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Abstract In this paper, we study the influence of the coupling strength on the syn-
chronization behavior of a population of leaky integrate-and-fire neurons that is self-
excitatory with a population density approach. Each neuron of the population is as-
sumed to be stochastically driven by an independent Poisson spike train and the
synaptic interaction between neurons is modeled by a potential jump at the recep-
tion of an action potential. Neglecting the synaptic delay, we will establish that for
a strong enough connectivity between neurons, the solution of the partial differential
equation which describes the population density function must blow up in finite time.
Furthermore, we will give a mathematical estimate on the average connection per
neuron to ensure the occurrence of a burst. Interpreting the blow up of the solution
as the presence of a Dirac mass in the firing rate of the population, we will relate the
blow up of the solution to the occurrence of the synchronization of neurons. Fully
stochastic simulations of a finite size network of leaky integrate-and-fire neurons are
performed to illustrate our theoretical results.

Keywords Population of neurons · Partial differential equation · Blow up ·
Synchronization · Integrate-and-fire

1 Introduction

Synchronous activity of a neural network is ubiquitous in the brain. These neural os-
cillations reflect the synchronized discharge of a large number of neurons. Such syn-
chronous activity can be detected, for example, by measuring the local field potential.
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Recent experiments in neurobiology have renewed interest in the cooperative dynami-
cal properties of large neuronal systems, in particular, the emergence of synchronized
patterns of neural activity and their computational role. Synchronized firing has been
observed among cultured cortical neurons, and it is believed that it serves a promi-
nent role in information processing functions of both sensory and motor systems.
However, synchronization is not always desirable. For example, synchronization of
individual neurons leads to the emergence of pathological rhythmic brain activity in
Parkinson’s disease, essential tremor, and epilepsies.

There are many investigations regarding the synchronization of a neural network.
Many works have been done to explain the occurrences of oscillations, most of them
using a mean field approach and rate models with the first step made in Wilson and
Cowan (1972). Another important result has been established in Amari (1977) with
the so-called neural field approach, where the spatial distribution of the neural net-
work is taken into account and pattern formation may be observed. A recent review of
the neural field method is presented in Bressloff (2012); see also Ermentrout and Ter-
man (2010) and Bressloff (2009) for a brief introduction. Another approach consists
in seeing an individual cell of the network as an oscillator. The reader can find some
mathematical tools in Kopell and Ermentrout (2000) to investigate synchronization
with this point of view (see also Ermentrout and Terman 2010 and Bressloff 2009 for
an introduction to these researches). Also, one can find a deep investigation of the
occurrence of synchronization with a population density approach for integrate-and-
fire neurons with inhibitory connections in Fourcaud and Brunel (2002), Ostojic et al.
(2009), Brunel and Hakim (1999), and Brunel (2000). It has been proved that a Hopf
bifurcation might occur, and thus periodical solutions can be observed for a certain
range of parameter.

In this paper, we consider a fully stochastic network of leaky integrate-and-fire
neurons with an excitatory all-to-all coupling. Each neuron of the population is as-
sumed to be driven by an independent Poisson spike train coming from an external
source. If a neuron receives an action potential, its membrane potential makes a small
jump. When a neuron fires and emits an action potential, each other neuron of the
network may be affected. Nonetheless, we will assume that on average each action
potential reaches J other neurons. In other words, J may be seen as the average num-
ber of connections per neuron. It is well known (see Omurtag et al. 2000 for example)
that assuming the population has an infinite number of neurons it is possible to derive
a nonlinear partial differential equation (PDE) for the evolution of its density function
p(t, v) at time t and potential v, and the corresponding population firing rate r(t).

The well posedness of the nonlinear PDE of the population density model for
self-excitatory or inhibitory populations was recently studied in Dumont and Henry
(2012). For a population of self-excitatory neurons without conduction delay, the well
posedness was only obtained for a weakly coupled populations (i.e., for a weak aver-
age connection per neuron). In this paper, we will study populations with a stronger
coupling, and we will discuss the local existence of a solution of the PDE. The nec-
essary mathematical ideas to prove this result are close to the mathematical ideas
already proposed in Dumont and Henry (2012); for this reason, we will only sketch
its proof.

To explain and predict the synchronization, we adopt in this article the point of
view of the recent works done in DeVille and Peskin (2008), DeVille et al. (2010),
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and Cáceres et al. (2011) where the blow up of the firing rate r(t) is studied. We will
prove that for a high average number of connections per neuron the solution of the
PDE must blow up. Indeed, the main result of this paper is that:

• Considering an excitatory network of leaky integrate-and-fire neurons stochasti-
cally driven by independent Poisson spike train, if the average connection per neu-
ron J is too strong, then the firing rate of the network r(t) reaches infinity in finite
time.

We will relate the blow up of the activity to the occurrence of a Dirac mass in the
firing rate due to the fact that a part of the population fires at the same time. This
interpretation will be confirmed by the simulation of a finite size network of leaky
integrate-and-fire neurons.

