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Infinite Exchangeable Sequences

Say that the random elements ξ1, ξ2, . . . are
exchangeable if their joint distribution is invari-
ant under arbitrary permutations:

(ξk1
, . . . , ξkn

) d= (ξ1, . . . , ξn)

for any set of distinct integers k1, . . . , kn > 0.

♣ (de Finetti) An infinite sequence of ran-
dom elements, taking values in a Borel space,
is exchangeable iff it is mixed i.i.d.

Here mixed i.i.d. means that the joint distri-
bution of the variables ξk is a mixture of dis-
tributions of i.i.d. sequences. Thus, the ξk are
i.i.d. on S if their joint distribution is an in-
finite product measure µ∞ = µ ⊗ µ ⊗ · · · for
some distribution µ on S. Now take an arbi-
trary probability distribution ν on the space of
measures µ, and form the mixture

P{(ξ1, ξ2, . . .) ∈ ·} =
∫

µ∞ ν(dµ).
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Finite Exchangeable Sequences

de Finetti’s theorem fails for finite sequences.
Here we have instead:

♣ A finite sequence of random elements
ξ1, . . . , ξn is exchangeable iff it is a mixture of
urn sequences.

An urn sequence is a sequence of random el-
ements obtained by random sampling without
replacement from a finite set: Let an urn con-
tain n tickets labeled a1, . . . , an. Draw the tick-
ets, one by one, and record their labels ξ1, . . . , ξn.
The joint distribution depends only on the count-
ing measure π =

∑
k δak

. Now form a mixture
over such distributions π(n)/n! :

P{(ξ1, . . . , ξn) ∈ ·} =
∫

π(n)ν(dπ)/n!
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Contractable Sequences

A random sequence ξ1, ξ2, . . . is said to be
contractable (contraction invariant) if all sub-
sequences have the same distribution:

(ξk1
, ξk2

, . . .) d= (ξ1, ξ2, . . .)

for any positive integers k1 < k2 < · · · . Ex-
changeable sequences are clearly contractable.
The converse is not so obvious:

♣ (Ryll-Nardzewski) An infinite sequence of
random elements ξ1, ξ2, . . . in a space S is con-
tractable iff it is exchangeable. Thus, when S is
Borel, the ξk are contractable iff they are mixed
i.i.d.

This improves on de Finetti’s theorem. Both
statements fail for finite sequences.
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Rotatable Sequences

Imposing further conditions on our exchange-
able sequences yields mixtures of i.i.d. sequences
of special kinds. Say that the random variables
ξ1, ξ2, . . . are rotatable (rotation invariant), if for
every n, the distribution of the random vector
(ξ1, . . . , ξn) is spherically symmetric. Any ro-
tatable sequence is clearly exchangeable.

♣ (Schoenberg, Freedman) An infinite se-
quence of random variables ξ1, ξ2, . . . is rotat-
able iff it is mixed i.i.d. centered Gaussian. In
other words,

(ξ1, ξ2, . . .)
d= σ(η1, η2, . . .),

where η1, η2, . . . are i.i.d. N(0, 1) and σ is an
independent random variable ≥ 0.

Again, this clearly fails for finite sequences.
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Discrete-Time Symmetries

For finite or infinite sequences of random ele-
ments, we have the following basic symmetries,
listed here together with the associated classes
of transformations:

stationary shifts
contractable contractions
exchangeable permutations

rotatable rotations

Note that each property in the table is stronger
than the previous one. Many other symmetries
are conceivable, but these are the basic ones,
and they are intimately related in many ways.
Their study leads to a unified theory, which is
the focus of these lectures.
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Symmetric Increments

In continuous time, we may define the cor-
responding symmetries in terms of the incre-
ments. Then, for a process X on RR+ or [0, 1],
we fix any h > 0 and define

ξk = Xkh −X(k−1)h, k = 1, 2, . . .

Say that X is contractable (has contractable in-
crements) if X0 = 0 and the sequence of incre-
ments ξ1, ξ2, . . . is contractable for every h > 0.
The definitions of exchangeable and rotatable
processes are similar. In addition, we may im-
pose various regularity conditions, such as con-
tinuity in probability.
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Pathwise Symmetries

It is often more convenient to introduce, for
any times a < b, the contraction

X̃a,b
t =





Xt, t ≤ a,

Xa + Xt+b−a −Xb, t > a,

and say that X is contractable if X̃a,b d= X for
all a < b. The contraction amounts to remov-
ing the path on (a, b] and gluing together the
remaining paths on [0, a] and (b,∞).

To define exchangeability, we consider instead,
for any a < b, the transposition

X̃a,b
t =





Xt+a −Xa, t ≤ b− a,

Xb −Xa + Xt−b+a, t ∈ (b− a, b],
Xt, t > b.

This amounts to interchanging the order of the
paths on [0, a] and (a, b].
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Functional Symmetries

For rotatability, we may require instead that
the Wiener functional

Xf =
∫

ft dXt

has the same distribution for all f ∈ L2 with
‖f‖2 = 1.

For random measures or point processes ξ on
I = RR+ or [0, 1], we may also define exchange-
ability in terms of measure-preserving transfor-
mations. Thus, letting λ denote Lebesgue mea-
sure on I, we say that ξ is exchangeable if, for
any measurable function f : I → I,

λ ◦ f−1 = λ =⇒ ξ ◦ f−1 d= ξ.

The same condition can be used to define the
notion of λ-symmetry, for any random measure
ξ on a diffuse measure space (S,S, λ). We may
also consider point processes on S with marks
in an arbitrary measurable space (K,K).
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Simple Point Processes

Here is a de Finetti-type theorem for simple
point processes:

♣ A simple point process on RR+ or [0, 1] is
exchangeable iff it is a mixed Poisson or bino-
mial process based on λ.

Letting Pρ be the distribution of a Poisson
process on RR+ with the constant rate ρ ≥ 0, we
form the mixture

P{ξ ∈ ·} =
∫

Pρ ν(ρ),

where ν is a distribution on RR+.

To form a binomial process based on λ and
κ, let γ1, γ2, . . . be i.i.d. random variables with
distribution λ and define

ξ =
∑

k≤κ

δγk

For a mixed binomial process, take κ to be an
independent random variable.
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Continuous Processes

The following is a de Finetti-type theorem
for continuous processes:

♣ A continuous process X on I = RR+ or
[0, 1], taking values in RRd, is exchangeable iff

Xt = αt + σBt, t ∈ I,

where B is a Brownian motion or bridge, re-
spectively, and (α, σ) is an independent pair of
random elements.

Here α is a random vector in RRd and σ is a
random d× d matrix.
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Rotations and Contractions

It is interesting to compare with the result
in the rotatable case:

♣ (Freedman) A measurable process X on
I = RR+ or [0, 1], taking values in RRd, is rotat-
able iff

Xt = σBt, t ∈ I,

where B is a Brownian motion on I and σ is
an independent random matrix.

The last two results, together with Ryll-
Nardzewski’s theorem, yield a surprising con-
nection between the basic symmetries. Here a
process X on RR+ with stationary increments is
said to be centered if

lim
t→∞ t−1Xt = 0 a.s.

♣ For a centered, continuous process on RR+

taking values in RRd, the contractable, exchange-
able, and rotatable properties are all equivalent.
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Contractable Processes on RR+

Now turn to the general continuous-time coun-
terpart of de Finetti’s theorem:

♣ (Bühlmann) A right-continuous process X

on RR+, taking values in RRd, is contractable (hence
exchangeable) iff it is a mixture of Lévy pro-
cesses.

