathcal{H}} + xX_{\mathcal{H}} + zZ_{\mathcal{H}}. \]
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{ \exp(\mathfrak{h}) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \right\}, \quad p, x, z \in \mathbb{R} \quad := \{ M(p, x, z) \}$$
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{\exp(\hbar)\} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} := \{M(p, x, z)\}$$

What Is A Lie Group, Anyway?

A Group is a set closed under a binary operation that satisfies:

1. Associative ✓
2. Every element has an inverse ✓
3. There exists an identity ✓

A Lie Group is a group with an additional manifold structure on which the group operation and inversion are smooth maps.

TL;DR A Lie Group has algebraic and differential structure.
Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{ \exp(h) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} := \{ M(p, x, z) \}$$

What Is A Lie Group, Anyway?

- A Group is a set closed under a binary operation that satisfies:
 - 1. Associative ✓
 - 2. Every element has an inverse $M(p, x, z)^{-1} = M(-p, -x, px - z)$ ✓
 - 3. There exists an identity $M(0, 0, 0) \in \mathcal{H}$ ✓
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{\exp(\mathfrak{h})\} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} := \{M(p, x, z)\}$$

What Is A Lie Group, Anyway?

- A **Group** is a set closed under a **binary operation** that satisfies:
 1. Associative
Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{\exp(\mathfrak{h})\} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \ p, x, z \in \mathbb{R} \right\} := \{M(p, x, z)\}$$

What Is A Lie Group, Anyway?

- **A Group** is a set closed under a **binary operation** that satisfies:
 1. **Associative** ✓

$C \cdot \text{Celebi, Hendricks, Jordan}$

A Tale of Two Matrices

August 29, 2015
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{ \exp(\mathfrak{h}) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} := \{ M(p, x, z) \}$$

What Is A Lie Group, Anyway?

- A **Group** is a set closed under a **binary operation** that satisfies:
 1. Associative ✓
 2. Every element has an inverse
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{\exp(h)\} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} , \quad p, x, z \in \mathbb{R} \right\} := \{M(p, x, z)\}$$

What Is A Lie Group, Anyway?

- A **Group** is a set closed under a **binary operation** that satisfies:
 1. Associative ✓
 2. Every element has an inverse $M(p, x, z)^{-1} = M(-p, -x, px - z)$ ✓
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{ \exp(\mathfrak{h}) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} := \{ M(p, x, z) \}$$

What Is A Lie Group, Anyway?

- A **Group** is a set closed under a **binary operation** that satisfies:
 1. Associative ✓
 2. Every element has an inverse $M(p, x, z)^{-1} = M(-p, -x, px - z)$ ✓
 3. There exists an identity
Let’s Exponentiate!

Result: A Lie Group, \(\mathcal{H} \)

\[
\mathcal{H} = \{ \exp(\mathfrak{h}) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \quad p, x, z \in \mathbb{R} \right\} := \{ M(p, x, z) \}
\]

What Is A Lie Group, Anyway?

- A **Group** is a set closed under a **binary operation** that satisfies:
 1. Associative \(\checkmark \)
 2. Every element has an inverse \(M(p, x, z)^{-1} = M(-p, -x, px - z) \) \(\checkmark \)
 3. There exists an identity \(M(0, 0, 0) \in \mathcal{H} \) \(\checkmark \)
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{ \exp(h) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} , \quad p, x, z \in \mathbb{R} \right\} := \{ M(p, x, z) \}$$

What Is A Lie Group, Anyway?

- A **Group** is a set closed under a **binary operation** that satisfies:
 1. Associative ✓
 2. Every element has an inverse $M(p, x, z)^{-1} = M(-p, -x, px - z)$ ✓
 3. There exists an identity $M(0, 0, 0) \in \mathcal{H}$ ✓

- A **Lie Group** is a group with an additional manifold structure on which the group operation and inversion are smooth maps
Let’s Exponentiate!

Result: A Lie Group, \mathcal{H}

$$\mathcal{H} = \{ \exp(\mathfrak{h}) \} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \ p, x, z \in \mathbb{R} \right\} := \{ M(p, x, z) \}$$

What Is A Lie Group, Anyway?

- **A Group** is a set closed under a **binary operation** that satisfies:
 1. Associative ✓
 2. Every element has an inverse $M(p, x, z)^{-1} = M(-p, -x, px - z)$ ✓
 3. There exists an identity $M(0, 0, 0) \in \mathcal{H}$ ✓

- **A Lie Group** is a group with an additional manifold structure on which the group operation and inversion are smooth maps

- TL;DR A Lie group has algebraic and differential structure
Basis Matrices

\[
P_H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad X_H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad Z_H = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]
Commutation Relations Of Heisenberg Group H

Basis Matrices

$$
P_H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad X_H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad Z_H = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Computing The Bracket

$$[P_H, X_H] = P_H X_H P_H^{-1} X_H^{-1} = Z_H$$

What luck! Yet again, we have the canonical commutation relations.

In Summary...

In both h and H:

$$[P_H, X_H] = Z_H$$
$$[P_H, Z_H] = 0$$
$$[X_H, Z_H] = 0$$
Commutation Relations Of Heisenberg Group \mathcal{H}

Basis Matrices

$$P_\mathcal{H} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad X_\mathcal{H} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad Z_\mathcal{H} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Computing The Bracket

$$[P_\mathcal{H}, X_\mathcal{H}] = P_\mathcal{H}X_\mathcal{H}P_\mathcal{H}^{-1}X_\mathcal{H}^{-1} = Z_\mathcal{H}$$

$$[P_\mathcal{H}, Z_\mathcal{H}] = P_\mathcal{H}Z_\mathcal{H}P_\mathcal{H}^{-1}Z_\mathcal{H}^{-1} = 0$$
Commutation Relations Of Heisenberg Group \mathcal{H}

Basis Matrices

\[
P_\mathcal{H} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad X_\mathcal{H} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad Z_\mathcal{H} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

