A GENERALIZATION OF A THEOREM OF BUMBY.

MICHAEL A. BENNETT, ALAIN TOGBE, AND P. G. WALSH

ABSTRACT. Bumby proved that the only positive integer solutions to the quar-
tic Diophantine equation 3X4 —2Y2 = 1 are (X,Y) = (1,1),(3,11). In this
paper we use the hypergeometric method of Thue to prove that for each in-
teger m > 1, the only positive integers solutions to the Diophantine equation
(m2+m+1)X* —(m2+m)Y? = lare (X,Y) = (1,1), 2m+1, 4m? +4m+3).

1. INTRODUCTION

In [2], Bumby devised a very clever argument involving arithmetic in the quartic
number field Q(v/—2,+/—3) to prove that the only positive integer solutions X,Y
of the quartic Diophantine equation

3X*—2v* =1
are (X,Y) = (1,1),(3,11). Equations of the type
(1.1) aX*—by? =1

havebeen studied for some time, most notably in the work of Ljunggren [5], who
determined all integer solutions under the condition that the associated Pellian
equation aX? — bY2 = 4 is solvable in odd integers X,Y.

There has been renewed interest (for example see [1], [4], [8], and [9]) in Diophantine
equations of this type. In particular, there is an effort to remove the hypothesis of
Ljunggren’s theorem, and thereby solve (1.1) for any pair of positive integers a, b
for which the associated Pellian equation aX2? — bY? = 1 is solvable in nonzero
integers X,Y. In particular, Chen and Voutier [3] have improved upon a theorem
of Ljunggren by showing that for d > 2, the equation X? — dY* = —1, which is
of the above type, has at most one solution in positive integers z,y, and if such a
solution exists, then (X,Y) = (z,9?) is the minimal solution of the associated Pell
equation X2 —dY? = —1.

As detailed in the introduction of a recent paper (see [7]), in order to determine the
integer solutions to an equation of the form aX* —bY? = 1, it sufficient to consider
the case that a and b differ by 1. That is, it is sufficient to determine the set of
integer solutions to Diophantine equations of the type

(1.2) t+1)X* —tV?2=1.
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We begin by stating a conjecture on the set of integer solutions to (1.2), which will
provide further motivation for the main result of this paper.

Conjecture 1.1. Lett > 1 denote a positive integer. Then the only positive integer
solution to

(1.3) t+1)X*—ty?=1

is (X,Y) = (1,1), unless t = m? + m for some positive integer m, in which case
there is also the solution (X,Y) = (2m + 1,4m? + 4m + 3).

For k > 0, define a sequence of polynomials {Vari1(t)} by

(VE+ T+ V) = Vo1 (VE+ 1+ U (B) V.

For a given integer t > 1, a positive integer solution (X,Y") to the quartic Diophan-
tine equation (t + 1)X* — tY2 = 1 is equivalent to an index k& > 0 for which
X? = Vagy1(t). In [7], the authors showed that for all £ > 1, the equation
X2 = Vyr41(t) has no solutions in positive integers X,t. The primary method
used was Thue’s hypergeometric method applied to a related parametric family of
quartic Thue equations. Moreover, it was shown that problems with this method
arise for the remaining equation X? = Vyyy3(t).

The purpose of the present paper is to generalize Bumby’s result by showing that
the hypergeometric method can be applied to solve the equation X2 = Vj;3(t) in
the particular case that t = m2?+m, which corresponds to the subfamily of equations
in Conjecture 1.1 for which two positive integer solutions to (t + 1)X* —tY% =1
exist.

Theorem 1.2. Let m > 1 denote a positive integer. Then the only positive integer
solutions to

(1.4) (m?>+m+1DX—(m?>+m)yY?=1
are (X,Y) = (1,1) and (X,Y) = (2m + 1,4m? + 4m + 3).
The strategy of the paper is as follows. In Proposition 2.1 of [7] it was shown that

a positive integer solution to (t +1)X* —tY2 = 1 gives rise to a solution to a Thue
equation of the form

(1.5) ot + dtedy — 6ta’y® — 4tz + 12yt = 12,

where 1 < to < v/t, and t¢ is a divisor of . It follows that x/y is very close to one
of the roots of the quartic polynomial

(1.6) pe(x) = 2t + 4tz® — 6ta® — 4tz + 12,

which are labeled as 9, i = 1,2,3,4. It was shown in [7] that a solution to
X2 = Vjpy3(t) forces z/y to be close to either 1) or (), (these roots will be
given explicitly below). The hypergeometric method will then be used to obtain
an effective measure of approximation for these two roots, showing that no such
rational number z/y can exist.

