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Abstract In this paper we study the well-posedness of different models of pop-
ulation of leaky integrate-and-fire neurons with a population density approach. The
synaptic interaction between neurons is modeled by a potential jump at the reception
of a spike. We study populations that are self excitatory or self inhibitory. We distin-
guish the cases where this interaction is instantaneous from the one where there is
a repartition of conduction delays. In the case of a bounded density of delays both
excitatory and inhibitory population models are shown to be well-posed. But without
conduction delay the solution of the model of self excitatory neurons may blow up.
We analyze the different behaviours of the model with jumps compared to its diffusion
approximation.

Keywords Population density approach · Neural network · Coupled population ·
Integrate-and-fire · Nonlocal nonlinear partial differential equation · Well-posedness
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1 Introduction

The time required by a computer to simulate a realistic model of networks of neurons
taking into account each neuron separately and their connections is really important.
The main reason is that even a simple model of a small part of the brain could contain
tens of thousands of neurons and hundreds of thousands of synapses. To facilitate
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the simulation of large networks of neurons, a population density approach has been
introduced in Knight et al. (1996) and in Omurtag et al. (2000) more than a decade
ago. Starting from an ordinary differential equation modeling the dynamics of a sin-
gle neuron, the leaky integrate-and-fire model, and under the main assumption that
there is a large population of neurons all identical and with similar connections, the
authors succeeded to derive a one dimensional partial differential equation (PDE)
which describes the full population. More precisely, since the potential v(t) is the
state variable for a single neuron, they obtained a PDE giving the evolution in time of
ρ(t, v), the density of neuron at state v, at time t . Of course this is less informative than
giving the state of each neuron in the population. Nevertheless interesting behaviours
of the assembly of neurons as for example the synchronisation can be studied by this
kind of model. Furthermore this modeling is completely insensitive to the number of
neurons in the population.

Big efforts have been made, using finite difference or finite volume schemes as in
Nykamp and Tranchina (2000) and Omurtag et al. (2000), to reduce the computational
burden needed to solve numerically the PDE. It has also been proposed a more stable
scheme using a discretization on the characteristic curve in de Kamps (2003). There-
fore the formulation of the problem as a PDE has proved its interest for the simulation
of a massive assembly of neurons. As it has been noticed in Nykamp and Tranchina
(2000), Ermentrout and Terman (2010), Gerstner and Kistler (2002) and Omurtag et al.
(2000), the simulation of such a PDE is uncomparably faster than the use of a Monte
Carlo simulation still privileged by biologists (see Nykamp and Tranchina 2000 and
de Kamps 2003 for a review of this subject).

Today this approach has been enlarged: using more realistic models with two or
three state variables describing the dynamics of a single neuron, one can derive a two
or three dimensional PDE, see for instance Cai et al. (2006), Ly and Tranchina (2007)
and Garenne et al. (2010). Such PDEs are obviously hard to simulate and hard to
analyse. A lot of deep mathematical tools were used to moderate the computational
time such as moment reduction Ly and Tranchina (2007), phase reduction Garenne
et al. (2010) and Ermentrout and Terman (2010). In this paper we will study only one
dimensional models, namely integrate-and-fire models where the only state variable
is the potential of the neuron. In these models we consider that the reception of a spike
at a synapse creates a potential jump. At the level of the population this leads to non
local PDEs.

If the first goal of the population density approach was to reduce the computational
time to simulate a huge population of neurons, the interest of the PDE approach seems
today more related to understanding the behavior of a coupled population of neu-
rons. As we know, see Gerstner and Kistler (2002), Ermentrout and Terman (2010),
Fourcaud and Brunel (2002), Ostojic et al. (2009), Pakdaman et al. (2009) and Garenne
et al. (2010), coupled populations of neurons can exhibit various behaviours. For exam-
ple oscillations of the activity of neuronal populations at various frequencies can be
observed in different brain areas in vivo in normal as well as pathological condition.
This can be interpreted as a kind of synchronisation. One can find in Fourcaud and
Brunel (2002) and Ostojic et al. (2009) and the references therein a deep investigation
of occurrence of synchronisation with a PDE approach. There are few results on a
nonlinear analysis of the synchronisation Ostojic et al. (2009), Sirovich et al. (2006),
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Garenne et al. (2010), Perthame (2007) and Gerstner and Kistler (2002). In this paper
we will focus on the study of the well-posedness for various population density models
of integrate-and-fire neurons. We give some mathematical results for the existence,
the uniqueness and the positivity of the solution, but we also analyze situations were
we fail to obtain the well-posedness.