Computing The Bracket

\[
[P_\mathcal{H}, X_\mathcal{H}] = P_\mathcal{H}X_\mathcal{H}P_\mathcal{H}^{-1}X_\mathcal{H}^{-1} = Z_\mathcal{H}
\]

\[
[P_\mathcal{H}, Z_\mathcal{H}] = P_\mathcal{H}Z_\mathcal{H}P_\mathcal{H}^{-1}Z_\mathcal{H}^{-1} = 0
\]

\[
[X_\mathcal{H}, Z_\mathcal{H}] = X_\mathcal{H}Z_\mathcal{H}X_\mathcal{H}^{-1}Z_\mathcal{H}^{-1} = 0
\]

What luck! Yet again, we have the canonical commutation relations.
Commutation Relations Of Heisenberg Group \mathcal{H}

Basis Matrices

\[
\begin{align*}
P_{\mathcal{H}} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & X_{\mathcal{H}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, & Z_{\mathcal{H}} &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]

Computing The Bracket

\[
\begin{align*}
[P_{\mathcal{H}}, X_{\mathcal{H}}] &= P_{\mathcal{H}}X_{\mathcal{H}}P_{\mathcal{H}}^{-1}X_{\mathcal{H}}^{-1} = Z_{\mathcal{H}} \\
[P_{\mathcal{H}}, Z_{\mathcal{H}}] &= P_{\mathcal{H}}Z_{\mathcal{H}}P_{\mathcal{H}}^{-1}Z_{\mathcal{H}}^{-1} = 0 \\
[X_{\mathcal{H}}, Z_{\mathcal{H}}] &= X_{\mathcal{H}}Z_{\mathcal{H}}X_{\mathcal{H}}^{-1}Z_{\mathcal{H}}^{-1} = 0
\end{align*}
\]

What luck! Yet again, we have the canonical commutation relations.
Commutation Relations Of Heisenberg Group \mathcal{H}

Basis Matrices

$$
P_{\mathcal{H}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad X_{\mathcal{H}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad Z_{\mathcal{H}} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Computing The Bracket

- $[P_{\mathcal{H}}, X_{\mathcal{H}}] = P_{\mathcal{H}}X_{\mathcal{H}}P_{\mathcal{H}}^{-1}X_{\mathcal{H}}^{-1} = Z_{\mathcal{H}}$
- $[P_{\mathcal{H}}, Z_{\mathcal{H}}] = P_{\mathcal{H}}Z_{\mathcal{H}}P_{\mathcal{H}}^{-1}Z_{\mathcal{H}}^{-1} = 0$
- $[X_{\mathcal{H}}, Z_{\mathcal{H}}] = X_{\mathcal{H}}Z_{\mathcal{H}}X_{\mathcal{H}}^{-1}Z_{\mathcal{H}}^{-1} = 0$

What luck! Yet again, we have the canonical commutation relations.

In Summary...

In both \mathfrak{h} and \mathcal{H}:

- $[P_{\mathcal{H}}, X_{\mathcal{H}}] = Z_{\mathcal{H}}$
- $[P_{\mathcal{H}}, Z_{\mathcal{H}}] = 0$
- $[X_{\mathcal{H}}, Z_{\mathcal{H}}] = 0$
A representation π of a group G is a homomorphism from G to the group $GL(V)$, where $GL(V)$ is the set of all invertible linear maps (operators) $T : V \rightarrow V$. That is:

$$\pi : G \rightarrow GL(V)$$

$$\pi(g)(v) = w, \text{ for some } v, w \in V, g \in G$$

$$\pi(g_1 g_2) = \pi(g_1) \pi(g_2)$$
What is a representation?

A representation π of a group G is a homomorphism from G to the group $GL(V)$, where $GL(V)$ is the set of all invertible linear maps (operators) $T : V \rightarrow V$. That is:

$$
\pi : G \rightarrow GL(V)
$$

$$
\pi(g)(v) = w, \quad \text{for some } v, w \in V, g \in G
$$

$$
\pi(g_1g_2) = \pi(g_1)\pi(g_2)
$$

Linear invertible operator on V
The representation \(\pi \) is called \emph{unitary} if for every \(g \in G \) the operator \(\pi(g) \) is unitary on \(V \), i.e.,

\[
\langle \pi(g)v, \pi(g)w \rangle = \langle v, w \rangle \quad \text{for all } v, w \in V, g \in G
\]
Unitary Representation

The representation π is called *unitary* if for every $g \in G$ the operator $\pi(g)$ is unitary on V, i.e.,

$$\langle \pi(g)v, \pi(g)w \rangle = \langle v, w \rangle \quad \text{for all } v, w \in V, g \in G$$

Invariant Subspace

A closed subspace $W \subset V$ is called *invariant* for π if $\pi(g)W \subset W$ for every $g \in G$.

C. Çelebi, E. Hendricks, J. Jordan

A Tale of Two Matrices

August 29, 2015
Unitary Representation

The representation \(\pi \) is called *unitary* if for every \(g \in G \) the operator \(\pi(g) \) is unitary on \(V \), i.e.,

\[
\langle \pi(g)v, \pi(g)w \rangle = \langle v, w \rangle \quad \text{for all } v, w \in V, g \in G
\]

Invariant Subspace

A closed subspace \(W \subset V \) is called *invariant* for \(\pi \) if \(\pi(g)W \subset W \) for every \(g \in G \).