Notation Throughout the paper ¢ is a parameter arising from the family of quartic
equations (t + 1)X* —tY?2 = 1, and m is a separate parameter arising from the
subfamily of quartic equations (m? +m+ 1)X*— (m? + m)Y? = 1. In other words,
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t and m are related by the equation t = m? + m when ¢ is specified to be of this
particular form.

2. AN EFFECTIVE MEASURE OF APPROXIMATION
Let us start by recalling some notation.
Notation 2.1. For positive integers n and r, we put
(2.1) Xnr(X) = 2Fi(—r,—r—1/n;1-1/n; X),

where 2 F7 denotes the classical hypergeometric function. We use X;';,T to denote
the homogeneous polynomials derived from these polynomials, so that

(2:2) X3 (X,Y) = V" X (X/7)
In Proposition 2.1 of 7], it was shown a positive integer solution of equation (1.2)

gives rise to a solution to a Thue equation. For reference purposes, we recall here
Proposition 2.1 of [7]

Proposition 2.2. Let ¢t > 1 be a positive integer. If (X,Y") is a positive integer
solution to (1.4) other than (1,1), then there is an integer solution (z,y) to the
Thue equation

(2.3) zt + 4tady — 6t2®y? — 4tz + 2yt = £2
where to divides t and to < V/%.

In order to apply the hypergeometric method, one requires good rational approxi-
mations to the roots (9, i =1,2,3,4 of the polynomial

(2.4) pi(z) = 2 + 4ta® — 6tz — 4t’z + 12,
which are given explicitly by
(2.5)
t t
g = %(1 +p), B = %(1 =), BY = (=1 + p)Vt, BY = —(r + )V,

where 7 =/t + 1+ +/tand p =712 + 1.

Now we consider ¢ = m? + m. We also need some inequalities for the location of
the roots. We obtain

(2.6)
m+1l+ s+ s < BU<m+1+4 g+ 51,

1 1 2 1 1
—m= gzt < BY<-m- gt g

5 4 _1 B el __5 4 _5
64m?2 + 16m3 < /3 < 4 64m?2 + 64ms3 2

_ 2 _ _ 54 21 _ _21 (4) _ 2 _ _54 .21 _ _5_
Am® —dm — 3+ gz — Gaar < B <—4mP—dm - 3+ i — e

In this section we will apply the hypergeometric method to obtain effective mea-
sures of approximation to the two roots S(!) and S®). Because of the relation
BB = —t we will only need to deal with one of the roots, say 8.

Let us recall the following results in [7] that are very useful to apply the hypergeo-
metric method.
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Lemma 2.3. Let a1,aa,¢1 and ¢y be complex numbers with a1 # aa. Forn > 2,
we define the following polynomial
n?—1 n?—1
5 (a1 — ) (X —an), e(X) = g™ (a1 — ) (X — az),
n?—1 n?—1
BX) =T — ) (X =), d(X) = "y (o — ) (X — ),
wX)=—c2 (X —a2)" and z(X)=c (X —a1)".

a(X) =

Putting A = (a1 — az)” /4, for any positive integer r, we define
(VN Aq(X) (X)X, (2,u) +b(X) X}, (u,2) and
(VA'Bo(X) = (X)X} (2,u) + d(X) X}, . (u, 2).
Then, for any root 8 of P(X) = 2(X) — u(X), the polynomial
C,(X) = B4, (X) — B,(X)
is divisible by (X — B)?r+1.

Proof. This is a simplified version of Lemma 2.1 from [3]. O

Lemma 2.4. With the above notation, put w(z) = z(z)/u(z) and write w(z) =
pe? with 1> 0 and —1 < ¢ < . Put w(zx)'/™ = p'/meie/n,

(i) For any non-zero x € C such that w = w(z) is not a negative real number or
zero,

(\/X)TCT(.’L') = {B (a(x)w(m)l/" + b(m)) - (c(x)w(w)l/" + d(x)) } X r(u,2)
— (Ba(z) — c(z)) w(z)" B (w),
with

L(r+1+1/n) (¥ r 1 n—r—1
W/l (1= £)(t — w))" /=71 gt

where the integration path is the straight line from 1 to w.
(i) Let w = €?,0 < ¢ < 7 and put /w = €*¥/2. Then

R, (w) =

nl(r+141/n) 2r
| Ry, (w)] < Wﬂl—\/a .
Proof. This is Lemma 2.5 of [3]. O
Lemma 2.5. Let u,w and z be as above. Then
. r(1-1/n)r! 2r—2
Proof. This is Lemma 2.6 of [3]. O

Lemma 2.6. Let Ny, be the greatest common divisor of the numerators of the
coefficients of X4 (1 —2x) and let D4, be the least common multiple of the denom-
inators of the coefficients of X4 (). Then the polynomial (D4, /Nay) X4,r(1—22)
has integral coefficients.
Moreover, Ny, = 2" and
I'(3/4)r!
“TT(r + 3/4)

T(r + 5/4)

W < 0.1924 - 5.342".