The paper is organized as follows. The first part deals with the derivation of the
partial differential equation, which models a population of leaky integrate-and-fire
neurons. The second part is dedicated to the mathematical study of the model and is
separated in two sections. In the first section, we study the simplest case of a popula-
tion of nonleaky integrate-and-fire neurons. This case can be reduced to a nonlinear
dynamical system that has already been studied in DeVille et al. (2010). After recall-
ing their results regarding the trend of such populations to synchronize, we study the
general case of a population of leaky integrate-and- fire neurons. We discuss the well
posedness and the blow up of the solution in finite time. Following the same ideas as
in DeVille et al. (2010), we relate the blow up with the synchronization property of
the neural network and give a mathematical criterion for the occurrence of a burst.
In the last section, to illustrate our main mathematical result, we show some numeri-
cal simulations of a finite size excitatory network of leaky integrate-and-fire neurons
where the synchronization can be observed. We finally give a conclusion and some
directions for future investigations.

2 The Model

Let us first recall the derivation of the partial differential equation used to model large
populations of integrate-and-fire neurons structured by their potential as in Omurtag
et al. (2000). The integrate and fire model is an ordinary differential equation de-
scribing the subthreshold dynamics of a single neuron and its firing. This ordinary
differential equation, (see Izhikevich 2007 for instance), represents the state of a (nor-
malized) leaky capacitor receiving charge impulses and is given by

⎧
⎪⎨

⎪⎩

d

dt
v(t) = −γ v(t) + h

+∞∑

j=0

δ(t − tj )

If v > 1 then v = vr ,

(1)

where v(t) represents the potential of the neuron at time t (normalized to the interval
[0,1]). The tj are the arrival times of external impulses and γ > 0 is the leakage
coefficient. Here, we model the effect of the reception of a spike at a synapse of the
neuron by a jump of size h, (h > 0) of the potential v. When v crosses the threshold,
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Fig. 1 The evolution of the
density p(t, v) at potential v is
due to a drift term and to jumps
from v − h. Due to the
excitation, the neuron can cross
the threshold, here normalized to
1, and is reset to the potential vr

here normalized to 1, the neuron fires emitting a spike and is instantly reset to vr ;
the reset potential with 0 < vr < 1 (see Brunel and van Rossum 2007 for a biological
motivation and Burkitt 2006 for a large mathematical review of this model and also
Izhikevich 2007 for other spiking models similar to (1)).

Assuming that all the neurons of the population are identical, we can derive from
(1) a partial differential equation, which gives the evolution in time of the population
density of neurons p(t, v) at potential v and at time t in the limit of an infinite number
of neurons. We assume there is no synaptic delay, that is, a spike emitted from a
neuron provokes an instantaneous potential jump to its downstream neurons. The
equation for the density is a conservation law (see Nykamp and Tranchina 2000,
Gerstner and Kistler 2002, Omurtag et al. 2000, and Cai et al. 2006 for instance)
taking into account three phenomena modeled by: a drift term due to the continuous
evolution in the LIF model, a potential jump for the part of the population receiving
excitatory impulses, a term due to the reset to vr of firing neurons. Let σ(t) denote
the arrival rate of impulses and r(t) the firing rate of the population. The dynamics
of the density p(t, v) follows:

∂

∂t
p(t, v) −

Integrate-and-fire
︷ ︸︸ ︷

γ
∂

∂v

(
vp(t, v)

)+σ(t)

Excitation
︷ ︸︸ ︷(
p(t, v) − p(t, v − h)

) = δ(v − vr)

Reset
︷︸︸︷
r(t) . (2)

Because no neuron can enter the domain except at the reset potential, we impose the
drift flux to be zero at the threshold

p(t,1) = 0.

The firing rate r(t) is the rate of neurons crossing the threshold (see Fig. 1) and it is
given by

r(t) = σ(t)

∫ 1

1−h

p(t,w)dw. (3)

Using the boundary condition and the expression of r(t) given by (3), one can check
easily the conservation property of the Eq. (2) by integrating it on the interval (0,1),
so that if the initial condition satisfies

∫ 1

0
p0(v) dv = 1, (4)
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Fig. 2 Scheme of a population
under an external influence
without conduction delay. The
population receives a known
external influence σ0(t), and
produces an activity r(t), also
called firing rate of the
population. The feedback is
given by J r(t), where J is the
average connections per neuron

the solution of (2) satisfies the normalization condition
∫ 1

0
p(t,w)dw = 1. (5)

The impulse arrival rate σ(t) is the sum of the external impulses σ0(t) arriving
from another population of neurons, and the impulses caused by the population itself
r(t), which is supposed to be self-excitatory. Denoting J the average connections per
neuron, we have (see Fig. 2) that σ(t) is given by

σ(t) := σ0(t) + J r(t). (6)

We finally give the model in its complete form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
p(t, v) − γ

∂

∂v

(
vp(t, v)

) = σ(t)
(
p(t, v − h) − p(t, v)

) + δ(v − vr)r(t)

σ (t) := σ0(t) + J r(t)

r(t) = σ(t)

∫ 1

1−h

p(t,w)dw

p(t,1) = 0

p(0, .) = p0 ∈ L1+(0,1).