Irreducible Representation

The representation \(\pi \) is called *irreducible* if there is no proper (closed) invariant subspace, i.e., the only (closed) invariant subspaces are 0 and \(V \) itself.
Let’s go back to the Heisenberg group:

\[\mathcal{H} = \left\{ \begin{pmatrix} 1 & p & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \middle| p, x, z \in \mathbb{R} \right\} \]

The center of the Heisenberg group is

\[Z(\mathcal{H}) := \{(0, 0, z) \mid z \in \mathbb{R}\} \]
We will now focus on the representations of the Heisenberg group. As our representation space “V”, we choose the infinite-dimensional function space $L^2(\mathbb{R})$ where the functions satisfy the following property:

$$\|f\|_2^2 := \int_{-\infty}^{\infty} |f(x)|^2 \, dx < \infty$$

$L^2(\mathbb{R})$ is an inner product space. That is, it is a vector space provided with an inner product which is given for two functions $f, g \in L^2(\mathbb{R})$ as follows:

$$\langle f, g \rangle := \int_{\mathbb{R}} f(\xi) \overline{g(\xi)} \, d\xi$$
Some Basic Operators On $L^2(\mathbb{R})$

Rotation Operator

The rotation operator $R(x)$ for a function $f(\xi) \in L^2(\mathbb{R})$ is defined as follows:

$$R(x)f(\xi) := e^{ix\xi}f(\xi)$$
Some Basic Operators On $L^2(\mathbb{R})$

Rotation Operator

The rotation operator $R(x)$ for a function $f(\xi) \in L^2(\mathbb{R})$ is defined as follows:

$$R(x)f(\xi) := e^{ix\xi}f(\xi)$$

Translation operator

The translation operator $T(p)$ for a function $f(\xi) \in L^2(\mathbb{R})$ is defined as follows:

$$T(p)f(\xi) := f(\xi + p)$$
Some Basic Operators On $L^2(\mathbb{R})$

Rotation Operator

The rotation operator $R(x)$ for a function $f(\xi) \in L^2(\mathbb{R})$ is defined as follows:

$$R(x)f(\xi) := e^{ix\xi}f(\xi)$$

Translation operator

The translation operator $T(p)$ for a function $f(\xi) \in L^2(\mathbb{R})$ is defined as follows:

$$T(p)f(\xi) := f(\xi + p)$$

Remark

The rotation and translation operators are unitary. In addition, they form one-parameter unitary groups as

$$\{R(x)\}_{x \in \mathbb{R}}, \{T(p)\}_{p \in \mathbb{R}}$$
For \((p, x, z) \in \mathcal{H}\) we define the **unitary representation** \(\pi_k(p, x, z)\) on \(L^2(\mathbb{R})\) by

\[
\pi_k(p, x, z)f(\xi) := e^{i(x\xi + z)k} f(\xi + p).
\]

And now, hold on to your seats... Here is the celebrated theorem!
For \((p, x, z) \in \mathcal{H}\) we define the unitary representation \(\pi_k(p, x, z)\) on \(L^2(\mathbb{R})\) by

\[
\pi_k(p, x, z)f(\xi) := e^{i(x\xi + z)k}f(\xi + p).
\]

Define the central character \(\chi_k\) of \(\pi_k\) as

\[
\chi_k(0, 0, z) := e^{izk}
\]
The Schrödinger Representation

Schrödinger Representation

For \((p, x, z) \in \mathcal{H}\) we define the unitary representation \(\pi_k(p, x, z)\) on
\(L^2(\mathbb{R})\) by

\[
\pi_k(p, x, z) f(\xi) := e^{i(x\xi + z)k} f(\xi + p).
\]

Define the central character \(\chi_k\) of \(\pi_k\) as

\[
\chi_k(0, 0, z) := e^{izk}
\]

For \(k = 1\) we get

\[
\pi(p, x, z) f(\xi) = e^{i(x\xi + z)} f(\xi + p).
\]
For \((p, x, z) \in \mathcal{H}\) we define the unitary representation \(\pi_k(p, x, z)\) on \(L^2(\mathbb{R})\) by
\[
\pi_k(p, x, z) f(\xi) := e^{i(x\xi + z)k} f(\xi + p).
\]
Define the central character \(\chi_k\) of \(\pi_k\) as
\[
\chi_k(0, 0, z) := e^{izk}
\]
For \(k = 1\) we get
\[
\pi(p, x, z) f(\xi) = e^{i(x\xi + z)} f(\xi + p).
\]
Notice that
\[
\pi(p, x, z) f(\xi) = e^{i(x\xi + z)} f(\xi + p)
= e^{ix\xi} \cdot e^{iz} \cdot f(\xi + p)
= R(x)\chi(z)T(p)
\]
Schrödinger Representation

For \((p, x, z) \in \mathcal{H}\) we define the unitary representation \(\pi_k(p, x, z)\) on \(L^2(\mathbb{R})\) by

\[
\pi_k(p, x, z) f(\xi) := e^{i(x\xi + z)k} f(\xi + p).
\]

Define the central character \(\chi_k\) of \(\pi_k\) as

\[
\chi_k(0, 0, z) := e^{izk}
\]

For \(k = 1\) we get

\[
\pi(p, x, z) f(\xi) = e^{i(x\xi + z)} f(\xi + p).
\]

Notice that

\[
\pi(p, x, z) f(\xi) = e^{i(x\xi + z)} f(\xi + p)
\]
\[
= e^{ix\xi} \cdot e^{iz} \cdot f(\xi + p)
\]
\[
= R(x) \chi(z) T(p)
\]

And now, hold on to your seats... Here is the celebrated theorem!
Theorem: Stone-von Neumann

For $k \neq 0$ the unitary representation π_k is irreducible. Every irreducible unitary representation of \mathcal{H} with central character χ_k is isomorphic to π_k.
A Quick Review

What Have We Done So Far?

Introduced h, and shown that $\exp(h) = H$.

Shown that both h and H have the canonical commutation relation.

Discovered that we can uniquely represent elements of H as the product of three operators on $L^2(\mathbb{R})$.

What Now?

Show that the Schrödinger representations contains the foundations of quantum mechanics.

Bask in our knowledge of the one-ness of the universe.

Çelebi, Hendricks, Jordan
A Tale of Two Matrices
August 29, 2015
What Have We Done So Far?

- Introduced \mathfrak{h}, and shown that $\exp(\mathfrak{h}) = \mathcal{H}$

- Shown that both \mathfrak{h} and \mathcal{H} have the canonical commutation relation

- Discovered that we can uniquely represent elements of \mathcal{H} as the product of three operators on $L^2(\mathbb{R})$.

What Now?