< 0.8397 - 5.3427 and Dy,
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Proof. This is Lemma 3.4 from [7]. O

Lemma 2.7. Let oy, a2, A (X),B.(X) and P(X) be defined as in Lemma 3.1 and
let a,b,c and d be complex numbers satisfying ad — bc # 0. Define

K.(X)=aA.(X)+bB.(X) and L.(X)=cA(X)+dB.(X).
If (x — a1) (x — az) P(x) #0, then
Ky (2)L(2) # Ko(2)Loys (2),
for all T > 0.
Proof. This is Lemma 2.7 of [3]. O

Lemma 2.8. Let § € R. Suppose that there exist ko,lo > 0 and E,Q > 1 such
that for all r € N, there are rational integers p, and g, with |¢r| < ko@Q" and
|gr8 — pr| < lE™" satisfying prgr+1 # Pr+19r- Then for any rational integers p
and q with |g| > 1/(2ly), we have

p log @
- = = 2 E K = .
‘0 q‘ Ja T where ¢ = 2koQ (20 E)* and k log E
Proof. This is Lemma 2.8 from [3]. O

For the remainder of this section, we shall assume that ¢ is a fixed integer greater
than 204. We shall also simplify our notation here to reflect the fact that we have
n = 4. We shall use R, and X, instead of R4, and X4 ;.

We now determine the quantities defined in the Lemma 2.3. Put

(2.7) o1 =V—t, s =—vV—t, a1 = (1+V—1) /2, e = (1 - V1) /2,

then

(2.8) P(X) = X* +4tX3 — 6t X% — 41X + t°.

We will henceforth refer to this polynomial as p;(X), as in (2.4), and by abuse of
notation, we will define the bivariate polynomial p;(X,Y) = Yip,(X/Y).

We define also

(2.9) T=vt+Vt+1 and pzm.

for any positive integer t.

The preliminary results above will now be used in order to obtain an effective

measure of approximation to (). By (2.6) and Lemma 2.3, we want to choose x
close to m + 1, and by Lemma 2.4, it is useful to choose x so that

) _ c@w@)'’ +d(z)
—a(z)w(z)/4 + b(z)

For this purpose we will indeed select z = m + 1, and we set

(2.11) n=1+iyvm?+m(4m® +4m + 3).

It follows that

(2.10) B
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=1+ (4m? +4m + 3) vVm2 +m

n
2.12 w=w(m+1)= ="
(2.12) ( ) 1+i(dm?2 +4m+3)v/m? +m U]
and so
(2.13) Wi/t — 1+ir m+1—ivm?2+m

p mAltivmEim

Using the fact that p? = 72 + 1, one can check that

(2.14) a(m +1) = =5(m +1) [m = iv/m® +m] = b(m + 1),

and

(2.15) elm+1) = ~5m (m +1) [m+1+iv/m? + m| = d(m +1).
It follows that

c(m + Dw'/* +d(m + 1)
a(m + Dw'/* +b(m + 1)’

(2.16) BY =

Therefore, the first term in the expression for (—t)"/2C,.(m + 1) in Lemma, 2.4 dis-
appears.

We now construct our sequence of rational approximations to 3(1).

By Lemma 2.3, Lemma 2.4, we have that A = —t, and moreover

(=t)2A,(m +1) =a(m + 1) X} (2(m +1),u(m + 1))
+b(m + ) X*(u(m +1),z2(m + 1)),

(2.17)  (=t)"?B(m +1) = ¢(m + )X (2(m + 1), u(m + 1))
+d(m + 1) X7 (u(m + 1), 2(m + 1)),
(=t)"/2Cr(m + 1) = — (BWa(m + 1) — ¢(m + 1)) [u(m + 1)]" R,(w).