The paper will be as follows. In the first part of the paper we consider a coupled
population of self-excitatory integrate-and-fire neurons. We will show that the model
is well-posed under some assumptions and we will take care of the special case when
there is no conduction delay in the feedback: it can be ill-posed. The second part
will deal with a coupled population of inhibitory integrate-and-fire neurons. As in the
excitatory case, we will present the PDE of the model. We will then show an exis-
tence result for the model. In the last section we discuss the situations of blow up of
the activity in relation with the synchronization. We also discuss the interest of the
model with a diffusion approximation of potential jumps. Numerical simulations of
the models are presented.

2 Populations of self-excitatory neurons

In this section, we will show the existence of a unique positive solution for the model
of a large population of excitatory leaky integrate-and-fire (LIF) neurons.

2.1 The density of population model

Let us first recall the derivation of the partial differential equation used to model large
populations of integrate-and-fire neurons structured by their potential as in Omurtag
et al. (2000).

First of all, we recall that the integrate-and-fire model is an ordinary differen-
tial equation describing the subthreshold dynamics of a single neuron. This ordinary
differential equation, (see Izhikevich 2007 for instance), represents the state of a (nor-
malized) leaky capacitor receiving charge impulses and is given by

{ d
dt v(t) = −v(t) + h

∑+∞
j=0 δ(t − t j )

If v > 1 then v = vr ,
(1)

where v(t) represents the potential of the neuron at time t (normalized to the interval
[0, 1]). The t j are the arrival times of external impulses. Here we model the effect
of the reception of a spike at a synapse of the neuron by a jump of size h of the
potential v. The jump is positive (resp. negative) when the spike is received from an
excitatory (resp. inhibitory) neuron. Due to the incoming impulses, and consequently
the potential jump process, v can cross the threshold potential normalized to 1. In this
situation the neuron fires emitting a spike and is instantly reset to vr , the reset potential
with 0 < vr < 1. See Brunel and van Rossum (2007) for a biological motivation and
Burkitt (2006) for a large mathematical review of this model. See also Izhikevich
(2007) for other spiking models similar to (1).
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Fig. 1 The evolution of the density ρ(t, v) at potential v is due to a drift term and to jumps from v − h.
Due to the excitation the neuron can cross the threshold, here normalized to 1, and is reset to the potential
vr

Assuming that all the neurons of the population are identical, we can derive from
(1) a partial differential equation which gives the evolution in time of the population
density of neurons ρ(t, v) at potential v and at time t in the limit of an infinite number
of neurons. In others words we have (normalizing the total population to 1)

v2∫
v1

ρ(t, v) dv = {Proportion of neurons with potential v ∈ [v1, v2] at time t} .

The flux of spikes reaching the population is considered as deterministic and let σ(t)
be the reception rate by each neuron. The equation for the density is a conservation
law (see Nykamp and Tranchina 2000; Gerstner and Kistler 2002; Omurtag et al. 2000
and Cai et al. 2006 for instance) taking into account three fluxes: a drift term due to
the continuous evolution in the LIF model, a flux due to the part of the population
jumping when receiving excitatory impulses, a flux due to firing neurons that are reset
to vr (Fig. 1).

∂

∂t
ρ(t, v) −

Integrate-and-fire︷ ︸︸ ︷
∂

∂v
(vρ(t, v)) +σ(t)

Excitation︷ ︸︸ ︷
(ρ(t, v) − ρ(t, v − h))

= δ(v − vr )

Reset︷ ︸︸ ︷
σ(t)

1∫
1−h

ρ(t, w) dw . (2)

Let us remark that the excitation term can be put under a divergence form for an
excitation flux Φe

Φe(t, v) = σ(t)

v∫
v−h

ρ(t, w)dw.

For the well definition of (2) we extend ρ by 0 for v < 0. We impose the drift flux to
be zero at the threshold
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ρ(t, 1) = 0.