- Show that the Schrödinger representations contains the foundations of quantum mechanics
- bask in our knowledge of the one-ness of the universe
What Have We Done So Far?

- Introduced \(\mathfrak{h} \), and shown that \(\exp(\mathfrak{h}) = \mathcal{H} \)
- Shown that both \(\mathfrak{h} \) and \(\mathcal{H} \) have the canonical commutation relation

What Now?

Show that the Schrödinger representations contains the foundations of quantum mechanics

Bask in our knowledge of the one-ness of the universe
A Quick Review

What Have We Done So Far?

- Introduced \mathfrak{h}, and shown that $\exp(\mathfrak{h}) = \mathcal{H}$
- Shown that both \mathfrak{h} and \mathcal{H} have the canonical commutation relation
- Discovered that we can uniquely represent elements of \mathcal{H} as the product of three operators on $L^2(\mathbb{R})$.

What Now?

- Show that the Schrödinger representations contains the foundations of quantum mechanics
- Bask in our knowledge of the one-ness of the universe
A Quick Review

What Have We Done So Far?

- Introduced \(\mathfrak{h} \), and shown that \(\exp(\mathfrak{h}) = \mathcal{H} \)
- Shown that both \(\mathfrak{h} \) and \(\mathcal{H} \) have the canonical commutation relation
- Discovered that we can uniquely represent elements of \(\mathcal{H} \) as the product of three operators on \(L^2(\mathbb{R}) \).

What Now?

- Show that the Schrödinger representations contains the foundations of quantum mechanics
A Quick Review

What Have We Done So Far?

- Introduced \mathfrak{h}, and shown that $\exp(\mathfrak{h}) = \mathcal{H}$
- Shown that both \mathfrak{h} and \mathcal{H} have the canonical commutation relation
- Discovered that we can uniquely represent elements of \mathcal{H} as the product of three operators on $L^2(\mathbb{R})$.

What Now?

- Show that the Schrödinger representations contains the foundations of quantum mechanics
- Bask in our knowledge of the one-ness of the universe
A Closer Look at R and T

Schrödinger Representation

\[\pi(p, x, z) = R(x)\mathcal{X}(z)T(p). \]
Schrödinger Representation

\[\pi(p, x, z) = R(x)X(z)T(p). \]
A Closer Look at R and T

Schrödinger Representation

$$\pi(p, x, z) = R(x)\mathcal{X}(z)T(p).$$

A Closer Look at R and T

First, setting the scene:

$$\pi(p, 0, 0) = \pi(pP_H) = T(p) \quad \pi(0, x, 0) = \pi(xX_H) = R(x)$$

$$pP_H = p \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad xX_H = x \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

We associate the matrices P_H and X_H with the operators $T(p)$ and $R(x)$, respectively. Important: $P_H \leftrightarrow T(p)$ and $X_H \leftrightarrow R(x)$.
A Closer Look at R and T

Schrödinger Representation

$$\pi(p, x, z) = R(x) \mathcal{X}(z) T(p).$$

A Closer Look at R and T

First, setting the scene:

$$\pi(p, 0, 0) = \pi(p P_H) = T(p) \quad \pi(0, x, 0) = \pi(x X_H) = R(x)$$

$$p P_H = p \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad x X_H = x \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- We associate the matrices P_H and X_H with the operators $T(p)$ and $R(x)$, respectively.

- **Important:** $P_H \leftrightarrow T(p)$ and $X_H \leftrightarrow R(x)$.
Stone’s Theorem (Simplified)

Every group of single-parameter unitary operators \(\{U(s)\}_{s \in \mathbb{R}} \) can be uniquely associated with a self-adjoint operator \(A \), such that

\[
U(s) = e^{isA} = \sum_{k=0}^{\infty} \frac{(isA)^k}{k!}
\]
Stone’s Theorem

Stone’s Theorem (Simplified)

Every group of single-parameter unitary operators \(\{U(s)\}_{s \in \mathbb{R}} \) can be uniquely associated with a self-adjoint operator \(A \), such that

\[
U(s) = e^{isA} = \sum_{k=0}^{\infty} \frac{(isA)^k}{k!}
\]

What Does That Even Mean?

It means that \(R(x) \) and \(T(p) \) can be viewed as the exponential of a self-adjoint operator \(A \).
Stone’s Theorem

Stone’s Theorem (Simplified)

Every group of single-parameter unitary operators \(\{U(s)\}_{s \in \mathbb{R}} \) can be uniquely associated with a self-adjoint operator \(A \), such that

\[
U(s) = e^{isA} = \sum_{k=0}^{\infty} \frac{(isA)^{k}}{k!}
\]

What Does That Even Mean?

It means that \(R(x) \) and \(T(p) \) can be viewed as the exponential of a self-adjoint operator \(A \).

How, Though?

Easy to see for the rotation operator \(R(x) \), since

\[
R(x)f(\xi) = e^{ix\xi}f(\xi),
\]

So, by Stone’s Theorem, \(A = \hat{X} \), where \(\hat{X} \) is the operator that multiplies a function by its argument, i.e. \(\hat{X}f(\xi) = \xi f(\xi) \).
Stone’s Theorem

A Revelation (In Pictures)

\[X_H \leftrightarrow \text{By Sch. rep} \rightarrow R(x) \]

Def’n of group \[\exp(X) \leftrightarrow \text{Revelation!} \rightarrow \exp(ix\hat{X}) \]

Stone’s thm.
Stone’s Theorem

A Revelation (In Words)

Exponentiating the operator \hat{X} gives the rotation operator. We associated the rotation operator with the matrix X_H. But $X_H \in \mathcal{H}$ was obtained by exponentiating $X \in \mathfrak{h}$. Logically, then, we should associate $X \in \mathfrak{h}$ with the \hat{X} operator on $L^2(\mathbb{R})$.
Exponentiating the operator \hat{X} gives the rotation operator.