(7)

Before going into the study of problem (7), let us recall that, assuming the size of the
potential jump h is small, the model is often simplified by the use of an approxima-
tion of the non local term p(t, v−h) by a second-order Taylor expansion. Doing such
an approximation, one can transform problem (7) in a nonlinear advection diffusion
problem and arrive to a model similar to the so-called nonlinear noisy integrate-and-
fire model. This model has been successfully used for the study of inhibitory popu-
lations of integrate-and-fire neurons in Brunel and Hakim (1999) and both excitatory
and inhibitory in Brunel (2000) (see also Cáceres et al. 2011 for mathematical results
with the diffusion approximation).

3 Study of the Model

3.1 Nonleaky Integrate-and-Fire

In this section, we focus on the particular case when the leakage coefficient γ is
taken to be zero. We arrive to a simpler model that can be reduced to a nonlinear
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ordinary differential system. It turns out that this dynamical system is similar to the
one recently introduced in DeVille and Peskin (2008) and DeVille et al. (2010) to
explain the synchronization of an excitatory neural network. We recall their results
and give the critical value of the coupling parameter J to ensure the synchronization
of the neural network. Taking γ to be zero, problem (7) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
p(t, v) = σ(t)

(
p(t, v − h) − p(t, v)

) + δ(v − vr)r(t)

σ (t) := σ0(t) + Jhr(t)

r(t) = σ(t)

∫ 1

1−h

p(t,w)dw

p(0, .) = p0 ∈ L1+(0,1).

(8)

Let us first notice that the values of p on the interval (0, vr ) are not really signif-
icant. Indeed, due to the jump process, all neurons present initially in this interval
(0, vr ) leave and never come back to this part of the domain. Then after a transitory
dynamics, the density of neurons with a potential in (0, vr ) will vanish. For the sake
of simplicity, we can assume that the initial condition is actually zero on the inter-
val (0, vr ) and then forget the transitory dynamics. Let us discretise the domain into
subintervals of size h. We introduce the notation

Dn−k+1(t) =
∫ 1−(k−1)h

1−kh

p(t,w)dw, k = 1, . . . , n, (9)

where n is the number of intervals (number of compartments) of size h starting from
1 and including vr we have

n = E

(
1 − vr

h

)

+ 1, (10)

with E(x) is the integer part of x. Since Dk is obtained by integrating the density
of neurons on a subinterval, its physical meaning is clear: Dk is the number of neu-
rons present in the compartment number k. Integrating successively Eq. (8) on each
subinterval, one gets a relation between the Dk . A direct computation gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
Dk(t) = σ(t)

(
Dk−1(t) − Dk(t)

) ∀k = 2, . . . , n

d

dt
D1(t) = r(t) − σ(t)D1(t)

D(0) = (
D1(0),D2(0), . . .Dn(0)

) = D0

σ(t) := σ0(t) + J r(t)

r(t) = σ(t)Dn(t).

(11)
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Let us notice that the conservation property of problem (7) reads

d

dt

n∑

k=1

Dk(t) = 0, (12)

and by the choice of normalization

n∑

k=1

Dk(t) = 1. (13)

From (11), the firing rate of the population r(t) can be computed and one can
easily check that it is given by

r(t) = σ0(t)Dn(t)

1 − JDn(t)
.

It is clear that this expression may become singular. We thus need to introduce a set
of admissible solution for system (11). Let us set

X :=
{

D = (D1, . . . ,Dn),

n∑

k=1

Dk = 1, JDn < 1

}

.

The admissible domain X imposes a bound on the proportion of neurons in the nth
compartment which contains the neurons that are close to firing.

This admissible domain raises now some questions regarding system (11). The
first one is about the mathematical meaning and the existence of a solution for the
differential system (11). If we take an initial condition in the set X, can we find,
at least for a short time, a solution to the problem? If we succeed in proving a lo-
cal mathematical well posedness, can we find a criterion for the global existence? It
seems from some simulations (see Fig. 3) that we may observe convergence toward
a stationary state. Can we determine it and study its stability? What is the physi-
cal meaning of the stationary state regarding the neural network? If we do not have
global existence, can we determine a criterion to ensure the blow up in finite time?
And finally, if there is a blow up, what is its physical meaning regarding the neural
network?

Answers to these questions have been given in DeVille and Peskin (2008) and
DeVille et al. (2010). We recall the first mathematical result in the following propo-
sition.