A Lévy process is a right-continuous process
X with stationary, independent increments and
X0 = 0. Its distribution is determined by the
triple (α, σσ′, ν), where α is the drift vector, σσ′

is the diffusion matrix, and ν is the Lévy mea-
sure on RRd \ {0} governing the jumps of X.
Recall the Lévy representation

Xt = αt + σBt +
∫ t

0

∫

|x|≤1
x (η − Eη)(ds dx)

+
∫ t

0

∫

|x|>1
x η(ds dx),

where B is a Brownian motion and η is an in-
dependent Poisson process with Eη = λ⊗ ν.
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Exchangeable Processes on [0,1]

The last result fails for processes on [0, 1].
Here we have instead:

♣A right-continuous process X on [0, 1], tak-
ing values in RRd, is exchangeable iff it has a
representation

Xt = αt + σBt +
∑

jβj(1{τj ≤ t} − t),

where B is a Brownian bridge, τ1, τ2, . . . are in-
dependent of B and i.i.d. U(0, 1), and the set of
vectors α, σ, and β1, β2, . . . is independent of B

and (τj) with
∑

j |βj|2 < ∞. The representing
series then converges a.s., uniformly on [0, 1].

For non-random coefficients α, σ, and β1, β2,

. . . , the distribution of X is clearly determined
by the triple (α, σσ′, β), where β =

∑
j δβj

.
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Directing Random Measures

de Finetti’s theorem can be stated in the fol-
lowing stronger conditional form:

♣ For any infinite, contractable sequence ξ =
(ξ1, ξ2, . . .) in a Borel space S, there exists an
a.s. unique random probability measure µ on S

such that

P [ξ ∈ · |µ] = µ∞ a.s.

We call µ the directing random measure of
ξ. It is equivalent to condition on the shift or
permutation invariant σ-fields I or E , or on the
tail σ-field T . Taking expected values gives

P{ξ ∈ ·} = Eµ∞ =
∫

m∞ν(dm),

where ν is the distribution of µ. Thus, the
present condition implies that ξ is mixed i.i.d.

For suitable spaces S, we may recover µ from
ξ via the law of large numbers:

n−1 ∑

k≤n

δξk

w→ µ a.s.
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Directing Random Elements

All the previous representations have simi-
lar conditional versions. In each case, there ex-
ist some directing random elements, a.s. deter-
mined by the sequence or process, such that an
associated conditioning yields a unique integral
representation of the distribution in terms of
extreme symmetric distributions. We list some
examples of directing random elements:

µ — infinite sequences

π — finite sequences

ρ — simple point processes on RR+

κ — simple point processes on [0, 1]

σσ′ — rotatable sequences or processes

(α, σσ′) — continuous processes

(α, σσ′, ν) — processes on RR+

(α, σσ′, β) — processes on [0, 1]
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Uniqueness and Continuity

In all the previous cases, the distribution of
the symmetrically distributed sequence or pro-
cess determines and is determined by the distri-
bution of the associated set of directing random
elements. The correspondence is even continu-
ous in a suitable sense. For example, we have
for de Finetti sequences:

♣ Let ξ and ξ1, ξ2, . . . be infinite exchangeable
sequences in a Polish space S, and let µ and
µ1, µ2, . . . denote the associated directing ran-
dom measures. Then

ξn
d→ ξ ⇐⇒ µn

wd−→ µ

On the left we have convergence in distribu-
tion in the infinite product space S∞, whereas
the right we have convergence in distribution in
the measure space M1(S), equipped with the
topology of weak convergence. This is equiva-
lent to weak convergence in the measure spaces
M1(S

∞) and M1(M1(S)), respectively.
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Approximation in Distribution

We may also connect the different represen-
tations by limit theorems of various kind. For
example, we have the following approximation
of finite exchangeable sequences by infinite ones:

♣ Let ξ1, ξ2, . . . be exchangeable sequences of
finite lengths m1,m2, . . . →∞, and let π1, π2, . . .

denote the associated directing point processes.
Also consider an infinite exchangeable sequence
ξ directed by µ. Then

ξn
d→ ξ ⇐⇒ m−1

n πn
wd−→ µ

Similar continuity and convergence theorems
hold in the other cases considered so far. In
general, however, one must be careful with the
choice of topology in the space of directing ele-
ments. The difficulties are similar to those aris-
ing in the statements of classical limit theorems
for triangular arrays.
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Sequences and Processes

The following table summarizes the directing
random elements of exchangeable sequences or
processes on a finite or infinite interval:

finite infinite

discrete π µ

continuous (α, σσ′, β) (α, σσ′, ν)

The four fields in the table are related by five
limit theorems, in addition to continuity theo-
rems within each field. This gives totally nine
limit theorems, some of which extend the classi-
cal limit theorems for triangular arrays and for
sampling from a finite population.
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Asymptotically

Invariant Sampling

For a sequence τ = (τ1, τ2, . . .) in RR and a
process X on RR, consider the sampled sequence

X ◦ τ = (Xτ1
, Xτ2

, . . .).

Say that the random sequences

τn = (τn1, τn2, . . .), n ∈ NN,

are asymptotically invariant (in distribution), if
for any k ∈ NN and r1, . . . , rk ∈ RR,

‖L(τn1 + r1, . . . , τnk + rk)

−L(τn1, . . . , τnk)‖ → 0.

♣ Let X = (Xt) be a stationary process in
a Polish space S with invariant σ-field IX, and
let ξ = (ξj) be an infinite exchangeable sequence
in S with directing measure µ = P [X0 ∈ ·|IX ].
Consider some asymptotically invariant sequences
τn = (τnj) in RR and the associated the sampled

sequences X ◦ τn in S. Then X ◦ τn
d→ ξ.
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Strong Comparison

For an exchangeable process X in RR with
directing triple (α, σ2, β), define the index ρX

in [0, 2] by

ρX = inf
{
c ≥ 0;

∑
j|βj|c < ∞

}

♣ For any exchangeable process X on [0, 1],
there exist some jointly exchangeable processes
X̃ and Y with X = X̃ + Y a.s., where X̃ is
mixed Lévy with the same directing triple as X

and Y has vanishing diffusion term and index

ρY ≤ ρX

1 + 1
2 ρX

Iterating results of this type, we may extend
many path properties known for Lévy processes
to the much larger class of exchangeable pro-
cesses on [0, 1].
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Rényi Stability

Define the shift operators θn by

θn(ξ1, ξ2, . . .) = (ξn+1, ξn+2, . . .).

♣ (Rényi/Révész) Let ξ = (ξn) be an infinite
exchangeable sequence in a Polish space S with
directing random measure µ. Then

(i) P [θnξ ∈ · | ξ1, . . . , ξn]
w→ µ∞ a.s.,

(ii) E[η; θnξ ∈ ·] w→ Eηµ∞, η ∈ L1.

Recall that µ∞ = P [ξ ∈ ·|µ]. In (ii), choos-

ing ξ̃
d= ξ with ξ̃⊥⊥µ ξ (conditional indepen-

dence), we get

E[η; θnξ ∈ ·] w→ E[η; ξ̃ ∈ ·], η ∈ L1(ξ).