Stone’s Theorem

A Revelation (In Words)

- Exponentiating the operator \hat{X} gives the rotation operator.
Stone’s Theorem

A Revelation (In Pictures)

A Revelation (In Words)

- Exponentiating the operator \hat{X} gives the rotation operator.
- We associated the rotation operator with the matrix X_H.

$X_H \xleftarrow{\text{Def'n of group}} \xrightarrow{\text{By Sch. rep}} R(x) \xleftarrow{\text{Stone's thm.}} \xrightarrow{\text{exp}} \exp(iX) \xrightarrow{\text{Revelation!}} \exp(ix\hat{X})$
Stone’s Theorem

A Revelation (In Pictures)

\[X_H \leftrightarrow \text{Def'n of group} \]
\[\exp(X) \leftrightarrow \text{Revelation!} \]
\[R(x) \rightarrow \text{By Sch. rep} \]
\[\exp(ix\hat{X}) \rightarrow \text{Stone's thm.} \]

A Revelation (In Words)

- Exponentiating the operator \(\hat{X} \) gives the rotation operator.
- We associated the rotation operator with the matrix \(X_H \).
- But \(X_H \in \mathcal{H} \) was obtained by exponentiating \(X \in \mathfrak{h} \).
Stone’s Theorem

A Revelation (In Words)

- Exponentiating the operator \(\hat{X} \) gives the rotation operator.
- We associated the rotation operator with the matrix \(X_H \).
- But \(X_H \in \mathcal{H} \) was obtained by exponentiating \(X \in \mathfrak{h} \).
- Logically, then, we should associate \(X \in \mathfrak{h} \) with the \(\hat{X} \) operator on \(L^2(\mathbb{R}) \).
Stone’s Theorem (Simplified)

Every group of single-parameter unitary operators \(\{U(s)\}_{s \in \mathbb{R}} \) can be uniquely associated with a self-adjoint operator \(A \), such that

\[
U(s) = e^{isA}
\]

(1)
Stone’s Theorem (Simplified)

Every group of single-parameter unitary operators \(\{U(s)\}_{s \in \mathbb{R}} \) can be uniquely associated with a self-adjoint operator \(A \), such that

\[
U(s) = e^{isA}
\]

(1)

Repeating For \(P \)

It turns out that:

\[
T(p) f(\xi) = \exp \left(ip \left(-i \frac{d}{d\xi} \right) \right) f(\xi) = \exp \left(\frac{d}{d\xi} \right) f(\xi)
\]
Stone’s Theorem

Stone’s Theorem (Simplified)

Every group of single-parameter unitary operators \(\{U(s)\}_{s \in \mathbb{R}} \) can be uniquely associated with a self-adjoint operator \(A \), such that

\[
U(s) = e^{isA}
\]

(1)

Repeating For \(P \)

It turns out that:

\[
T(p)f(\xi) = \exp \left(ip \left(\frac{d}{-i d\xi} \right) \right) f(\xi) = \exp \left(\frac{d}{d\xi} \right) f(\xi)
\]

If You Learn Nothing Else Today…

\[
\exp \left(p \frac{d}{d\xi} \right) f(\xi) = \sum_{k=0}^{\infty} \frac{p^k f^k(\xi)}{k!} = f(\xi + p)
\]
We defined $\hat{P} = -i \frac{d}{d\xi}$.

\[\begin{align*}
&\text{By Sch. rep} & \quad & \text{Def’n of group} \\
&P_{\mathcal{H}} & \quad & \text{Stone’s thm.} \\
&\exp(P) & \quad & \exp(ip\hat{P})
\end{align*} \]

Revelation!
We defined $\hat{P} = -i \frac{d}{d\xi}$.

By Sch. rep

$P_{\mathcal{H}} \leftrightarrow T(p)$

Def’n of group

Stone’s thm.

exp(P) \begin{array}{c} \Leftarrow \text{Revelation!} \end{array} \text{exp} \left(ip\hat{P} \right)$
We defined $\hat{P} = -i \frac{d}{d\xi}$.

By Sch. rep

$P_H \leftrightarrow T(p)$

Def’n of group

$\exp(P) \leftrightarrow \exp[ip\hat{P}]$

Revelation!

Stone’s thm.

Revelation (In Words)

- Exponentiating the operator \hat{P} gives the translation operator.
Stone’s Theorem

Another Revelation

We defined $\hat{P} = -i \frac{d}{d\xi}$.

By Sch. rep

$P_{\mathcal{H}} \overset{\text{Def’n of group}}{\longrightarrow} \text{exp}(P) \overset{\text{Revelation!}}{\longrightarrow} \exp(ip\hat{P}) \overset{T(p)}{\longrightarrow} T(p)$

Stone’s thm.

We defined $\hat{P} = -i \frac{d}{d\xi}$.

By Sch. rep

$P_{\mathcal{H}} \overset{\text{Def’n of group}}{\longrightarrow} \text{exp}(P) \overset{\text{Revelation!}}{\longrightarrow} \exp(ip\hat{P}) \overset{T(p)}{\longrightarrow} T(p)$

Revelation (In Words)

- Exponentiating the operator \hat{P} gives the translation operator.
- We associated the translation operator with the matrix $P_{\mathcal{H}}$.

Çelebi, Hendricks, Jordan

A Tale of Two Matrices

August 29, 2015 24 / 36
We defined $\hat{P} = -i \frac{d}{d\xi}$.

By Sch. rep

$P_{\mathcal{H}} \leftrightarrow T(p)$

Stone's thm.

Def'n of group

$\exp(P) \leftrightarrow \exp(ip\hat{P})$

Revelation!

Revelation (In Words)

- Exponentiating the operator \hat{P} gives the translation operator.
- We associated the translation operator with the matrix $P_{\mathcal{H}}$.
- But $P_{\mathcal{H}} \in \mathcal{H}$ was obtained by exponentiating $P \in \mathfrak{h}$.
We defined $\hat{P} = -i \frac{d}{d\xi}$.

By Sch. rep $P_H \leftrightarrow T(p)$

Def’n of group $\exp(P) \leftrightarrow \exp(i p \hat{P})$ Revelation!

Stone’s thm.