Using the boundary condition, one can check easily the conservation property of the
Eq. (2) by integrating it on the interval (0, 1),

d

dt

1∫
0

ρ(t, w) dw = 0, (3)

so that if the initial condition satisfies

1∫
0

ρ0(v) dv = 1, (4)

the solution of the nonlinear problem (10) satisfies the normalisation condition

1∫
0

ρ(t, w) dw = 1. (5)

The impulse reception rate per neuron σ(t) is the sum of the external impulses
σ0(t) arriving from an other population of neurons, and the impulses caused by the
population itself which is supposed to be self excitatory. We shall consider two cases:
either we neglect the conduction delay within the population and the self excitation
is instantaneous or we take into account a conduction delay with a density of delay
function α. Let r(t) be the firing rate of the population that is the flux through the
threshold and J the average number of presynaptic neurons per neuron. With delay
(see Fig. 2), σ(t) is given by

σ(t) = σ0(t) + J

t∫
0

α(u)r(t − u) du, (6)

∞∫
0

α(u) du = 1, (7)

where the firing rate r is given by

r(t) = σ(t)

1∫
1−h

ρ(t, w) dw. (8)

Without delay (see Fig. 3), σ(t) is given by

σ(t) = σ0(t) + Jr(t). (9)

The firing rate of the population (or activity) is an important output of the model for
neuroscientists because it can be measured easily (see Fourcaud and Brunel 2002,
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Fig. 2 Scheme for the evolution of a population under an external influence with conduction delay. The
population receives a known external influence σ0(t) from an excitatory population of neurons, and pro-
duces an activity r(t), also called firing rate of the population. The expression of r(t) is given in (8). If the
population is coupled, J �= 0, the own activity of the population r(t) will participate to the excitation as a
feedback which is expressed with a delay kernel α. The feedback is then given by J

∫ t
0 α(u)r(t − u) du

Fig. 3 Scheme for the evolution of a population under an external influence without conduction delay. The
population receives a known external influence σ0(t), and produces an activity r(t), also called firing rate of
the population as in Fig. 2. We suppose now that there is no conduction delay: the feedback is instantaneous
and given by Jr(t)

Burkitt 2006 and Ermentrout and Terman 2010 for more details about the firing rate
of population of integrate-and-fire neurons and Fourcaud and Brunel 2002 for other
models).

We finally give the model in its complete form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) = σ(t) (ρ(t, v − h) − ρ(t, v))

+ σ(t)δ(v − vr )

1∫
1−h

ρ(t, w) dw

σ(t) = σ0(t) + J
∫ t

0 α(u)r(t − u) du with conduction delay, or
σ(t) = σ0(t) + Jr(t) without conduction delay
r(t) = σ(t)

∫ 1
1−h ρ(t, w) dw

ρ(t, 1) = 0
ρ(0, .) = ρ0 ∈ L1+(0, 1).

(10)
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2.2 Well-posedness in the case with a conduction delay

We state now the main result for the model (10) with conduction delay.

Theorem 1 Assuming that α belongs to L∞(0,∞) and satisfies (7), then for all
σ0 ∈ C (R+, R+), for all J ≥ 0 there exists a unique positive solution ρ ∈
C

(
R+, L1+(0, 1)

)
to Problem (10) with conduction delay. Furthermore the follow-

ing estimate holds for the firing rate r given by (8): for J ≥ 0

r(t) ≤ ‖σ0‖∞ exp(J‖α‖∞t),

and for J < 1

r(t) ≤ ‖σ0‖∞
1 − J

.

In what follows, we will give a proof of Theorem 1 introducing a new problem with
a truncation of the reception rate σ defined by the function D

D(x) = min(M, max(0, x)), (11)

and M an arbitrary positive constant. It is clear that the function D satisfies the fol-
lowing properties

0 ≤ D(x) ≤ M, |D(x1) − D(x2)| ≤ |x1 − x2|.

This truncation done for mathematical purpose keeps a physical meaning to the recep-
tion rate which remains non negative and bounded. The new problem after truncation
is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) = D(σ (t)) (ρ(t, v − h) − ρ(t, v))

+ D(σ (t))δ(v − vr )

1∫
1−h

ρ(t, w) dw

σ(t) = σ0(t) + J
∫ t

0 α(u)r(t − u) du
r(t) = D(σ (t))

∫ 1
1−h ρ(t, w) dw

ρ(t, 1) = 0
ρ(0, .) = ρ0 ∈ L1+(0, 1).