For η = 1A with A ∈ σ(ξ), this amounts to the
stable convergence θnξ → ξ̃.
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Weak Subsequence Principle

For any sequences ξ = (ξ1, ξ2, . . .) and p =
(p1, p2, . . .) with all pn ∈ NN, define

ξ ◦ p = (ξp1
, ξp2

, . . .).

♣ (Dacunha-Castelle, Aldous) For any tight
random sequence ξ = (ξn) in a Polish space S,
there exist a subsequence p of NN and a random
distribution µ on S such that

E[η; θn(ξ ◦ p) ∈ ·] w→ Eηµ∞, η ∈ L1.

Letting ζ = (ζn) be exchangeable in S and
directed by µ with ζ ⊥⊥µ ξ, we get

E[η; θn(ξ ◦ p) ∈ ·] w→ E[η; ζ ∈ ·], η ∈ L1(ξ),

which implies the Rényi stable convergence
θn(ξ ◦ p) → ζ.
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Strong Subsequence Principle

One might hope to prove that, for any tight
random sequence ξ = (ξn) in a suitable met-
ric space (S, ρ), there exist a subsequence p of
NN and an exchangeable sequence ζ = (ζn) in
S such that ρ(ξpn

, ζn) → 0 a.s. Unfortunately,
this statement is false, and the best we can do
is the following:

♣ (Berkes, Péter) Let ξ = (ξn) be a tight
random sequence in a separable and complete
metric space (S, ρ). Then for any ε > 0, there
exist a subsequence p of NN and an exchangeable
sequence ζ in S such that

E[ρ(ξpn
, ζn) ∧ 1] ≤ ε, n ∈ NN.

Such results can be used to prove that every
“reasonable” limit theorem for i.i.d. sequences
remains true, in a conditional form and un-
der suitable moment conditions, for some sub-
sequence of an arbitrary random sequence ξ.
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Basic Definitions

A discrete filtration F on a probability space
is a sequence of σ-fields F0 ⊂ F1 ⊂ · · · . A ran-
dom sequence ξ is said to be F -adapted if ξn is
Fn-measurable for every n. The filtration in-
duced by ξ is given by Gn = σ(ξ1, . . . , ξn) for all
n.

An F -optional (stopping) time τ is a ran-
dom variable in ZZ+ such that {τ = n} ∈ Fn

for all n. We say that τ is F -predictable if
{τ = n} ∈ F(n−1)+ for all n, so that (τ − 1)+ is
optional.

A random sequence ξ is said to be F -con-
tractable or F -exchangeable if it is F -adapted
and such that, for every n, the shifted sequence
θnξ is conditionally contractable or exchange-
able given Fn. This clearly holds for the in-
duced filtration when ξ is contractable or ex-
changeable in the unqualified sense.
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Strong Stationarity

and Prediction

For an F -adapted sequence ξ in a Borel space
S, the associated prediction sequence µ = (µn)
is the measure-valued sequence given by

µn = P [θnξ ∈ ·|Fn], n ∈ ZZ+.

The following result gives a connection between
three of our basic symmetry properties.

♣ For any infinite, F-adapted random se-
quence ξ with prediction sequence µ, these con-
ditions are equivalent:

(i) ξ is F-contractable,

(ii) ξ is F-exchangeable,

(iii) θτξ
d= ξ for any F-optional time τ < ∞,

(iv) µ is a measure-valued F-martingale.

The strong stationarity in (iii) should be com-
pared with the corresponding unqualified no-
tion, where the relation θnξ

d= ξ is required only
for non-random n.
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Local Prediction

Under additional hypotheses on ξ and F , we
may replace the strong stationarity and martin-
gale criterion of the previous theorem by some
weaker conditions.

♣ Let ξ be an infinite, stationary random se-
quence with induced filtration F , taking values
in a Borel space S. Then these conditions are
equivalent:

(i) ξ is F-contractable,

(ii) ξ is F-exchangeable,

(iii) ξτ
d= ξ1 for any F-predictable time τ < ∞,

(iv) µk = P [ξk+1|Fk] is a measure-valued F-
martingale.
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Strong Reflection Property

For finite sequences, the shifts of the previ-
ous results need to be replaced by reflections.
Say that the random sequence ξ = (ξ1, . . . , ξn)
satisfies the strong reflection property if

(ξτ+1, . . . , ξn)
d= (ξn, . . . , ξτ+1)

for any optional time τ in [0, n).

♣ Let ξ be a finite, F-adapted sequence in a
Borel space S. Then ξ is F-exchangeable iff it
satisfies the strong reflection property.

This idea is especially useful in a continuous-
time setting, to study exchangeable random sets
in [0, 1].
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Continuous-Time Shifts

With the symmetries now defined in terms of
the increments, we need to modify the notions
of the previous theorems. The F-prediction
process is now defined by

µt = P [ θtX −Xt ∈ · | Ft ], t ≥ 0,

and we say that X has F -stationary increments
if θτX − Xτ

d= X for every F -optional time τ ,
now defined by the condition {τ ≤ t} ∈ Ft for
every t ≥ 0. The shift operators θt are now
given by (θtX)s = Xs+t for all s and t.

♣ Let X = (Xt) be an F-adapted, RRd-valued,
right-continuous process on RR+ with X0 = 0,
and let µ = (µt) denote the associated F-predic-
tion process. Then these conditions are equiva-
lent:

(i) X is F-contractable,

(ii) X is F-exchangeable,

(iii) X has F-stationary increments,

(iv) µ is a measure-valued F-martingale.
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Reverse Martingale Criterion

For any random sequence ξ = (ξ1, ξ2, . . .) in
a space S, the associated empirical distributions
are given by

ηn = n−1 ∑

k≤n

δξk
, n ∈ NN,

where δx denotes a unit mass at x.

♣ Let ξ = (ξk) be a finite or infinite random
sequence with empirical distributions η1, η2, . . . .
Then ξ is exchangeable iff the ηk form a reverse,
measure-valued martingale.

The reverse martingale property is given by

E[ηmf |Tn] = ηnf a.s., m < n,

for any bounded, measurable function f , where
the tail filtration T1 ⊃ T2 ⊃ · · · is given by

Tn = σ(ηn, ηn+1, . . .), n ∈ NN.
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Predictable Skipping

and Sampling

The defining property of contractable sequences
remains valid for sub-sequences involving pre-
dictable times:

♣ For any finite or infinite F-contractable
sequence ξ = (ξj) and any F-predictable times
τ1 < . . . < τk in the index set of ξ, we have

(ξτ1
, . . . , ξτk

) d= (ξ1, . . . , ξk).

Similarly, the defining property of exchange-
able sequences remains valid for permutations
involving predictable times:

♣ For any finite or infinite F-exchangeable
sequence ξ = (ξj) and any a.s. distinct F-pre-
dictable times τ1, . . . , τk in the index set of ξ,
we have

(ξτ1
, . . . , ξτk

) d= (ξ1, . . . , ξk).
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Gambling Puzzle

♥ In a casino, you watch a roulette game where
only red and black may occur, each with prob-
ability 1

2 (no slots for the bank). At a suitable
time, based on your previous observations, you
choose to bet $100 in the next round. If the
outcome is red, you win $200 back, otherwise
you lose your bet. Here your average gain is
clearly zero, regardless of strategy, so the gam-
bling is totally pointless.