Revelation (In Words)

- Exponentiating the operator \hat{P} gives the translation operator.
- We associated the translation operator with the matrix P_H.
- But $P_H \in \mathcal{H}$ was obtained by exponentiating $P \in \mathfrak{h}$.
- Logically, then, we should associate $P \in \mathfrak{h}$ with the \hat{P} operator on $L^2(\mathbb{R})$.
Putting It All Together

Schrödinger Representation

\[
\pi(p, x, z) = R(x)\chi(z)T(p).
\]
Schrödinger Representation

\[\pi(p, x, z) = R(x)\chi(z)T(p). \]

Putting It All Together

We can associate the matrices \(P \) and \(X \) with operators:

\[P \leftrightarrow \hat{P} = -i \frac{\partial}{\partial \xi} \]
\[X \leftrightarrow \hat{X} = \xi \]

We often call \(\hat{P} \) the momentum operator and \(\hat{X} \) the position operator. We'll find out why shortly!
Schrödinger Representation

\[\pi(p, x, z) = R(x)\chi(z)T(p). \]

Putting It All Together

We can associate the matrices \(P \) and \(X \) with operators:

\[P \leftrightarrow \hat{P} = -i \frac{d}{d\xi} \]
\[X \leftrightarrow \hat{X} = \xi \]
Schrödinger Representation

\[\pi(p, x, z) = R(x)\chi(z)T(p). \]

Putting It All Together

We can associate the matrices \(P \) and \(X \) with operators:

\[P \leftrightarrow \hat{P} = -i \frac{d}{d\xi} \]

\[X \leftrightarrow \hat{X} = \xi \]

We often call \(\hat{P} \) the momentum operator and \(\hat{X} \) the position operator. We’ll find out why shortly!
What about the third basis matrix, Z? Remember our old friend, the canonical commutation relation? Let's try that on \hat{P} and \hat{X}:

$$[\hat{P}, \hat{X}] f(\xi) = \hat{P}\hat{X}f(\xi) - \hat{X}\hat{P}f(\xi) = -i \frac{d}{d\xi}(\xi f(\xi)) - \xi \left(-i \frac{d}{d\xi} f(\xi)\right) = -if(\xi) = \hat{Z}f$$
Last Step

- What about the third basis matrix, Z?
Last Step

- What about the third basis matrix, Z?
- Remember our old friend, the canonical commutation relation? Let’s try that on \hat{P} and \hat{X}:
What about the third basis matrix, Z?

Remember our old friend, the canonical commutation relation? Let’s try that on \hat{P} and \hat{X}:

$$\left[\hat{P}, \hat{X} \right] f(\xi) = \hat{P}\hat{X}f(\xi) - \hat{X}\hat{P}f(\xi)$$
What about the third basis matrix, Z?

Remember our old friend, the canonical commutation relation? Let’s try that on \hat{P} and \hat{X}:

\[
\left[\hat{P}, \hat{X} \right] f(\xi) = \hat{P} \hat{X} f(\xi) - \hat{X} \hat{P} f(\xi)
\]

\[
= -i \frac{d}{d\xi} (\xi f(\xi)) - \xi \left(-i \frac{d}{d\xi} f(\xi) \right)
\]
Finishing Up

Last Step

- What about the third basis matrix, \(Z \)?
- Remember our old friend, the canonical commutation relation? Let’s try that on \(\hat{P} \) and \(\hat{X} \):

\[
\begin{align*}
\left[\hat{P}, \hat{X} \right] f(\xi) &= \hat{P} \hat{X} f(\xi) - \hat{X} \hat{P} f(\xi) \\
&= -i \frac{d}{d\xi} (\xi f(\xi)) - \xi \left(-i \frac{d}{d\xi} f(\xi) \right) \\
&= -if(\xi)
\end{align*}
\]
Last Step

- What about the third basis matrix, Z?
- Remember our old friend, the canonical commutation relation? Let’s try that on \hat{P} and \hat{X}:

$$
\begin{align*}
\left[\hat{P}, \hat{X}\right] f(\xi) &= \hat{P}\hat{X} f(\xi) - \hat{X}\hat{P} f(\xi) \\
&= -i \frac{d}{d\xi} (\xi f(\xi)) - \xi \left(-i \frac{d}{d\xi} f(\xi)\right) \\
&= -i f(\xi) \\
&= \hat{Z} f
\end{align*}
$$
We have now successfully represented our magical matrices as operators on $L^2(\mathbb{R})$. The Stone-von Neumann theorem tells us that this is essentially the only way to construct them.
Success!

We have now successfully represented our magical matrices as operators on $L^2(\mathbb{R})$. The Stone-von Neumann theorem tells us that this is essentially the only way to construct them.

Matrices And Their Operators

\[
P \longleftrightarrow \hat{P} = -i \frac{d}{d\xi} \\
X \longleftrightarrow \hat{X} = \xi \\
Z \longleftrightarrow \hat{Z} = -i
\]
We have now successfully represented our magical matrices as operators on $L^2(\mathbb{R})$. The Stone-von Neumann theorem tells us that this is essentially the only way to construct them.

Matrices And Their Operators

\[
P \leftrightarrow \hat{P} = -i \frac{d}{d\xi}
\]
\[
X \leftrightarrow \hat{X} = \xi
\]
\[
Z \leftrightarrow \hat{Z} = -i
\]

In Summary…

\[
\left[\hat{P}, \hat{X} \right] = \hat{Z}
\]
\[
\left[\hat{P}, \hat{Z} \right] = 0
\]
\[
\left[\hat{X}, \hat{Z} \right] = 0
\]

The canonical commutation relation lives!
Another Way of Getting the Momentum and Position Operators

Partial Derivative by p

\[
\left. \frac{\partial}{\partial p} \pi(p, 0, 0) \right|_{p=0} = \left. \frac{\partial}{\partial p} f(\xi + p) \right|_{p=0} = \lim_{p \to 0} \frac{f(\xi + p) - f(\xi)}{p} = \frac{d}{d\xi} f(\xi)
\]
Another Way of Getting the Momentum and Position Operators