Proposition 1 For all initial conditions D0 taken in the set X, there exist a time
T > 0 and a solution D in C((0, T ),X) to system (11). If J < 1, there is a global
solution, if J > n, there is a blow up in finite time.

Before discussing the biological meaning of the blow up, let us recall the result
concerning the stationary state. We remind the reader of the following result that can
be found in DeVille and Peskin (2008) and DeVille et al. (2010); see also Sirovich
(2003).
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Fig. 3 Simulation of the nonlinear system (11). A Gaussian was taken as initial condition D0, the external
influence σ0(t) was taken constant σ0 = 30, number of compartments n = 20, coupling parameter J = 5.
The five first plots show the evolution in time of the solution of system (11) at t = 0, t = 0.1, t = 0.5,
t = 0.7, t = 7, the last one shows the activity of the population r(t)

Proposition 2 Assuming that J < n there exists an unique stationary state (D̄, σ̄ ) to
system (11) and it is given by

D̄ =
(

1

n
,

1

n
, . . . ,

1

n

)

σ̄ = nσ0

n − J
,

(14)

furthermore the stationary state is stable.

The proof of this result is direct. We can explicitly compute the eigenvalues λk of
the linearized system as it is done in DeVille and Peskin (2008) and DeVille et al.
(2010)

λk = σ̄
(
e

2iπk
n − 1

)
, k = 1, . . . , n. (15)

Since all the λk are such that �(λk) ≤ 0, one gets the stability result.
Let us insist that if the stationary state D̄ does not depend on the external activity

σ0, nonetheless the stationary activity produced by the population itself does. Actu-
ally the stationary firing rate r̄ of the population can be computed from Proposition 2
and it is given by

r̄ = σ̄

n
= σ0

n − J
, (16)

which has a mathematical and physical meaning when J < n as it is assumed in the
proposition.
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Fig. 4 Simulation of the nonlinear system (11). In all plots, we show the evolution in time of the activity
of the population r(t). A Gaussian was taken as initial condition p0, the external influence σ0(t) was taken
constant σ0 = 30, the number of compartments n = 20. In the first plot, the coupling parameter J = 5, in
the second one J = 10, in the third one J = 20. We can see that the activity of the population converges
to an equilibrium in the first two plots, and blows up to infinity in the third plot

We show in Fig. 3 a simulation of the nonlinear dynamical system (11). A Gaus-
sian function truncated to the interval (0,1) and discretized on the grid was taken for
the initial condition p0 and the external influence σ0 was supposed constant. As we
can see in Fig. 3, the solution of the dynamical system converges toward a station-
ary state where all compartments have the same number of neurons. We show in the
last plot the evolution in time of the activity of the population r(t), which oscillates
before reaching its stationary value.

We present in Fig. 4 some numerical results that illustrate the consequences of
Proposition 1 and Proposition 2. We show the evolution in time of the activity of the
population r(t) for different values of the average number of connections J . In the
first and the second plot of Fig. 4, the activity converges toward the unique stable
stationary state, which means that all the neurons of the population fire in an asyn-
chronous way, with an activity r̄ given by (16). In the third plot of Fig. 4, the firing
rate blows up and the simulation breaks down. As it has been proposed in DeVille
et al. (2010), we can relate the blow up of the activity to the occurrence of a Dirac
mass in the firing rate, which means that a part of the population fires at the same
instant. We refer the reader to DeVille and Peskin (2008) and DeVille et al. (2010)
where simulations of fully stochastic nonleaky integrate-and-fire neurons have been
done. In the last part of the paper, simulations of populations of leaky integrate-and-
fire neurons will be presented.

Let us recall the biological meaning of all these mathematical results established
in DeVille and Peskin (2008) and DeVille et al. (2010). Indeed the stability of the sta-
tionary state as well as the blow up in finite time of the solution can be put in relation
with the synchronization and the desynchronization properties of the neural network.
Interpreting the stationary state as the asynchronous state of the neural network (in-
coherent firing response), its stability informs us that the network will always tend to
desynchronize. When the average connections per neuron J is strictly smaller than
1, no blow up may happen, and the firing rate will reach its steady state. When the
neural network is strongly connected (J bigger than n), there is no stationary state,
the system explodes, and this phenomenon might be interpreted as an appearance of
a Dirac mass in the firing rate (see the third plot of Fig. 4 where the activity blows up
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Fig. 5 Simulation of the nonlinear PDE (7). A Gaussian was taken as initial condition p0, the external in-
fluence σ0(t) was taken constant σ0 = 50, the leakage coefficient γ = 1, the potential jump size h = 0.05,
the reset potential vr = 0.1, the coupling parameter J = 5. The five first plots show the evolution in time
of the solution of PDE (7) at t = 0, t = 0.1, t = 0.5, t = 0.6, and t = 3; the last plot shows the evolution in
time of the activity of the population

to infinity). But when J is in the interval (1, n), one can find an initial condition that
will never lead to a blow up (such as the steady state), and it is conjectured in DeVille
et al. (2010) that there exist some initial conditions that will lead to a blow up.