♥ Now compare with the corresponding card
game: From a well-shuffled card deck you pick
the cards one by one, without replacement, and
observe their colors, red or black. At a suitable
moment, you choose to bet $100 on the next
card. If red, you win $200, otherwise you lose.
How should you play to maximize your aver-
age gain? Hint: At every stage, you know the
proportion of red cards in the remaining deck.
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Sojourns and Maxima

The following classical result from fluctua-
tion theory, once regarded as deep and surpris-
ing, follows easily from the predictable sampling
theorem:

♣ (Sparre-Andersen) Let ξ1, . . . , ξn be
exchangeable random variables, and put Sk =
ξ1 + . . . + ξk for all k ≤ n. Then

∑

k≤n

1{Sk > 0} d= min

{
k ≥ 0; Sk = max

j≤n
Sj

}

The left-hand side gives the amount of time
that the random walk (Sk) stays positive, while
the right-hand side gives the moment of the first
maximum. The statement may be used to give
a short proof of the third and most difficult arc-
sine law for Brownian motion. (The other two
are elementary.)
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Decoupling Identities

Say that a random sequence η = (ηk) is F -
predictable for some discrete filtration F , if ηk

is F(k−1)+-measurable for all k. The following
results extend the classical Wald identities for
i.i.d. sequences:

♣ Consider two sequences ξ = (ξk) and η =
(ηk) of random variables, where ξ is F-i.i.d.
and η is F-predictable, and suppose that Sm =
∑

k ηm
k is non-random for every m < n. Intro-

duce a sequence η̃ d= η with η̃⊥⊥ ξ. Then, under
suitable moment conditions,

E
( ∑

kξkηk

)n
= E

( ∑
kξkη̃k

)n

For finite exchangeable sequences, slightly
stronger conditions are needed:

♣ The previous result remains true for F-
exchangeable urn sequences ξ, provided we as-
sume Sm to be non-random even for m = n.
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Product Moments

The previous results can be extended to suit-
able product moments. Here we consider se-
quences ξ = (ξjk) and η = (ηjk) in RRd and de-
fine

SJ =
∑

k≥1

∏

j∈J

ηjk, J ⊂ {1, . . . , d}.

♣ Consider two random sequences ξ = (ξk)
and η = (ηk) in RRd, where ξ is F-i.i.d. and η
is F-predictable, and suppose that SJ is non-
random for every proper subset J ⊂ {1, . . . , d}.
Introduce a sequence η̃ d= η with η̃⊥⊥ ξ. Then,
under suitable moment conditions,

E
∏

j≤d

∑

k≥1
ξjkηjk = E

∏

j≤d

∑

k≥1
ξjkη̃jk

This remains true for F-exchangeable urn se-
quences ξ in RRd, provided we assume SJ to be
non-random even for J = {1, . . . , d}.
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Palm Measure Invariance

For a random measure ξ on a Borel space S

with σ-finite intensity measure Eξ, the associ-
ated Palm distributions Qs are given by

Qs(A) =
E[ξ(ds); ξ ∈ A]

Eξ(ds)
, s ∈ S.

When ξ is a simple point process, they allow
the interpretation

Qs(A) = P [ ξ ∈ A | ξ{s} = 1 ], s ∈ S,

and we define the reduced Palm distributions by

Q′
s(A) = Qs{µ; µ− δs ∈ A}, s ∈ S.

♣ Let ξ be a simple point process on a Borel
space S with diffuse, σ-finite intensity measure
λ = Eξ. Then ξ is λ-symmetric, hence a mixed
Poisson or binomial process based on λ, iff the
reduced Palm distributions Q′

s of ξ can be cho-
sen to be independent of s.
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Uniform and Poisson Sampling

The range of an increasing Lévy process is
a regenerative set in RR+. Similarly, an increas-
ing, exchangeable process X on [0, 1] with X1 =
1 generates an exchangeable random set Ξ on
[0, 1]. Define the local time L of Ξ as the right-
continuous inverse of X.

♣ Let Ξ be an exchangeable random set in
[0, 1] with local time L, and let τ1, τ2, . . . be i.i.d.
U(0, 1) and independent of Ξ. Let σ1, σ2, . . . be
the distincts values of Lτ1

, Lτ2
, . . . . Then the σn

are again i.i.d. U(0, 1).

Compare with the following (easy) result for
regenerative sets on RR+.

♣ Let Ξ be a regenerative set in RR+ with local
time L, and let τ1, τ2, . . . form an independent
homogeneous Poisson process on RR+. Then the
distinct values of Lτ1

, Lτ2
, . . . will again form

homogeneous Poisson process on RR+.
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Basic Definitions

Given a right-continuous, complete filtration
F = (Ft), we define a special semimartingale as
a right-continuous, adapted process X in RRd ad-
mitting a decomposition M + X̂, where M is a
local martingale and X̂ is a predictable process
of locally finite variation starting at 0.

There is a further decomposition M = Xc +
Xd into a continuous and a purely discontinuous
local martingale. We may also introduce the
jump point process of X on RR+ × (RRd \ {0}),
given by

ξ =
∑

t>0
δt,∆Xt

The following processes are called the local
characteristics of X:

X̂ — the compensator of X

[Xc] — the covariation matrix of Xc

ξ̂ — the compensator of ξ
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Martingale Properties

The following result gives the basic martin-
gale properties of contractable and exchange-
able processes on [0, 1].

♣ Let X be a contractable, RRd-valued process
on QQ ∩ [0, 1] with E|Xt| < ∞ for all t. Then
X extends to a special semimartingale on [0, 1]
with local characteristics [Xc], X̂, and ξ̂, where

(i) [Xc] is a.s. linear,

(ii) X̂ = M · λ for a martingale M in RRd,

(iii) ξ̂ = λ⊗ η for a martingale η in M(RRd).

Furthermore, the martingales in (ii) and (iii)
are given by

Mt =
E[X1 −Xt|Ft]

1− t
, ηt =

E[ξ1 − ξt|Ft]

1− t

The measure λ⊗ η in (iii) should be under-
stood in the sense of composition of kernels.
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Martingale Criteria

Under various additional hypotheses, the pre-
vious martingale properties essentially charac-
terize the exchangeability of X.

♣ Let X be a locally L1-bounded, special semi-
martingale on RR+ with X0 = 0, having station-
ary increments and induced filtration F . Sup-
pose that the local characteristics of X are ab-
solutely continuous and admit martingale den-
sities. Then X is exchangeable.

An important special case is when the local
characteristics are linear. Then no stationarity
need to be assumed.

♣ Let X be a uniformly integrable, special
semimartingale on [0, 1] with jump point pro-
cess ξ such that X0 = 0 and the end values
X1, [Xc]1, and ξ1 are non-random. Then X is
exchangeable iff its local characteristics are ab-
solutely continuous and admit martingale den-
sities on (0, 1).
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Norm Relations

For real semimartingales X on [0, 1), define

X∗
t = sup

s≤t
|Xs|, t ∈ [0, 1],

γX = ([X]1 + X2
1)

1/2

♣ Let X be an exchangeable process on [0, 1].