Partial Derivative by \(p \)

\[
\left. \frac{\partial}{\partial p} \pi(p, 0, 0) \right|_{p=0} = \left. \frac{\partial}{\partial p} f(\xi + p) \right|_{p=0} = \lim_{\substack{p \to 0}} \left. \frac{f(\xi + p) - f(\xi)}{p} \right|_{p=0} = \frac{d}{d\xi} f(\xi)
\]

Partial Derivative by \(x \)

\[
\left. \frac{\partial}{\partial x} \pi(0, x, 0) \right|_{x=0} = \left. \frac{\partial}{\partial x} e^{ix\xi} f(\xi) \right|_{x=0} = \lim_{x \to 0} \frac{e^{ix\xi} f(\xi) - f(\xi)}{x}
\]

\[
\begin{align*}
&= \lim_{x \to 0} \frac{i \sin x\xi}{x} + \frac{\cos x\xi}{x} - \frac{1}{x} \\
&= i\xi f(\xi)
\end{align*}
\]
Given our position and momentum operators:

\[
\hat{X}(f(x)) = xf(x)
\]

\[
\hat{P}(f(x)) = -i \frac{d}{dx} f(x)
\]

We call this Laplacian the Hermite Operator.
Given our position and momentum operators:

\[\hat{X}(f(x)) = xf(x) \]
\[\hat{P}(f(x)) = -i \frac{d}{dx} f(x) \]

The Laplacian is given in Euclidean Two-Space by \(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \)
Hermite Operator

Given our position and momentum operators:

\[
\hat{X}(f(x)) = xf(x)
\]

\[
\hat{P}(f(x)) = -i \frac{d}{dx} f(x)
\]

The Laplacian is given in Euclidean Two-Space by

\[
\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}
\]

or

\[
\hat{X}(\hat{X}(f)) + \hat{P}(\hat{P}(f))
\]

or

\[
\left[x^2 - \frac{d^2}{dx^2} \right] f(x)
\]

We call this Laplacian the **Hermite Operator**.
Self-Adjoint Operators

An operator \mathcal{L} is self-adjoint over an inner product iff $\langle \mathcal{L}u, v \rangle = \langle u, \mathcal{L}v \rangle$. Since the Hermite operator is self-adjoint over the $L^2(\mathbb{R})$ inner product, its eigenfunctions define an orthogonal basis for $L^2(\mathbb{R})$. Rescaling the Hermite operator like so,

$$H := -\frac{1}{4}\pi^2 \frac{d^2}{dx^2} + x^2$$

Gives us the orthonormal basis

$$h_k(x) = \frac{1}{\sqrt{k!}} \left(-\frac{1}{\sqrt{2}\pi}\right)^k e^{\pi x^2} dk e^{-\frac{2}{\pi}x^2} Hh_k = \frac{2k + 1}{2\pi} h_k.$$
Hermite Polynomials

Self-Adjoint Operators

An operator \mathcal{L} is self-adjoint over an inner product iff $\langle \mathcal{L}u, v \rangle = \langle u, \mathcal{L}v \rangle$.

Since the Hermite Operator is self-adjoint over the $L^2(\mathbb{R})$ inner product, its eigenfunctions define an orthogonal basis for $L^2(\mathbb{R})$.

Rescaling the Hermite operator like so,

$$ H := -\frac{1}{4} \pi^2 \frac{d^2}{dx^2} + x^2 $$

Gives us the orthonormal basis

$$ h_k(x) = 2^{1/4} \sqrt{k!} \left(-\frac{1}{\sqrt{2}} \pi \right)^{k/2} e^{\pi x^2} k e^{\frac{-2}{\pi} x^2} H h_k = 2^{k+1/2} \pi h_k $$
Hermite Polynomials

Self-Adjoint Operators

An operator \mathcal{L} is self-adjoint over an inner product iff $\langle \mathcal{L}u, v \rangle = \langle u, \mathcal{L}v \rangle$.

Since the Hermite Operator is self-adjoint over the $L^2(\mathbb{R})$ inner product, its eigenfunctions define an orthogonal basis for $L^2(\mathbb{R})$. Rescaling the Hermite operator like so,

$$H := -\frac{1}{4\pi^2} \frac{d^2}{dx^2} + x^2$$

Gives us the orthonormal basis

$$h_k(x) = \frac{2^{\frac{1}{4}}}{\sqrt{k!}} \left(-\frac{1}{\sqrt{2\pi}} \right)^k e^{\pi x^2} \frac{d^k}{dx^k} e^{-2\pi x^2}$$
Hermite Polynomials

Self-Adjoint Operators
An operator \mathcal{L} is self-adjoint over an inner product iff $\langle \mathcal{L}u, v \rangle = \langle u, \mathcal{L}v \rangle$.

Since the Hermite Operator is self-adjoint over the $L^2(\mathbb{R})$ inner product, its eigenfunctions define an orthogonal basis for $L^2(\mathbb{R})$. Rescaling the Hermite operator like so,

$$H := -\frac{1}{4\pi^2} \frac{d^2}{dx^2} + x^2$$

Gives us the orthonormal basis

$$h_k(x) = \frac{2^{\frac{1}{4}}}{\sqrt{k!}} \left(-\frac{1}{\sqrt{2\pi}} \right)^k e^{\pi x^2} \frac{d^k}{dx^k} e^{-2\pi x^2}$$

$$H h_k = \frac{2k + 1}{2\pi} h_k$$
Definition: Fourier Transform

Given by

\[\mathcal{F}(f) = \langle f(x), e^{2\pi i \xi x} \rangle = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} \, dx \]

So this will give me the strength of the function in each linear frequency, \(k \).
Fourier Transform

Definition: Fourier Transform

Given by

\[\mathcal{F}(f) = \langle f(x), e^{2\pi i \xi x} \rangle = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} \, dx \]

So this will give me the strength of the function in each linear frequency, \(k \).