(12)

One can notice that if we succeed in proving the well-posedness of Problem (12) and
if

0 ≤ σ(t) ≤ M,

then the solution ρ of (12) is indeed a solution of (10).
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Proposition 1 Let M be an arbitrary positive constant and let D be the function
defined by (11), assuming that α belongs to L∞(0,∞) and satisfies (7), then for
all σ0 ∈ C (R+, R+), for all J ≥ 0 there exists a unique positive solution ρ ∈
C

(
R+, L1+(0, 1)

)
to Problem (12).

We proceed in two steps: first we prove the result in the linear uncoupled case and
then we will derive a proof for the coupled nonlinear model.

2.2.1 Linear case

The linear uncoupled case corresponds to J = 0. The function σ(t) = σ0(t) ≥ 0 is
now given in C ([0, T ]). The problem then reduces to the following nonlocal linear
PDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) = D(σ (t)) (ρ(t, v − h) − ρ(t, v))

+ D(σ (t))δ(v − vr )

1∫
1−h

ρ(t, w) dw

ρ(t, 1) = 0
ρ(0, v) = ρ0(v).

(13)

Let X be the Banach space endowed with the norm ‖ · ‖X given by

X = C
(

[0, T ] , L1(0, 1)
)

, ‖u‖X = sup
0≤s≤T

‖u(s)‖L1(0,1).

Proposition 2 For all function σ ∈ C(0,+∞), σ (t) ≥ 0 there exists an unique
positive solution ρ in X to Problem (13).

Proof In order to prove this result, we follow the idea presented in Perthame (2007)
for linear nonlocal partial differential equations. We define on the space (X, ‖ · ‖X )

the mapping

Λ : π �−→ ρ,

where ρ satisfies the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) + D(σ (t))ρ(t, v) = D(σ (t))π(t, v − h)

+ D(σ (t))δ(v − vr )

1∫
1−h

π(w) dw

ρ(t, 1) = 0
ρ(0, .) = ρ0 ∈ L1+(0; 1).

(14)

123



Population density models of integrate-and-fire neurons with jumps

Let ρ1, ρ2, π1, π2 be functions in X such that

ρ1 = Λ(π1), ρ2 = Λ(π2).

Let ρ and π be defined by

ρ = ρ1 − ρ2, π = π1 − π2.

The mapping Λ being affine, ρ is solution of the following partial differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) + D(σ (t))ρ(t, v) = D(σ (t))π(t, v − h)

+ D(σ (t))δ(v − vr )

1∫
1−h

π(w) dw

ρ(t, 1) = 0
ρ(0, .) = 0.

(15)

We can check that |ρ(t, v)| satisfies the following inequality

∂

∂t
|ρ(t, v)| − ∂

∂v
(v|ρ(t, v)|) + D(σ (t))|ρ(t, v)| ≤ D(σ (t))|π(t, v − h)|

+ D(σ (t))δ(v − vr )

1∫
1−h

|π(w)| dw.

Integrating on [0, 1], we obtain

d

dt

1∫
0

|ρ(t, w)| dw ≤ D(σ (t))

1∫
0

|π(t, w)| dw

≤ M

1∫
0

|π(t, w)| dw.

Integrating in time on [0, t], we obtain

1∫
0

|ρ(t, w)| dw ≤ T M sup
0≤s≤T

1∫
0

|π(s, w)| dw,

and taking the supremum, we have for T sufficiently small

‖ρ‖X < ‖π‖X .
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Because the same argument can be iterated on [T, 2T ], [2T, 3T ] …, we deduce the
existence of an unique solution ρ to the Problem (13) by the use of the Banach–Pi-
card fixed point theorem. As Λ given by (14) preserves the positivity, it is possible
to construct a Picard iteration starting from a non negative function and thus ρ is non
negative. 
�

2.2.2 Nonlinear case

We define on the space C([0, T ]) the mapping G

G(σ )(t) = D(σ (t))

1∫
1−h

ρ(t, w) dw,

where ρ is the solution of the linear problem (13) associated to σ .