(i) For fixed t > 0 and p > 0,

‖Xt‖p ³ ‖X∗
t ‖p ³ ‖γX‖p

(ii) As t → 0 for fixed p > 0,

t1/(p∧1)‖γX‖p
<
_ ‖Xt‖p ³ ‖X∗

t ‖p
<
_ t1/(p∨2)‖γX‖p

Similar results hold for contractable semi-
martingales, as well as for summation processes
based on exchangeable or contractable sequences.
All bounds are sharp, though those in (ii) can
be improved for increasing processes X.
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Predictable Mapping

Given an RRd-valued semimartingale X on I =
[0, 1] or RR+ and an I-valued, predictable process
V on I, we define the process X ◦ V −1 by

(X ◦ V −1)t =
∫

I
1{Vs ≤ t} dXs, t ∈ I,

provided these stochastic integrals exist. If Xt =
ξ[0, t] for some random measure ξ, then X ◦V −1

is the process corresponding to ξ◦V −1. Say that
V is λ-preserving if λ ◦ V −1 = λ a.s.

♣ Let X be an F-exchangeable process on
[0, 1] or RR+ and let V be an F-predictable, λ-
preserving process from I to I. Then

X ◦ V −1 d= X

This is the continuous-time counterpart of
the predictable sampling theorem.
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Predictable Contraction

For any predictable set A with λA ≥ h > 0,
define the associated contraction CAX by

(CAX)t =
∫ τt

0
1A(s) dXs, t ∈ [0, h],

where τ = (τt) is the right-continuous inverse of
the process λA(s) = λ(A∩ [0, s]). The selection
integral above exists for contractable processes
X, even if X is not a semi-martingale.

♣ Let X be an F-contractable process on
I = [0, 1] or RR+ and consider an F-predictable
random set A in I with λA ≥ h. Then

CAX
d= X on [0, h].

This is the continuous-time counterpart of
the optional skipping theorem.
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Invariance of Stable Processes

Stronger invariance properties hold for sta-
ble Lévy processes. Here is a simple case:

♣ Let X be a strictly p-stable Lévy process,
and consider two predictable processes U ≥ 0
and V , where Up is locally integrable. Suppose
that

(U p · λ) ◦ V −1 = λ a.s.

Then
(U ·X) ◦ V −1 d= X.

In particular, we can use such results to de-
rive time-change representations of stable inte-
grals:

♣ Let X be symmetric p-stable and let V be
predictable and X-integrable. Then there exists
a process Y

d= X such that

V ·X = Y ◦ (|V |p · λ) a.s.
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Mapping of Optional Times

Consider an optional time τ with a random
mark κ in some space K, such that the measure
ξ = δτ,κ is adapted to a filtration F . Let µ be
the distribution of (τ, κ). When F is induced
by ξ, the compensator η is determined by µ and
τ , and the inverse map gives the restriction of
µ to [0, τ ]×K, expressed in terms of η.

For general F , the same inverse mapping,
given by a Doléans differential equation, yields
the discounted compensator ζ of (τ, κ), a ran-
dom sub-probability measure on [0, τ ]×K.

♣ Let (τ, κ) be a marked optional time with
discounted compensator ζ, and let V be a pre-
dictable mapping of RR+×K into [0, 1] such that
ζ ◦ V −1 ≤ λ a.s. Then V (τ, κ) is U(0, 1).

Similar maps of orthogonal pairs

(τ1, κ1), (τ2, κ2), . . .

yield i.i.d. U(0, 1) random variables.
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Decoupling Identities

Say that a process X on RR+ is F -Lévy if it
is an F -adapted Lévy process such that θtX −
Xt⊥⊥Ft for every t ≥ 0.

♣ Let X and V be processes on RR+, where
X is F-Lévy and V is F-predictable, and sup-
pose that Im =

∫∞
0 V m

s ds is non-random for ev-

ery m < n. Introduce a process Ṽ d= V with
Ṽ ⊥⊥X. Then, under suitable moment condi-
tions,

E
(∫ ∞

0
V dX

)n
= E

(∫ ∞
0

Ṽ dX
)n

An exchangeable process on [0, 1] is said to
be extreme if its directing triple (α, σσ′, β) is
non-random.

♣ The previous result remains true for ex-
treme, F-exchangeable processes on [0, 1], pro-
vided we assume Im to be non-random even for
m = n.
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Product Moments

For RRd-valued processes V on RR+, we define

IJ =
∫ ∞
0

∏

j∈J

Vj(s) ds, J ⊂ {1, . . . , d}.

♣ Let X and V be RRd-valued processes on
RR+, where X is F-Lévy and V is F-predictable,
and suppose that IJ is non-random for every
proper subset J ⊂ {1, . . . , d}. Introduce a pro-

cess Ṽ d= V with Ṽ ⊥⊥X. Then, under suitable
moment conditions,

E
∏

j≤d

∫ ∞
0

Vj dXj = E
∏

j≤d

∫ ∞
0

Ṽj dXj.

This remains true for extreme, F-exchangeable
processes X on [0, 1], provided we assume IJ to
be non-random even for J = {1, . . . , d}.
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Growth Rates

Martingale methods, too technical to explain
here, can be used to derive path properties of
exchangeable and related processes. The fol-
lowing statements extend some classical results
for Lévy processes. Such results are also acces-
sible by coupling.

♣ Let X be an exchangeable process on [0, 1]
with characteristics (α, 0, β), and consider an
even, continuous function f : RR → RR+ with
f0 = 0 such that βf < ∞ a.s.

(i) If f is convex, f ′ is concave on RR+ with
f ′0 = 0, and c > 1, then as t → 0

Xt

f−1(t| log t|c) → 0 a.s.,
Xt

f−1(t)
P→ 0.

(ii) If X is increasing of pure jump type and f

is concave on RR+, then as t → 0

Xt

f−1(t)
→ 0 a.s.
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Coding of Contractable Sequences

Here is a functional form of de Finetti’s the-
orem:

♣ Let X = (Xn) be an infinite random se-
quence in a Borel space S. Then X is con-
tractable iff there exist a measurable function
f : [0, 1]2 → S and some i.i.d. U(0, 1) random
variables α and ξ1, ξ2, . . . such that a.s.

Xn = f(α, ξn), n ∈ NN

Note that f is not unique and that the con-
struction of α and ξ1, ξ2, . . . may require an ex-
tension of the basic probability space.

To recover the standard form of de Finetti’s
theorem we note that, conditionally on α, the
Xn are i.i.d. with distribution

µ = P [f(α, ξ1) ∈ · |α]
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Two-Dimensional Symmetries

Consider a doubly infinite array

X = (Xij; i, j ∈ NN)

of random elements in a Borel space S. We say
that X is separately exchangeable if

(Xpi,qj
) d= (Xij)

for any permutations p = (pi) and q = (qj) of
NN and jointly exchangeable if

(Xpi,pj
) d= (Xij)

for any permutation p = (pi) of NN. The latter
condition is clearly the weakest.

Even weaker is the notion of joint contract-
ability, where (Xpi,pj

) = (Xij) is required for
every subsequence p = (pi) of NN. Note that sep-
arate exchangeability and contractability are
equivalent, by Ryll-Nardzewski’s theorem.

54



Coding of Exchangeable Arrays

Here is a coding representation of separately
exchangeable arrays:

♣ (Aldous, Hoover) A doubly infinite ran-
dom array X = (Xij) in a Borel space S is
separately exchangeable iff there exist a mea-
surable function f : [0, 1]4 → S and some i.i.d.
U(0, 1) random variables α, ξi, ηj, ζij, i, j ∈ NN,
such that a.s.

Xij = f(α, ξi, ηj, ζij), i, j ∈ NN

More generally, we have the following result
for jointly exchangeable arrays:

♣ (Hoover) A doubly infinite random array
X = (Xij) in a Borel space S is jointly ex-
changeable iff there exist a measurable function
f : [0, 1]4 → S and some i.i.d. U(0, 1) random
variables α, ξi, ζij = ζji, i, j ∈ NN, such that a.s.