In the paper DeVille et al. (2010), the authors give a mathematical description of
the burst and its consequences on the dynamics of the solution D. To do so, they
introduce a map that creates a discontinuity in the dynamics of D. Such mapping
permits to restart the flow of the solution D after the explosion of the dynamical
system. We will not discuss this mapping since it is difficult to generalize for a LIF
population described by the model (7).

3.2 Leaky Integrate-and-Fire

In this section, let us come back to the general problem (7). We present in Fig. 5
some simulations where all the mechanisms of the equation take place. They show
the evolution in time of the potential distribution of the neuron population. In all
the plots, the blue curve corresponds to a finite volume scheme discretization of (7),
(see Omurtag et al. 2000, Nykamp and Tranchina 2000, and de Kamps 2003 for the
numerical schemes and comparison with Monte Carlo simulation of the model). The
first plot, upper left of Fig. 5, shows the initial condition p0 which is a Gaussian.
Under the influence of the external impulses σ0(t), taken constant in the simulation,
the density function p becomes positive near the threshold value, between 1 − h

and 1. Then a positive quantity of neurons gets out of the domain and is reset to
vr the reset potential (see Fig. 1). This effect can be seen in the second plot (upper
middle) of Fig. 5, where a bump is present at vr . Due to the jump process, we can see
in the third plot (upper right) of Fig. 5 that this bump propagates to vr + h, vr + 2h,
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and so on. Finally, the solution tends to stabilize to a steady state, which can be seen
in the fifth graphic (lower middle) of Fig. 5. We finally show, in the last lower right
plot of Fig. 5 the activity of the population given by (3). In Sirovich et al. (2006), one
can find other behaviors of (7).

One can notice from (7) that the firing rate of the population r(t) may be computed
and it is given by

r(t) = σ0(t)
∫ 1

1−h
p(t,w)dw

1 − J
∫ 1

1−h
p(t,w)dw

. (17)

The expression of the firing rate appears as a quotient that can become singular, and
even be negative. Due to its physical meaning, it cannot have a negative value. To
avoid such difficulties, we follow the same idea as for the population of nonleaky
integrate-and-fire neurons, introducing a set of admissible states for problem (7). We
define

X =
{

p ∈ L1+(0,1),

∫ 1

0
p(x)dx = 1, J

∫ 1

1−h

p(x)dx < 1

}

.

It is also the set of admissible initial condition. From the biological point of view,
X is the domain of population densities with a bounded number of neurons near the
threshold.

Problem (7) raises some similar mathematical questions to the ones studied for
system (11). We then have to clarify the local and global existence of a solution, the
existence of a stationary state, and study the stability of the stationary state. Further-
more, if we do not have global existence, we need to determine a criterion to ensure
the blow up of the solution.

Let us recall that we already know from Dumont and Henry (2012) the following
result:

Theorem 3 For all σ0 ∈ C(R+,R+) and for all J < 1, there exists a unique positive
solution p ∈ C(R+,L1+(0,1)) to problem (7). Furthermore, the firing rate r given by
(3) remains bounded on R+ and we have

r(t) ≤ ‖σ0‖∞
1 − J

.

In other words, if the average connection per neuron J is smaller than 1, the so-
lution exists at any time, which means that the solution stays in the domain X all the
time. The case J < 1 corresponds to a population of neurons where one neuron is
connected on average to less than one upstream neuron. The network would be likely
to have (large numbers of) isolated neurons. Such neurons can receive action poten-
tials from other populations but not from the considered one. Now let us discuss the
local existence for arbitrary parameters.

Theorem 4 For all continuous and bounded σ0, for all J ≥ 0, and for all initial
conditions p0 belonging to X, one can find T > 0 such that there exists a unique
positive solution p ∈ X to problem (7) and p ∈ C((0, T ),L1+(0,1)).
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Proof To show Theorem 4, we introduce a mollified version of problem (7)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
p(t, v) − γ

∂

∂v

(
vp(t, v)

) + Sε[σ ](t)(p(t, v) − p(t, v − h)
) = δ(v − vr)r(t)

Sε[σ ](t) := σ0(t)

max(ε,1 − J
∫ 1

1−h
p(t,w)dw)

r(t) = Sε[σ ](t)
∫ 1

1−h

p(t,w)dw

p(t,1) = 0

p(0, .) = p0 ∈ L1+(0,1),

(18)
where ε is an arbitrary small positive number. The main reason for introducing this
new problem (18) is to avoid difficulties that may come from a singularity of the
arrival rate σ(t). From problem (7), it is possible to compute the arrival rate σ(t) and
it is given by

σ(t) = σ0(t)

1 − J
∫ 1

1−h
p(t,w)dw

.

Problem (18) is nothing but a mollified version of problem (7), where the arrival rate
σ(t) is saturated in order to prevent a singularity.