\[\mathcal{F}h_k = (-i)^k h_k \]
Properties of the Fourier Transform

Plancherel Theorem

\[\langle f, f \rangle = \langle \mathcal{F}f, \mathcal{F}f \rangle \]
Properties of the Fourier Transform

Plancherel Theorem

\[\langle f, f \rangle = \langle \mathcal{F}f, \mathcal{F}f \rangle \]

Derivative as Multiplication

\[\mathcal{F} \frac{df(x)}{dx} = 2\pi i \xi \{ \mathcal{F} f(x) \}(\xi) \]

This means that the position and momentum operators are called Fourier Conjugates of each other.
Properties of the Fourier Transform

Plancherel Theorem

\[\langle f, f \rangle = \langle \mathcal{F} f, \mathcal{F} f \rangle \]

Derivative as Multiplication

\[\mathcal{F} \frac{df(x)}{dx} = 2\pi i \xi \{ \mathcal{F} f(x) \}(\xi) \]

\[\mathcal{F} \hat{P} = 2\pi \hat{X} \mathcal{F} \]

This means that the position and momentum operators are called **Fourier Conjugates** of each other.
Where We Are Going: Heisenberg’s Uncertainty Principle and Quantum Mechanics

Where We Are Going

- Classical mechanics \leftrightarrow finite dimensional spaces
Where We Are Going: Heisenberg’s Uncertainty Principle and Quantum Mechanics

Where We Are Going

- Classical mechanics \leftrightarrow finite dimensional spaces
- Quantum mechanics \leftrightarrow infinite dimensional spaces

Our solution? Wavefunctions

This implies that the sum of momentum and position will always be bounded below.
Where We Are Going: Heisenberg’s Uncertainty Principle and Quantum Mechanics

Where We Are Going

- Classical mechanics \leftrightarrow finite dimensional spaces
- Quantum mechanics \leftrightarrow infinite dimensional spaces
- Our solution? Wavefunctions
Where We Are Going: Heisenberg’s Uncertainty Principle and Quantum Mechanics

Where We Are Going

- Classical mechanics \leftrightarrow finite dimensional spaces
- Quantum mechanics \leftrightarrow infinite dimensional spaces
- Our solution? Wavefunctions
- This implies that the sum of momentum and position will always be bounded below.
The Heisenberg Uncertainty Principle

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \geq \frac{1}{2\pi} \| f \|_2^2 \]

The Derivation

\[\langle H f, f \rangle \]
The Heisenberg Uncertainty Principle

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \geq \frac{1}{2\pi} \| f \|_2^2 \]

The Derivation

\[\langle H f, f \rangle = \langle \{ \hat{P}^2 + \hat{X}^2 \} f, f \rangle = \]
The Heisenberg Uncertainty Principle

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \geq \frac{1}{2\pi} \| f \|_2^2 \]

The Derivation

\[\langle H f, f \rangle = \langle \{ \hat{P}^2 + \hat{X}^2 \} f, f \rangle = \| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \]
The Heisenberg Uncertainty Principle

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \geq \frac{1}{2\pi} \| f \|_2^2 \]

The Derivation

\[\langle H f, f \rangle = \langle \{ \hat{P}^2 + \hat{X}^2 \} f, f \rangle = \| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \]

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 = \langle H f, f \rangle \]
The Heisenberg Uncertainty Principle

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \geq \frac{1}{2\pi} \| f \|_2^2 \]

The Derivation

\[\langle H f, f \rangle = \langle \{ \hat{P}^2 + \hat{X}^2 \} f, f \rangle = \| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \]

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 = \langle H f, f \rangle \]

\[= \int_{\mathbb{R}} H \sum_{k=0}^{\infty} \langle f, h_k \rangle h_k \sum_{k=0}^{\infty} \langle f, h_k \rangle \bar{h}_k \, dx \]
The Heisenberg Uncertainty Principle

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \geq \frac{1}{2\pi} \| f \|_2^2 \]

The Derivation

\[\langle H f, f \rangle = \langle \{ \hat{P}^2 + \hat{X}^2 \} f, f \rangle = \| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 \]

\[\| \hat{P} f \|_2^2 + \| \hat{X} f \|_2^2 = \langle H f, f \rangle \]

\[= \int_{\mathbb{R}} H \sum_{k=0}^{\infty} \langle f, h_k \rangle h_k \sum_{k=0}^{\infty} \langle f, h_k \rangle \bar{h}_k \, dx \]

\[= \sum_{k=0}^{\infty} \frac{2k + 1}{2\pi} |\langle f, h_k \rangle|^2 \]
The Heisenberg Uncertainty Principle

\[\|\hat{P} f\|_2^2 + \|\hat{X} f\|_2^2 \geq \frac{1}{2\pi} \|f\|_2^2 \]

The Derivation

\[\langle H f, f \rangle = \langle \{\hat{P}^2 + \hat{X}^2\} f, f \rangle = \|\hat{P} f\|_2^2 + \|\hat{X} f\|_2^2 \]

\[\|\hat{P} f\|_2^2 + \|\hat{X} f\|_2^2 = \langle H f, f \rangle = \int_{\mathbb{R}} H \sum_{k=0}^{\infty} \langle f, h_k \rangle h_k \sum_{k=0}^{\infty} \langle f, h_k \rangle \overline{h_k} \, dx \]

\[= \sum_{k=0}^{\infty} \frac{2k + 1}{2\pi} |\langle f, h_k \rangle|^2 \]

\[\geq \frac{1}{2\pi} \sum_{k=0}^{\infty} |\langle f, h_k \rangle|^2 = \frac{1}{2\pi} \|f\|_2^2 \]

Çelebi, Hendricks, Jordan
A Tale of Two Matrices
August 29, 2015 34 / 36
Thank you!
The Cowling-Price Inequality

We attempted to find a shorter proof for the expression

\[\| |x|^{\alpha} f(x) \|_p + \| |y|^{\beta} \hat{f}(y) \|_q \geq K \| f \|_2 \]

which is a known generalization of the Heisenberg Uncertainty Principle.