Xij = f(α, ξi, ξj, ζij), i, j ∈ NN

55



Coding of Contractable Arrays

A doubly infinite array X = (Xij) is clearly
jointly contractable iff the same property holds
for the triangular array

Yij = (Xij, Xji, Xii, Xjj), i < j in NN.

It is then enough to consider contractable ar-
rays X on the lower triangular index set

∆2 = {(i, j) ∈ NN2; i < j}
This is equivalent to considering arrays indexed
by subsets J ⊂ NN of cardinality 2.

♣ Let X be a random array X on ∆2 with
values in a Borel space S. Then X is jointly
contractable iff there exist a measurable func-
tion f : [0, 1]4 → S and some i.i.d. U(0, 1) ran-
dom variables α, ξi, ζij, i, j ∈ NN, i < j, such
that a.s.

Xij = f(α, ξi, ξj, ζij), i < j in NN
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Extension of Contractable Arrays

Reflecting ∆2 in the main diagonal gives the
upper triangular index set

∆′
2 = {(i, j) ∈ NN2; i > j},

and together the two sets form the non-diagonal
part NN(2) of NN2. Since NN(2) is closed under joint
permutations, it makes sense to consider jointly
exchangeable arrays on NN(2).

Comparing the previous representations yields:

♣ A random array X on ∆2 is jointly con-
tractable iff it can be extended to a jointly ex-
changeable array Y on NN(2).

In other words, for such an X there exists a
jointly exchangeable array Y on NN(2) such that
a.s.

Xij = Yij, i < j in NN.

The required extension is not unique. No direct
proof is known.
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Equivalent Representations

We consider only contractable arrays, the
other cases being similar. Let α, α′, ξi, ξ

′
i, ζij, ζ

′
ij

be i.i.d. U(0, 1).

♣ Two measurable functions f, f ′ : [0, 1]4 →
S can be used to represent the same contractable
array on ∆2 iff either of the following equivalent
conditions is fulfilled:

(i) There exist some measurable functions
g0, g

′
0, g1, g

′
1, g2, g

′
2 between suitable spaces,

each preserving λ in the highest order ar-
gument, such that a.s.

f(g0(α), g1(α, ξi), g1(α, ξj), g2(α, ξi, ξj, ζij))

= f ′(g′0(α), g′1(α, ξi), g
′
1(α, ξj), g

′
2(α, ξi, ξj, ζij))

(ii) There exist some measurable functions
g0, g1, g2 between suitable spaces, each map-
ping λ2 to λ in the highest order arguments,
such that a.s.

f(α, ξi, ξj, ζij)

= f ′(g0(α, α′), g1(α, α′, ξi, ξ
′
i), g1(α, α′, ξj, ξ

′
j),

g2(α, α′, ξi, ξ
′
i, ξj, ξ

′
j, ζij, ζ

′
ij))
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Set-Indexed Arrays

For the study of d-dimensional, jointly con-
tractable arrays, we may choose as our index
set the tetrahedral set

∆d = {(k1, . . . , kd); k1 < · · · < kd}.
Identifying the elements of ∆d with subsets J ⊂
NN of cardinality d, it is equivalent to consider
contractable arrays X = (XJ) indexed by ÑN,
the class of finite subsets of NN.

For the purpose of coding, we need to con-
sider so called U-arrays ξ = (ξJ), consisting of
i.i.d. U(0, 1) random variables ξJ , J ∈ ÑN. We
also need to introduce the associated finite sub-
arrays

ξ̂J = (ξI ; I ⊂ J), J ∈ ÑN
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General Contractable Arrays

We may now state a functional representa-
tion of contractable arrays on ÑN.

♣ Let X be a random array on ÑN with val-
ues in a Borel space S. Then X is contractable
iff there exist a measurable function f between
suitable spaces and a U-array ξ on ÑN such that
a.s.

XJ = f(ξ̂J), J ∈ ÑN

As before, this yields an extension theorem
for jointly contractable arrays on ∆d. Here we
write NN(d) for the non-diagonal part of NNd.

♣A random array on ∆d is jointly contractable
iff it can be extended to a jointly exchangeable
array on NN(d).
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General Exchangeable Arrays

Here we consider the index set

NN =
∞⋃

d=0
NN(d),

consisting of all finite sequences k = (k1, . . . , kd)
in NN with distinct elements. Letting k̃ denote
the corresponding set {k1, . . . , kd}, we write for
any array ξ on ÑN

ξ̂k = (ξI ; I ⊂ k̃), k ∈ NN,

where the elements need to be enumerated con-
sistently according to the order within k.

♣ Let X be a random array on NN with val-
ues in a Borel space S. Then X is jointly ex-
changeable iff there exist a measurable function
f between suitable spaces and a U-array ξ on ÑN
such that

Xk = f(ξ̂k), k ∈ NN
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Symmetric Random Measures

The notions of separate or joint exchange-
ability or contractability extend immediately to
random measures. The jointly contractable ran-
dom measures are considered, most naturally,
on the tetrahedral index sets

∆d = {(r1, . . . , rd) ∈ RRd
+; r1 < · · · < rd}

♣ (Casukhela) A random measure on ∆d is
jointly contractable iff it can be extended to a
jointly exchangeable random measure on RRd

+.

Though this holds in any dimension d, ex-
plicit representations of exchangeable random
measures are known only in two dimensions.
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Exchangeable Point Processes

For separately and jointly exchangeable ran-
dom measures on RR2

+, general representations
are known involving independent Poisson pro-
cesses and U-arrays. Here we consider only sim-
ple point processes, the general case being sim-
ilar but more complicated:

♣ If ξ is a simple point process on RR2
+, then

(i) ξ is extreme separately exchangeable iff

ξ = ζ +
∑

ijαij(δσi
⊗ δτj

)

+
∑

i(δσi
⊗ ηi) +

∑
j(η

′
j ⊗ δτj

),

(ii) ξ is extreme jointly exchangeable iff

ξ = ζ + ζ̃ ′ +
∑

ijαij(δτi
⊗ δτj

)

+
∑

i(δτi
⊗ ηi) +

∑
j(η

′
j ⊗ δτj

),

for suitably independent arrays (αij), Poisson
processes ζ, ζ ′, ηi, η

′
j, and sequences (σi), (τj).
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Coding of Separately

Exchangeable Point Processes

A more precise description of the previous
distributions and dependencies is in terms of
coding:

♣ A simple point process ξ on RR2
+ is extreme

separately exchangeable iff

ξ =
∑

kδaρk
+

∑

i,j

f(ϑi, ϑ
′
j, ζij)(δτi

⊗ δτ ′j)

+
∑

i,k(δτi
⊗ δg(ϑi)σik

) +
∑

j,k(δg′(ϑ′j)σ
′
jk
⊗ δτ ′j)

for a constant a ≥ 0, some measurable func-
tions f, g, g′, some independent, unit rate Pois-
son processes {(τi, ϑi)}, {(τ ′i , ϑ′i)}, {ρk} on RR2

+
and {σik}, {σ′jk} on RR+, and some independent
i.i.d. U(0, 1) r.v.’s ζij.
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Coding of Jointly

Exchangeable Point Processes

The corresponding representation in the jointly
exchangeable case is even more complicated:

♣ A simple point process ξ on RR2
+ is extreme

jointly exchangeable iff

ξ =
∑

k

(
l(ηk)δρk,ρ′k + l′(ηk)δρ′k,ρk

)

+
∑

i,jf(ϑi, ϑj, ζij)δτi,τj

+
∑

j,k

(
g(ϑj, χjk)δτj ,σjk

+ g′(ϑj, χjk)δσjk,τjk

)

for some measurable functions f, g, g′, l, l′, some
independent, unit rate Poisson processes
{(τj, ϑj)}, {(σjk, χjk)} on RR2

+ and {(ρk, ρ
′
k, ηk)}

on RR3
+, and some independent i.i.d. U(0, 1) r.v.’s

ζij = ζji.
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Symmetric Partitions

A random partition of NN into disjoint sub-
sets A1, A2, . . . is said to be exchangeable if its
distribution is invariant under permutations of
NN. More precisely, writing

Xij =
∑

k1{i, j ∈ Ak}, i, j ∈ NN,

we say that (Ak) is exchangeable iff the array
X = (Xij) is jointly exchangeable. Here is the
celebrated paintbox representation:

♣ (Kingman) A random partition (Ak) of NN
is exchangeable iff there exist some exchangeable
random variables ξ1, ξ2, . . . such that a.s.

Xij = 1{ξi = ξj}, i, j ∈ NN

The result extends to arbitrary symmetries
of NN, defined in terms of families T of injective
transformations p : NN → NN. It even holds for
suitably marked partitions.

66



The Ottawa Workshop, Lecture 6:

Rotatable Arrays and

Functionals

— — —

Olav Kallenberg
Auburn University

67



Multivariate Rotations

An array U = (Uij) on NN2 is said to be or-
thogonal if there exists an n ∈ NN such that
U is an orthogonal matrix on {1, . . . , n}2 and
Uij = δij for i ∨ j > n. For a random array
X = (Xij) on NN2, we say that X is separately
rotatable if the transformed array

Yij =
∑

h,k

UihVjkXhk, i, j ∈ NN,

has the same distribution as X for any orthogo-
nal arrays U and V , and jointly rotatable if the
same condition holds with U = V .

To simplify the notation, write the definition
of Y as Y = (U⊗V )X and let O be the class of
orthogonal arrays on NN2. Then X is separately
rotatable if

(U ⊗ V )X d= X, U, V ∈ O,

and jointly rotatable if

U⊗2X d= X, U ∈ O.
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Two-Dimensional Arrays

By a G-array we mean an indexed set of i.i.d.
N(0, 1) random variables. In the separately ro-
tatable case, we have the representation:

♣ (Aldous) An array X on NN2 is separately
rotatable iff

Xij = σζij +
∑

kαk ξki ηkj, i, j ∈ NN,

for some independent G-arrays (ξki), (ηkj), (ζij)
and an independent collection of r.v.’s σ and αk

satisfying
∑

k α2
k < ∞.

In the jointly rotatable case, we have instead:

♣ An array X on NN2 is jointly rotatable iff

Xij = ρδij + σζij + σ′ζji

+
∑

h,kαhk (ξki ξkj − δijδhk), i, j ∈ NN,

for some independent G-arrays (ξki), (ζij) and
an independent collection of r.v.’s ρ, σ, σ′, αhk

satisfying
∑

h,k α2
hk < ∞.
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Random Sheets

A random sheet on RR2
+ is a continuous pro-

cess X such that X(s, t) = 0 for s ∧ t = 0.
Separate or joint rotatability may be defined as
before in terms of the two-dimensional incre-
ments

∆h,kX(s, t) = X(s + h, t + k)−X(s + h, t)

−X(s, t + k) + X(s, t).

A Brownian sheet is a random sheet X on
RR2

+ with independent increments such that
∆h,kX(s, t) is N(0, hk). Equivalently, we may
introduce Gaussian white noise η as a centered
Gaussian process on L2(RR2

+) with

Cov(ηh, ηk) = 〈h, k〉, h, k ∈ L2(RR2
+),

and define X as an a.s. continuous version of
the process

X(s, t) = η([0, s]× [0, t]), s, t ≥ 0.
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Rotatable Random Sheets

Here is a representation of separately rotat-
able random sheets on RR2

+.

♣ A random sheet X on RR2
+ is separately

rotatable iff, a.s. for all s, t ≥ 0,

X(s, t) = σZ(s, t) +
∑

kαk Bk(s) Ck(t),

for a Brownian sheet Z, some independent Brow-
nian motions Bk, Ck, and an independent set of
r.v.’s σ and αk with

∑
k α2

k < ∞.

For jointly rotatable sheets we have instead:

♣ A random sheet X on RR2
+ is jointly rotat-

able iff, a.s. for all s, t ≥ 0,

X(s, t) = ρ(s ∧ t) + σZ(s, t) + σ′Z(t, s)

+
∑

h,kαhk(Bh(s)Bk(t)− δhk(s ∧ t)),

for a Brownian sheet Z, some independent Brow-
nian motions Bk, and an independent set of
r.v.’s ρ, σ, σ′, and αhk with

∑
h,k α2

hk < ∞.
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Functional Notation

The previous representations become more
transparent when written in functional form,
for separately rotatable sheets as

X = σZ +
∑

kαk(Bk ⊗ Ck),

and for jointly rotatable ones as

X = λD + σZ + σ′Z̃ +
∑

h,kαhk(Bh ⊗Bk).

Here products such as Bh ⊗ Bk are finitely ad-
ditive random set functions on the rectangles in
RR2

+, defined by

(Bh ⊗Bk)([0, s]× [0, t])

= Bh(s)Bk(t)− δhk(s ∧ t),

where the last centering term is motivated by

EBh(s)Bk(t) = δhk(s ∧ t).

The term λD represents Lebesgue measure along
the main diagonal D of RR2

+. Finally, Z̃ is the
reflection of Z in D.
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Rotatable Random Functionals

To unify the representations of rotatable se-
quences and processes, fix any σ-finite measure
with infinite support on a space S. A real-
valued process X on L2(µ) is called a contin-
uous linear random functional (CLRF) if

X(af + bg) = aXf + bXg a.s.

for all f, g ∈ L2 and a, b ∈ RR, and

‖fn‖2 → 0 ⇒ Xfn
P→ 0.

Say that X is rotatable if

‖f‖2 = ‖g‖2 ⇒ Xf d= Xg

A G-process on L2(µ) is a centered Gaussian
process η with E(ηf)2 = ‖f‖2

2.

♣ A CLRF X on L2(µ) is rotatable iff there
exist a G-process η and an independent random
variable σ ≥ 0 such that

X = ση a.s.
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Tensor Products

Turning to an abstract Hilbert space setting,
we note that any separable Hilbert space H can
be identified with L2(µ) for some σ-finite mea-
sure space (S, µ), where µ has infinite support
iff H is infinite-dimensional. For any Hilbert
spaces Hk = L2(Sk, µk), k ≤ n, their tensor
product is given by

H1 ⊗ · · · ⊗Hn = L2(µ1 ⊗ · · · ⊗ µn),

or simply
⊗

k Hk = L2(
⊗

k µk). If Hk = H for
all k, we write

⊗
k Hk = H⊗n.