We already know from Dumont and Henry (2012) that a such mollified version
of the model given by (18) is globally well posed. More precisely, there exists an
unique p belonging to C(R+,L1+(0,1)) solution to (18). The proof is based on the
construction of a contraction mapping and the use of the Banach–Picard fixed-point
theorem.

Let us now assume that the initial condition p0 belongs to X, and let us show that
the solution of (18) is actually the solution of the original equation (7) at least for a
short time. We have

1 − J

∫ 1

1−h

p0(w)dw > 0,

then there exists ε0 > 0 such that

1 − J

∫ 1

1−h

p0(w)dw > ε0.

Let p be the unique positive solution of the mollified problem (18). Since p is an
element of C([0, T ],L1(0,1)), we deduce that the mapping

t −→ 1 − J

∫ 1

1−h

p(t,w)dw,

is continuous on [0, T ], which gives the existence of δ > 0, such that

1 − J

∫ 1

1−h

p(t,w)dw > ε0, ∀t ∈ [0, δ].
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It means that we have

Sε0[σ ](t) = σ0(t)

1 − J
∫ 1

1−h
q1(t,w)dw

, ∀t ∈ [0, δ].

This proves that the solution p of the mollified problem (18) is actually the solution
of the original problem for all t ≤ δ. �

We are now interested to know if the existence is global or not, in other words,
if the solution stays in the domain X all the time or leaves the domain producing a
singularity in the value of the firing rate r(t). Let us answer to this question with the
following theorem.

Theorem 5 If the parameters of the problem are chosen such that they satisfy

J ≥ 1 − vr

h
+ 1, hσ0 > γ, (19)

then for all initial condition p0 belonging to X, the solution p to problem (7) is not a
global in time solution in C((0, T ),L1+(0,1)). Furthermore, the maximal time t∗ for
which the solution exists satisfies

t∗ ≤ 1

hσ0 − γ
, (20)

and the firing rate r(t) blows up in the sense that

lim sup
t→t∗

r(t) = +∞. (21)

Before going into the proof of Theorem 5, let us give a consequence on the sta-
tionary state of problem (7). To our knowledge, the existence of such a stationary
state for the model (7) is still an open question. But one can notice that if (under the
condition (19)) all initial conditions lead to a blow up in finite time, no stationary
state can exist (under the same condition (19)) since if there would exist a stationary
state, we would have at least one initial condition, which will not blow up.

Corollary 6 If the parameters of the problem are chosen such that they satisfy (19),
then there is no stationary state to the nonlinear problem (7).

Nonetheless, we are unable to give a result similar to Proposition 2 for a population
of leaky integrate-and-fire neurons. Since the possible existence of a stationary state
for (7) is still open, the study of its stability is not possible by now. We have been
unable to generalise the results of DeVille and Peskin (2008) and DeVille et al. (2010)
to the leaky integrate-and-fire populations. We now prove Theorem 5.

Proof We use a mathematical technique that has been successfully used in Cáceres
et al. (2011) for the nonlinear noisy integrate-and-fire neuron. We work in the weak
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sense for problem (7). Let p be the solution to problem (7), then for every continuous
function φ, we have

d

dt

∫ 1

0
p(t, v)φ(v) dv + γ

∫ 1

0
vp(t, v)

d

dv
φ(v) dv

+ σ(t)

∫ 1

0
p(t, v)

(
φ(v) − φ(v + h)

)
dv

+ σ(t)

∫ 1

1−h

p(t, v)φ(v + h)dv = φ(vr)r(t).

Let us choose the special test function φ as

φ(v) = eμv,

then we get that

d

dt

∫ 1

0
p(t, v)φ(v) dv = −γμ

∫ 1

0
vp(t, v)φ(v) dv

− (
1 − eμh

)
σ(t)

∫ 1

0
p(t, v)φ(v) dv

− σ(t)

∫ 1

1−h

p(t, v)φ(v + h)dv + φ(vr)r(t),

which implies

d

dt

∫ 1

0
p(t, v)φ(v) dv ≥ −γμ

∫ 1

0
p(t, v)φ(v) dv

− (
1 − eμh

)
σ(t)

∫ 1

0
p(t, v)φ(v) dv

+ r(t)
(
φ(vr) − φ(1 + h)

)
.

For the sake of clarity, let us introduce the new notation

Mμ(t) =
∫ 1

0
p(t, v)φ(v) dv, α = φ(1 + h) − φ(vr)

μ
.

We get that

d

dt
Mμ(t) ≥ −γμMμ(t) − (

1 − eμh
)
σ(t)Mμ(t) − r(t)μα,

and using the fact that

σ(t) = σ0 + J r(t),
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we arrive to

d

dt
Mμ(t) ≥ ((

eμh − 1
)
σ0 − γμ

)
Mμ(t) + J

(
eμh − 1

)
Mμ(t)r(t) − r(t)μα.