Proposition 3 The mapping G is locally Lipschitz continuous:

‖G(σ1) − G(σ2)‖∞ ≤ (2MT + 1) ‖σ1 − σ2‖∞.

Proof For σ1, σ2 ∈ C ([0, T ]) we denote ρ1, ρ2 ∈ C
(
[0, T ] , L1 (0, 1)

)
the associated

solution of the linear problem (13). We denote

ρ = ρ1 − ρ2,

we can check that ρ satisfies the following PDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) = D(σ1(t)) (ρ(t, v − h) − ρ(t, v))

+ D(σ1(t))δ(v − vr )

1∫
1−h

ρ(t, w) dw

+ (D(σ1(t)) − D(σ2(t))) (ρ2(t, v − h) − ρ2(t, v))

+(D(σ1(t))−D(σ2(t))) δ(v − vr )

1∫
1−h

ρ2(t, w) dw

ρ(t, 1) = 0
ρ(0, .) = 0.

Using the technique of Proposition 6.3 in Perthame (2007) we derive an estimate on
|ρ(t, v)|. We have
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∂

∂t
|ρ(t, v)| − ∂

∂v
(v|ρ(t, v)|) + D(σ1(t))|ρ(t, v)| ≤ D(σ1(t))|ρ(t, v − h)|

+ D(σ1(t))δ(v − vr )

1∫
1−h

|ρ(t, w)| dw

+ |D(σ1(t)) − D(σ2(t))||ρ2(t, v − h) − ρ2(t, v)|

+ |D(σ1(t)) − D(σ2(t))|δ(v − vr )

1∫
1−h

|ρ2(t, w)| dw.

Integrating with respect to v on [0, 1] we get

d

dt

1∫
0

|ρ(t, v)| dv ≤ 2|D(σ1(t)) − D(σ2(t))|
1∫

0

|ρ2(t, v)| dv.

Integrating on (0, t), we have

1∫
0

|ρ(t, v)| dv ≤ 2T ‖σ1 − σ2‖∞.

Now we can conclude

|G(σ1)(t) − G(σ2)(t)| = |D(σ1(t))

1∫
1−h

ρ1(t, w) dw − D(σ2(t))

1∫
1−h

ρ2(t, w) dw|

= | D(σ1(t)) + D(σ2(t))

2

1∫
1−h

ρ(t, w) dw

+ (D(σ1(t)) − D(σ2(t)))

1∫
1−h

ρ1(t, w) + ρ2(t, w)

2
dw|

≤ |D(σ1(t))| + |D(σ2(t))|
2

1∫
0

|ρ(t, w)| dw + |D(σ1(t)) − D(σ2(t))|

≤ (2MT + 1) ‖σ1 − σ2‖∞.

Hence we have

‖G(σ1) − G(σ2)‖∞ ≤ (2MT + 1) ‖σ1 − σ2‖∞.


�

We now prove Proposition 1.
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Proof For some T > 0, we consider the solution of (13) on [0, T ]. We define on
C([0, T ]) the mapping F

F(σ )(t) = σ0(t) + J

t∫
0

α(u)r(t − u) du, (16)

with

r(t) = D(σ (t))

1∫
1−h

ρ(t, w) dw,

and ρ the solution to the linear problem (13) on [0, T ]. From what we have done
in the previous section, we know that, for a given σ , there exists a unique solution
ρ ∈ C([0, T ] , L1+(0, 1)) to (13). Then F is a well defined mapping for which we
are seeking a fixed point. Let σ1, σ2 be in C([0, T ]) and ρ1, ρ2 the corresponding
solution of the linear problem (13) with firing rates r1, r2, we have

|F(σ1)(t) − F(σ2)(t)| ≤ J

t∫
0

|α(u)||r1 − r2|(t − u) du

≤ J‖r1 − r2‖∞
t∫

0

|α(u)| du

≤ J‖r1 − r2‖∞‖α‖∞T .

Then owing to Proposition 3 we obtain that

|F(σ1)(t) − F(σ2)(t)| ≤ J‖α‖∞T (2MT + 1).