A unitary operator U on H is an invertible
linear isometry. If Uk is unitary on Hk for every
k ≤ n, there exists a unique unitary operator
⊗

k Uk on
⊗

k Hk satisfying

(U1⊗· · ·⊗Un)(f1⊗· · ·⊗fn) = U1f1⊗· · ·⊗Unfn

for any elements fk ∈ Hk, where

(f1 ⊗ · · · ⊗ fn)(s1, . . . , sn) = f1(s1) · · · fn(sn).

If Hk = H and Uk = U for all k, we write
⊗

k Uk = U⊗n.
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Multivariate Rotations

For any CLRF X and unitary operator U on
a Hilbert space H, we define the CLRF X ◦ U

on H by

(X ◦ U)f = X(Uf), f ∈ H.

A CLRF X on H⊗n is said to be separately
rotatable if

X ◦ (U1 ⊗ · · · ⊗ Un)
d= X

for any unitary operators U1, . . . , Un on H, and
jointly rotatable if

X ◦ U⊗n d= X

for any unitary operator U on H. Note that the
latter condition is the weakest. Separate rotata-
bility makes sense even for CLRF’s on arbitrary
tensor products

⊗
k Hk. However, this general-

ization is illusory, since all separable, infinite-
dimensional Hilbert spaces are isomorphic.
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Multiple Stochastic Integrals

The basic examples of separately or jointly
rotatable CLRF’s are the multiple Wiener-Itô
integrals, defined as follows:

♣ If η1, . . . , ηn are independent G-processes
on some Hilbert spaces H1, . . . , Hn, there exists
an a.s. unique CLRF

⊗
k ηk on

⊗
k Hk such that,

for any elements fk ∈ Hk,

(η1 ⊗ · · · ⊗ ηn)(f1 ⊗ · · · ⊗ fn) = η1f1 · · · ηnfn

♣ For any G-process η on a Hilbert space H

and every n ∈ NN, there exists an a.s. unique
CLRF η⊗n on H⊗n such that, for any orthogo-
nal elements fk ∈ H,

η⊗n(f1 ⊗ · · · ⊗ fn) = ηf1 · · · ηfn

Note that
⊗

k ηk is separately rotatable and
η⊗n is jointly rotatable. More generally, we may
define CLRF’s on

⊗
k H⊗mk

k of the form
⊗

k η⊗mk
k .
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Separately Rotatable Functionals

For any d ∈ NN, let Pd be the set of partitions
π of {1, . . . , d} into non-empty subsets J . Write
H⊗J =

⊗
j∈J H and H⊗π =

⊗
J∈π H.

♣ A CLRF X on H⊗d is extreme separately
rotatable iff a.s.

Xf =
∑

π∈Pd

(
⊗

J∈π

ηJ)(απ ⊗ f), f ∈ H⊗d,

for some independent G-processes ηJ on H ⊗
H⊗J , ∅ 6= J ⊂ {1, . . . , d}, and elements απ ∈
H⊗π, π ∈ Pd.

For any ONB h1, h2, . . . in H, we may define
a separately rotatable array on NNd by

Xk1,...,kd
= X(hk1

⊗ · · · ⊗ hkd
).

Conversely, any separately rotatable array can
be represented in this form. The representation
of X has the equivalent basis form

Xk =
∑

π∈Pd

∑

l∈NNπ

απ
l

∏

J∈π

ηJ
kJ ,lJ

, k ∈ NNd
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Jointly Rotatable Functionals

Here we introduce the class Od of partitions
of {1, . . . , d} into ordered sets k = (k1, . . . , kr)
of size |k| = r.

♣ A CLRF X on Hd is extreme jointly ro-
tatable iff a.s.

Xf =
∑

π∈Od

(
⊗

k∈π

η|k|)(απ ⊗ f), f ∈ H⊗d,

for some independent G-processes ηk on H⊗(k+1),
k ≤ d, and elements απ ∈ H⊗π, π ∈ Od.

Note that the integrals
⊗

k η|k| depend on the
order within each sequence k. Though the rep-
resentation may again be restated in basis form,
for an associated array (Xk) on NNd, not every
jointly rotatable array has such a representa-
tion. The formulas also become more compli-
cated in this case, as evident from the represen-
tation of Wiener-Itô integrals in terms of Her-
mite polynomials.
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Separately Contractable Sheets

Given a random sheet X on RRd
+, we consider

a decomposition

Xt =
∑

J∈2d

XJ
tJ

∏

i/∈J

ti, t ∈ RRd
+,

where each XJ is a suitably centered process
on RRJ

+. Then X is separately contractable iff
the family (XJ) is separately rotatable. Define
P̂d =

⋃
J PJ , where PJ is the class of partitions

of J ⊂ {1, . . . , d}. For π ∈ PJ , write πc = J c.

♣ A random sheet X on RRd
+ is extreme sep-

arately contractable iff a.s.

Xt =
∑

π∈P̂d

(λπc ⊗ ⊗

J∈π

ηJ)(απ ⊗ [0, t]), t ∈ RRd
+,

for some independent G-processes ηJ on H ⊗
L2(λJ) and elements απ ∈ H⊗π.

This may be transformed into a similar rep-
resentation of separately exchangeable random
sheets on [0, 1]d.
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Jointly Exchangeable and

Contractable Sheets

Put Ôd =
⋃

J OJ and, for any π ∈ Ôd, define
the vectors t̂π by t̂π,J = minj∈J , J ∈ π.

♣A random sheet X on RRd
+ is extreme jointly

exchangeable iff, a.s. for all t ∈ RRd
+,

Xt =
∑

π∈Pd

∑

κ∈Ôπ

(λπc ⊗ ⊗

k∈κ

η|k|)(απ,κ ⊗ [0, t̂π])

for some independent G-processes ηm on H ⊗
L2(λm), m ≤ d, and elements απ,κ ∈ H⊗κ,
κ ∈ Ôπ, π ∈ Pd.

A similar, even more complicated represen-
tation holds for jointly contractable sheets on
RRd

+. The problem of characterizing jointly ex-
changeable sheets on [0, 1]d remains open.
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Probabilistic Symmetries
Ottawa Lectures, May 15-17, 2006

1. Basic symmetries and representations

2. Convergence and approximation

3. Martingales and predictable sampling

4. Semi-martingales and integral criteria

5. Exchangeable and contractable arrays

6. Rotatable arrays and functionals
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1928–30 de Finetti exchangeable events
1936 Doob first optional skipping theorem
1937 de Finetti exchangeable random variables
1944 Wald first decoupling identities
1951 Itô multiple Wiener integrals
1955 Hewitt/Savage abstract theory and spaces
1957 Ryll-Nardzewski contractable sequences
1960 Bühlmann exchangeable processes on RR+

1962–3 Freedman rotatable sequences and processes
1963 Rényi/Révész stable convergence
1973 OK processes on [0, 1], weak convergence
1973–5 Papangelou/OK Palm measure invariance
1975 Grigelionis first semi-martingale criteria
1975–7 Dacunha-C/Aldous weak subsequence principle
1978 Kingman exchangeable partitions
1979–81 Aldous/Hoover exchangeable and rotatable arrays
1980–90 Diaconis/Freedman special mixtures
1982 OK semi-martingale criteria
1986 Berkes/Péter strong subsequence principle
1988 OK predictable sampling and mapping
1989 OK decoupling identities
1990 OK exchangeable measures on RR2

+

1992 OK contractable arrays
1992–04 Ivanoff/Weber array convergence and sampling
1995 OK multivariate rotations
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