Assuming that hσ0 > γ and μ > 0, we have that

(
eμh − 1

)
σ0 − γμ > 0,

which implies that

d

dt
Mμ(t) ≥ J

(
eμh − 1

)
Mμ(t)r(t) − r(t)μα.

Using the fact that
(
eμh − 1

) ≥ μh, ∀μ > 0,

we arrive to

d

dt
Mμ(t) ≥ μr(t)

(
JhMμ(t) − α

)
.

Let us for the moment assume that Mμ(0) satisfies the following condition:

JhMμ(0) ≥ α. (22)

Since r(t) is a positive function, we get

d

dt
Mμ(t) ≥ ((

eμh − 1
)
σ0 − γμ

)
Mμ(t),

and applying Gronwall inequality we arrive to

Mμ(t) ≥ e((eμh−1)σ0−γμ)t Mμ(0). (23)

On the other hand, using (5) we must satisfy the inequality

Mμ(t) =
∫ 1

0
p(t, v)φ(v) dv ≤ eμ, (24)

which leads to a contradiction.
Let us now look at the assumption on Mμ(0) given by the inequality (22), which

is equivalent to
∫ 1

0
p0(v)φ(v) dv ≥ eμ(1+h) − eμvr

μJh
.

Let us first notice that
∫ 1

0
p0(v)φ(v) dv ≥ 1,
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then the condition (22) is implied by

J ≥ eμ(1+h) − eμvr

μh
.

One can show that the minimum value of the function

μ −→ eμ(1+h) − eμvr

μh
, μ > 0,

is in μ = 0, which leads to the computation of

lim
μ→0

eμ(1+h) − eμvr

μh
,

and using L’Hôpital’s rule, we find that

lim
μ→0

eμ(1+h) − eμvr

μh
= 1 + h − vr

h
,

which gives us the sufficient condition (19). Let us denote by t∗ the first moment
when the contradiction occurs. From (23) and (24), we have that

t∗ ≤ μ

(eμh − 1)σ0 − γμ
, ∀μ > 0.

One can show easily that the minimum value of the function

μ −→ μ

(eμh − 1)σ0 − γμ
, μ > 0,

is in μ = 0, which gives us using L’Hôpital’s rule

t∗ ≤ lim
μ→0

μ

(eμh − 1)σ0 − γμ
= 1

hσ0 − γ
.

To show the blow up of the activity (21), we first notice that

lim inf
t→t∗

1 −
∫ 1

1−h

p(t,w)dw = 0,

because otherwise this quantity would be bounded by below in a neighborhood of t∗.
Then by continuity, p(t∗) would exist and p could be prolonged for t > t∗ in contra-
diction with the definition of t∗. �

We present in Fig. 6 some numerical results that illustrate the consequences of
Theorem 5. We show the evolution in time of the activity of the population r(t) for
different values of the average number of connections J per neuron. In the first and
the second plot of Fig. 6, the activity, after oscillating, converges toward a stationary
state, which means that all the neurons of the population fire in an asynchronous way.
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Fig. 6 Simulation of the nonlinear PDE (7), in all plots, we show the evolution in time of the activity of
the population r(t). A Gaussian function was taken as initial condition p0, the external influence σ0(t) was
taken constant σ0 = 50; potential jump size h = 0.05; leakage coefficient γ = 1; reset potential vr = 0.1.
In the first plot, the coupling parameter J = 5, in the second one J = 10, in the third one J = 20. We can
see that the activity of the population converges to an equilibrium in the first two plots, and blows up to
infinity in the third plot

In the third plot of Fig. 6, the firing rate blows up to infinity before the simulation
breaks down. As it has been proposed in DeVille et al. (2010), we can relate the blow
up of the activity to the occurrence of a Dirac mass in the firing rate, which means that
a part of the population fire in the same instant. This interpretation will be discussed
with more details in the last part of the paper where some fully stochastic simulations
of a population of integrate-and-fire neurons are performed.

4 Stochastic Simulation

In this part, we propose some simulations of a fully stochastic neural population in
order to illustrate our theoretical result obtained in the previous section. Each neuron
of the population is assumed to follow the leaky integrate-and-fire model given by (1)
and to be stochastically driven by an independent Poisson spike train with a constant
rate σ0. In other words, during a short interval of time �t , the probability that a
neuron receives an impulse coming from an external source is given by �tσ0.

When a neuron fires and emits an action potential, each other neuron of the net-
work may receive it. The action potential will cross the synapse and reach the post-
synaptic neuron with a certain probability ρ, the synaptic transmission probability.
In other words, we consider an all-to-all coupled neural network with synaptic fail-
ure. Since the coupling parameter J of the deterministic model (7) is the average
connection per neuron, it is related to the synaptic transmission probability by

J = ρN,

where N is the total number of neurons of the considered population (see DeVille
et al. 2010 for more details). We show in Fig. 7 numerical results for different values
of the synaptic transmission probability ρ.