We can find T such that F is a contraction. By the Banach–Picard theorem there is
a fixed point of F . The same argument can be iterated on [T, 2T ]: in fact in the new
definition of F on this interval there is a part depending on r in the interval [0, T ]
which is known and can be included in σ0. The reasoning can be iterated which ends
the proof of Proposition 1. 
�
We now prove Theorem 1.

Proof Let T > 0, from Proposition 1 we know that there exists an unique solution to
Problem (12). Let us show now that we can choose M such that the corresponding σ

on [0, T ] given by Proposition 1 is less than M . Then the solution of Problem (12) is
the unique solution of Problem (10) with conduction delay.

We fix the constant M of the truncation function D such that

M ≥ ‖σ0‖∞ exp (J‖α‖∞T ).
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From Proposition 1, we know that σ satisfies for t ∈ [0, T ]

σ(t) = σ0(t) + J

t∫
0

|α(t − u)D(σ (u))

1∫
1−h

ρ(u, w) dw| du,

and thus, using the definition of D given by (11), we get

|σ(t)| ≤ |σ0(t)| + J

t∫
0

|α(t − u)σ (u)

1∫
1−h

ρ(u, w) dw| du

≤ ‖σ0‖∞ + J‖α‖∞
t∫

0

|σ(u)| du.

Using Gronwall’s inequality

|σ(t)| ≤ ‖σ0‖∞ exp (J‖α‖∞t) ≤ ‖σ0‖∞ exp (J‖α‖∞T ) ≤ M.

Consequently we have the first estimate of Theorem 1 and

D(σ (t)) = σ(t),

which shows that the solution of the problem (12) on [0, T ] is actually the solution of
(10). Let us remark that the estimate on the firing rate that can be deduced from the
previous inequality, depends exponentially on sup α and becomes useless in the case
with no conduction delay.

Let us show that in the particular case of J smaller than 1, we can derive an other
estimate independent of the time t . We have

σ(t) = σ0(t) + J

t∫
0

|α(u)σ (t − u)

1∫
1−h

ρ(t − u, w) dw| du,

and thus

|σ(t)| ≤ ‖σ0‖∞ + J‖σ‖∞
t∫

0

α(u)du

≤ ‖σ0‖∞ + J‖σ‖∞.

This gives the desired estimate and ends the proof of Theorem 1. 
�
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2.2.3 Numerical simulations

We present in Fig. 4 some simulations where all the mechanisms of the equation take
place. They show the evolution in time of the potential distribution of the neuron pop-
ulation. In all the plots there are two curves: the black curve corresponding to a finite
volume scheme discretisation of (10) and the red curve to a Monte Carlo simulation
of the evolution of the assembly of neurons (see Omurtag et al. 2000; Nykamp and
Tranchina 2000 and de Kamps 2003 for the numerical schemes). The upper left plot of
Fig. 4 represents the initial repartition ρ0 which is a gaussian. Under the influence of
external impulses with rate σ0(t), taken constant in the simulation, the density function
ρ becomes positive near the threshold value, between 1 − h and 1. Then a positive
quantity gets out of the domain and is reset to vr the reset potential, see Fig. 3. This
effect can be seen in the upper right plot of Fig. 4, where a bump is present at vr . Due
to the jump process, we can see in the middle plots of Fig. 4 that this bump propagates
to vr + h, vr + 2h and so on. Finally the repartition tends to stabilize to a steady state
which can be seen in the lower left plot of Fig. 4. In Sirovich et al. (2006) one can
find other behaviours of (10). We finally show, in the lower right plot of Fig. 4 the
evolution in time of the activity of the population given by (8).

2.3 The case without conduction delay

In the current literature related to this topic, (see for instance Garenne et al. 2010;
Omurtag et al. 2000; Sirovich et al. 2006; Ermentrout and Terman 2010 and Knight
et al. 1996 and the references therein) the model (10) is frequently written without a
conduction delay. The firing rate of the population r(t) is supposed to excite instantly
the population as a feedback. It was already noticed in Omurtag et al. (2000) that a
blow up may happen in finite time. In this section, we are going to show that without
delay in the feedback the model is well-posed just for a weakly coupled population of
neurons. Now model (10) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) = σ(t) (ρ(t, v − h) − ρ(t, v))

+ σ(t)δ(v − vr )

1∫
1−h

ρ(t, w) dw

σ(t) = σ0(t) + Jr(t)
r(t) = σ(t)

∫ 1
1−h ρ(t, w) dw

ρ(t, 1) = 0
ρ(0, .) = ρ0 ∈ L1+(0; 1).