These quantities will form the basis for our approximations. We first eliminate
some common factors. One can check that

(2.18)
u(m+1):—%(m+1)2 [1+i\/m2+m (4m2+4m+3)] z—%(m+1)2n:—z(m+1),

and
z(m-l—l):l_gand u(m + 1) E
u(m + 1) n z(m +1) 7

Using (2.2), (2.18), and (2.19), we obtain

(2.19)

X3 (2(m+ 1), u(m + 1) = fu(m + 1)) X, (36253)

(220) (—l)r%(m + 1)2ranT <1 _ %)
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and

X7 (u(m + 1), 2(m + 1)) = [2(m + 1)]" X, (40

(2.21) ) . ;
=5 (m+ 1) 7" X, (1—%)

After some routine manipulations, we find that
(2.22)

()24, (m+ 1) = 2 N f Bas [ 1) (m—io/m? ) 7 X, (1-2)
s ()
(=) By (m+1) = 2N [ Die [ 1) (L iv/m®m) i X, (1
+ (m+1—ivm2+m) 7" X, (1—%)] } :
By Lemma 2.6, the quantities inside the braces can be expressed as
(—1)7(e — fv/—1) £ (e — fV-1),

where e and f are rational integers, and recalling from Lemma 2.6 that N4, = 27,
considering the cases of r being even or odd separately, we find that

:SIN
N——

ml=2/2D, B, (m+ 1) ml"=2/21D, A, (m +1)
10(m + 1)Br/2+1] 10(mn + 1)Br/2+1]

are rational integers. We note for future reference that if r is even, then P, will be
divisible by t.

(223) P, =

and @, =

The numbers in (2.23) are those that will be used as the rational approximations
to (). We have

(224) Qrﬂ(l) - PT‘ = Sra

where

mlr=2/21D, . C\.(m + 1)
10(m + 1)[3r/2+1]

We want to show that these are good approximations, and we do this by estimating
|P.|,|Q~| and |S,| from above. As

1—iv/m? 1
m l motm_ [1—2i m2+m]
m+1+ivm2+m 2m+1

then (2.13) becomes

(2.26) w'/t = ;)p [(1+2rv2) +i (7 —24)]

2m+1

(2.25) S, =

and we have
1

2.97) w'?=
227) Wi =G e

[(1+2n/%)2—(r—2x/i)2+2i (1+27vk) (7—2\/2)] .
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Using asymptotic expressions, we obtain

1 3
2.2 1 <2——— 4+ —— <2, f >1
(2.28) 1+ vw| < 64m6+64m7< , for m>1,
and hence
(2.29)

65 215 53
‘u(m +1)(1+ \/13)2‘ < 8m® + 28m* + 41m> + 7m2 +IgMmt 35 < 8.7m”°,

for m > 42. Using the expressions for a(m + 1),b(m + 1),c(m + 1), and d(m + 1),
one can see that

(2.30) la(m + 1) = |b(m + 1)| = 5(m + 1)/m(2m + 1),
and
(2.31) le(m +1)| = |d(m + 1)| = 5m(m + 1)y/(m + 1)(2m + 1).

By (2.17), (2.28), (2.29), (2.30), (2.31), Lemma 2.5, and the triangle inequality,
we have, for m > 42, that

t7/2|Ar(m + 1)| < 2|a(m + 1)| [ X5, (u(m + 1), 2(m + 1))
/

IA

7! T 2r—2
8L latm +1)| Ju(m + 1)|" 1+ Vol

< IOFF((TBS)/Z!) (m+1)y/m2m+1) (8.7m%)"

(2.32)
t7/2|B(m+1)|< 2|e(m + 1)| | X}, (u(m + 1), 2(m + 1))

r! r 2r—2
< SEELL |e(m + 1)] Ju(m + 1)[" |1+ Vo]

< 107475 m(m+1)/(m+1)2m+1) (8.7m°)"

Now we use (2.23) and Lemma 2.6 to obtain

T(3/4)r! (mAH)2y/m2mH)mlr=2)/2] r
|QT| < D4vT F((r-i/-S)/Z) (m+1)B 72 (m(m+1))7/2 (8.7m5)

2.33 . T
(2.33) < OB/ (om + 1) (46.4754m?)
< 1.195 (46.4754m®)"
because
ml(r—2)/2] 1 1
(m + 1)Br/2+U(m(m + 1))/2 < m(m + 1)2r+1 < (m + 1)m?r+1

and

1

—v/m(2m +1) <1.423

m
for m > 42.