For each simulation, we give the raster plot of the network (see Fig. 7). The raster
plot is a more informative output than the firing rate since it gives the moment of
firing for each neuron of the network.
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Fig. 7 Simulation of a fully stochastic population of 50 integrate-and-fire neurons. At each moment a
neuron fires, a blue circle is drawn in front of the corresponding firing neuron. Each neuron of the pop-
ulation has an initial potential that was chosen randomly following the Gaussian probability, the external
influence σ0(t) was taken constant σ0 = 50; potential jump size h = 0.05; leakage coefficient γ = 1; reset
potential vr = 0.1. The coupling between neurons is assumed to be all-to-all with a synaptic transmission
probability, which is set to 0.1 in the first simulation, 0.25 in the second one, and 0.4 in the third one

The parameters of the three simulations presented in Fig. 7 have been chosen to
permit comparison with the simulations done with the deterministic model (7) in
Fig. 6. In the first two plots of Fig. 7, the neurons fire in an asynchronous way with a
firing rate similar to the one in the first plots of Fig. 6 where the firing rate reaches a
stationary level. As we can see it in the third plot of Fig. 7, when the probability ρ is
large enough a burst in the activity appears. Some neurons of the network fire at the
exact same moment. Similar simulations to that of Fig. 7 can be found in Newhall
et al. (2010a, 2010b), where a theoretical result has been obtained to see the whole
neural network firing at the same time.

The simulations of Fig. 7 are consistent with our theoretical result saying that for a
large enough average connection per neuron, the activity blows up, and a Dirac mass
might be observed. If the simulations of the deterministic model (7) breaks down
(see Fig. 7) when a synchronization of neurons takes place, the stochastic simulation
can be continued after the first burst. Since the parameters are chosen such that all
initial conditions must blow up in finite time, after the first burst occurs, the new
distribution of neurons gives a new initial condition that must again blow up finite
time. This phenomenon is repeated and then synchronization of neurons appears as
we see it in the last plot of Fig. 7.

5 Conclusion

In this paper, we have studied the model based on a population density approach that
has been introduced in Omurtag et al. (2000) to facilitate the simulation of a large
population of integrate-and-fire neurons. We have made a link between this model
and the recent model introduced in DeVille and Peskin (2008) and DeVille et al.
(2010). It turns out that the dynamical system given by (11) and used in DeVille et al.
(2010) to explain the synchronization property of an excitatory neural network can
be seen as a particular case of the model (7).

One of the most important results established in DeVille and Peskin (2008) and
DeVille et al. (2010) is that for a strong connectivity between neurons, the dynamical
system given by (11) does not admit a stationary solution and its solution blows up
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in finite time (see Proposition 1 and Proposition 2). The blow up of the solution has
been related to the occurrence of a Dirac mass in the activity due to a part of the pop-
ulation firing at the same time. Furthermore, an estimate on the average connection
per neuron J has been given to ensure the occurrence of the blow up. In this paper,
using a different method, we have been able to recover the same type of condition
on the average connection per neuron (see Theorem 5) to get a burst for the model
introduced in Omurtag et al. (2000). Furthermore, we have illustrated the theoretical
result and its consequences by showing simulations of the deterministic model (7) in
Fig. 6 and simulations of a fully stochastic network of integrate-and-fire neurons in
Fig. 7.

Let us notice that model (7), although it has been introduced to facilitate the sim-
ulation of large populations of neurons, cannot be run if the population is strongly
connected. This is due to the blow up of the solution in finite time and a map that
models the discontinuity after the blow up should be necessary to pursue the simula-
tion.

Another important result that has been proved in DeVille and Peskin (2008) and
DeVille et al. (2010) is the existence and stability of the stationary state for a weakly
coupled population, and its nonexistence for a strongly connected population (see
Corollary 6). Unfortunately, we failed in proving the existence of a stationary state for
problem (7) in the weakly connected case. We then could not investigate its stability.
In the future, it seems to us really interesting to show that for a constant external stim-
ulation with parameter σ0(t) = σ0 and a weak connectivity between neurons there
exists an unique stationary state. In the simulation (cf. Fig. 5 and see also Sirovich
et al. 2000 and Knight et al. 2000), the density function converges asymptotically to a
stationary state. Since it corresponds to an asynchronous state of the neural network,
its nonlinear analysis has a big interest.

Another important work to do is to investigate the role of the delay in the model.
Two types of delay can be added: one that takes into account the refractory period of
a single cell, and one for the synaptic time that has been neglected in this paper. As
we already know from Dumont and Henry (2012), adding delay in the feedback of
the activity (a synaptic time) prevents the blow up of the solution. Bursts where all
the population or a part of it fires at the same time do not happen and the exact syn-
chronization disappears; nevertheless, narrow peaks in the activity remain for small
delays. It should be interesting to clarify the occurrence of periodical solutions in this
case. This will be a new topic of investigation.
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