Similarly, one can obtain

(2.34) |P:| < 0.8397\/(m + 1)(2m + 1) (46.4754m®)"
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for m > 42. By (2.17) and Lemma 2.4, we have

(2.35)
t'2|Cr(m +1)| = |B(1)a(m +1) —¢(m + 1)| [u(m + 1)|" |Rp(w(m + 1))|

< [BWa(m + 1)—c(m + 1) fu(m + 1)|” L o 1 i

m|m ivm2+m r 5|7
< Ja(m+1)||p0 — =BTl S0 o fum+1) 1 -vi)"|

for m > 42.
With ¢ as in Lemma 2.4, it can be shown that 2¢/7 < sin ¢ and

2vm? + m(4m? + 4m + 3)

sy =M= (m? +m)(dm? + 4m + 3)?

From our estimates for the 3()’s, we know that m + 1 < ") < m + 5/4, and so
we use the triangle inequality and asymptotic expressions to obtain

olp - m[m + 1+ ivVm?2 +m] < 1.556
m —ivm2 +m m? ’
for m > 42. As above, we use asymptotic expressions to obtain
2 1.1
(2.36) u(m + 1) (1 — Vwlm + 1)) <=

From these results, (2.25), Lemma 2.6 and because
ml(r—2)/2] 1
(m + 1)[3r/2+1] (m(m + 1))7‘/2 < m(m + 1)2r+17

one can see that

(2.37)
2(mH)y/m(2 r m[m ivm2+m 2|"
|Sr] < (mtl) +1)gr D4 Tl;(vr—{f//:) ‘/3(1) [m—tlz—k—m\/m—”‘ ‘u(m +) A= vy,

4 ; 2
< 2/m@m+1)Ds, Y ‘50) mim LV

< AR 01020 |28 ()|

2
e (1= V)

< o)

Note also that since (V)8 = —¢, we have

(238) th + ﬂ(2)Pr = _13(2)87“
We now apply Lemma 2.8 to prove the following theorem.
Theorem 2.9. Suppose that m > 42. Define

_ log (46.4754m?)
~ log (m3/0.184) °
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For j =1 and 2, and for any rational integers p and q, we have

(239 PR —
¢jlal

for |g| > 1, where
1 = 111.08m? (9.27m)"  and ¢z = 5097.53m> (50.13m?)" .

Proof In each case we will apply Lemma 2.7 and Lemma 2.8. First notice that
P,Qr4+1 — Pr41Q, is a non-zero multiple of

Aryim+1)Br(m+1) — Ay (m 4+ 1)Bryi(m + 1).

Applying Lemma 2.7, with a = d = 1,b = ¢ = 0 and £ = m + 1, we see that
PrQr+1 7£ PT-‘rlQT'

For f(V) and using (2.24), we put p, = P, and ¢, = Q,.. For m > 42, from (2.33),
and (2.37), we can take ko = 1.195,lp = O'Sffl,E = % and Q = 46.4754m3.
Hence we can use ¢; for the quantity ¢ in Lemma 2.8.

For 8 and using (2.38), we take advantage of the fact that P», is divisible by ¢.

In this case let p, = —Q2, and ¢, = Pf’. Since —m — 1 < 3® < —m, so we have
B 0.8521 (0.184\>" 0.8521 £0.034\"
— S| < —— | —— < .
t m3 m3 m3 mS

Also from (2.34), we obtain

P. 0.8397 1)(2 1 r 1.18 r
‘ﬁ < Vi + DR+ D) (46 grsame)> < 118 (9150.07m0)"
t m* +m m
Therefore, we put ko = 228, [y = 08521 B = % and Q = 2159.97m®. Here & is

the same as in the case of 3(1) and we can use ¢, for the quantity ¢ in Lemma 2.8.
Since lp is larger in this case, the same lower bound for |¢| remains valid.

3. PROOF OF THEOREM 2.1

We have just used the hypergeometric method to determine how close a rational
number z/y can possibly be to one of the roots of P(X). Let us now estimate
how close such a rational number must be in order that (z,y) is a solution of (1.5).
As noted before the closest root to z/y must be either B or ). We denote
by p¢(z,y) the polynomial in equation (1.5). We assume also that m > 42, since
for all smaller positive integer values of m, we have verified Conjecture 1.1 using
a SIMATH’s program faintp on the curves Y2 = X3 — (m? + m)?(m? + m + 1)X,
and doublechecked this computation using KANT’s program ThueSolve on all Thue
equations of the form given in (1.5).

We begin by proving a lower bound for |y| in terms of m. We do this as fol-
lows, which is essentially Runge’s method. For each of 1 < k < 24, we com-
pute the Puiseux expansions at infinity of the algebraic function z(m) defined by
22 = Vigas (m2 +m) in order to obtain, for each k, a positive integer r, and integer
polynomials fag13(m), garr+3(m) with the property that

22" Vigyz(m® + m) = (fares3(m))? + gar+3(m),
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with 2deg figt3(m) = deg Vagss(m? + m) = 4k + 2, and deg gag+3(m) = 2k. We
verified that each of the polynomials gsx4+3(m) has no positive integer roots. We
then noticed that | fag+3(m)| > |gak+3(m)| for m > 0, which is a much stronger con-
dition than required. We remark that if one could prove that this property holds for
all £ > 1, this would yield a completely different proof of Theorem 1.2. In any case,
it follows from the above properties that each of the equations 22 = Vyx43(m? +m),
(1 < k < 24), has no solutions in positive integers (z,m).

Now, using equation (2.2) in [7], it is readily verified that for m > 42 and k > 3,
one has
(3.1) 971 <V < 117k

In order to prove a lower bound for |y|, we refer to the proof of Proposition 2.1
in [7]. A modification of the proof with Vyj3 in place of Vygi1, using the relation

Vikss = Va1 + Varro
shows that either y = H, where
VVakss + Vor1 = 2t H? if £ < to,
or y = G, where

V Varys — Vopyr = 20:1G? if ty < 1.

We will deal only with the latter case, as the former can be dealt with in the same
way, and actually produces a larger lower bound for |y|.
It is easy to see that

Vak42
V Viakss = Vapy1 =

VVar1/Vari2)? + 1+ (Vopr1 /Vorta)
and so from (3.1), we deduce that

2t1y2 > (1/4)T2k+1 > (1/4)22k+1(\/1;)2k+1_
Since t; < t, m < v/t, and k > 25, we finally deduce that
(3.2) ly| > 2*4m?*.

We now estimate how close z/y must be to f() and (), and from (3.2) we can
evidently assume that |y| > 4. Let us assume first that (z,y) is a solution of
equation (1.5) with z/y closest to 8V, In this case, |z — BVy| < t1/4, otherwise
|p¢(z,y)| > t, and so (z/y) is greater than 1) — ¢'/4/4. Therefore,

T _ g 1
y

5 5

v _Mm _ 502 9 _m 1— —
R A L R
by our estimates for the size of the roots.

Similarly, we also have that

x m® 3 9 |z
T 5B AT T AN hedy- 1C)]
y p > m 4 + 4 + 64m?’ |y g

and upon combining the above, assuming that m > 42,

.5
2 _mr 9 B
R i R P

T 406
I}, -5

i#1

> 7.9m*.
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Therefore, if |pi(z,y)| = t2 < t, with t = m? + m and m > 42, then

—4
< ¥

(3.3) —omz”

L _pm
Yy

Equation (3.3) shows that if z/y is closest to (! and |y| > 4, then z/y must be a
convergent in the continued fraction expansion of 31, since the right-hand side of
(1.5) is less than 1/(2y?) for such values of y.

If the closest root to z/y is 8%, then |z — B@y| < ¢2°, and so z/y must be less
than 3(?) 4 25 /4. Therefore,

T m® m3 1
L _ g1 w_T g9, T 41T
‘y BV > g0 - T — g > om - T b1 -,
and we also have that
x m3 13 |z m?® 9 13
fady1¢:)) ST DAy 1) Aam2 + 5 _r 72
g TP e T e |y T A I T T L

We similarly conclude that for ¢ = m? + m and m > 42,

H r_ SO > 7.9m4,
i#2
and also, if |p;(z,y)| = t3 < t, then
x lyl~*
3.4 T _po| W
(34) y s 7.9m2

As before, we deduce that if z/y is closest to 5*) and |y| > 4, then z/y must be a
convergent in the continued fraction expansion of 5.

By Theorem 2.9, (3.3) and (3.4), if (z,y) is any further solution of equation (1.5),
arising from the equation 22 = Vj,y3(t), then z/y is a convergent to either SV
and

_,. _ 111.08m3
(3.5) ly]?~* < o7 (9.27m)" ,
or a convergent to A2) and
5097.53m5
(3.6) |y|3_” < ?Tn;n (50.13m3)n,

provided that m > 42.

Combining (3.5) with the lower bound for |y| in (3.2) shows that m < 1, while
combining (3.6) with (3.2) shows that m < 1.

This completes the proof of Theorem 1.2.
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