(17)

The reception rate can be computed as

σ(t) = σ0(t)

1 − J
∫ 1

1−h ρ(t, w) dw
. (18)
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Fig. 4 Simulation of the nonlinear PDE (10), comparison between a Monte Carlo approach (red curve)
and the PDE approach (black curve). A gaussian repartition was taken as initial repartition ρ0, the external
influence σ0(t) was taken constant σ0 = 50, the potential jump size h = 0.025, the reset potential vr = 0.1,
the delay kernel α(u) = δ(u − 
) with 
 = 0.5, the coupling parameter J = 5 (color figure online)

This formula is singular if the denominator of the right hand side is zero. If J is larger
than one which means that on average, each neuron receives impulse from more than
one presynaptic neuron, one can find an initial condition ρ0 such that the denominator
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is zero. This means an instantaneous blow up. We are now interested to show that
the model is nevertheless well-posed for J strictly less than 1. We have the following
theorem using some ideas that are presented in Perthame and Tumuluri (2008) and
Pakdaman et al. (2009).

Theorem 2 For all σ0 ∈ C (R+, R+) and for all J < 1, there exists a unique positive
solution ρ belonging to C

(
R+, L1+(0, 1)

)
to the Problem (17). Furthermore the firing

rate r given by (8) remains bounded on R+ and we have

r(t) ≤ ‖σ0‖∞
1 − J

.

To prove this result we introduce a truncation of the reception rate by D the function
given by (11).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) = D(σ (t)) (ρ(t, v − h) − ρ(t, v))

+ D(σ (t))δ(v − vr )

1∫
1−h

ρ(t, w) dw

σ(t) = σ0(t) + Jr(t)
r(t) = D(σ (t))

∫ 1
1−h ρ(t, w) dw

ρ(t, 1) = 0
ρ(0, .) = ρ0 ∈ L1+(0, 1).

(19)

Proof We introduce on the Banach space C([0, T ]) the following mapping H

H(σ )(t) = σ0(t) + Jr(t), (20)

with

r(t) = D(σ (t))

1∫
1−h

ρ(t, w) dw,

where ρ is the solution to the linear problem (13) on [0, T ], given σ(t) on [0, T ]. As
previously we are looking for a fixed point of H .

Let σ1 and σ2 be in C([0, T ]). From Proposition 3 we have

‖H(σ1) − H(σ2)‖∞ ≤ J (2MT + 1) ‖σ1 − σ2‖∞,

so that for all J strictly less than 1, one can always find T such that H is a contrac-
tion, and the argument can be iterated on [T, 2T ], [2T, 3T ]. Let us show that for M
sufficiently large the truncation D has no effect. We choose D as defined in (11) such
that
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M >
‖σ0‖∞
1 − J

,

then we have

σ(t) = σ0(t) + J D(σ (t))

1∫
1−h

ρ(t, w) dw

≤ ‖σ0‖∞ + Jσ(t).

For J < 1 we get

σ(t) ≤ ‖σ0‖∞
1 − J

< M,

which gives the desired estimate and ends the proof. 
�

3 Population of self-inhibitory neurons

In this section, we consider a population of self-inhibitory neurons which means that
each neuron when receiving an action potential emitted by a neuron of the population
jumps from potential v to v − h (h > 0). Furthermore we suppose that the population
receives impulses from an external activating population at a given rate σ(t). Due to
this activation neurons may reach the threshold. The LIF model for one neuron now
reads ⎧⎨

⎩
d
dt v(t) = −v(t) + h

+∞∑
j=1

δ(t − t j ) − h
+∞∑
k=1

δ(t − tk)

If v ≥ 1 then v = vr ,

(21)

where v(t) is the potential of the neuron at time t, tk are the spike times of the neurons
of the population and t j are those of the activating neurons of the external population.
Let I (t) be the reception rate by a neuron of the population of inhibitory impulses from
the same population. The population density evolves under the mechanisms described
in Fig. 5. The conservation law yields

∂

∂t
ρ(t, v) −

integrate-and-fire︷ ︸︸ ︷
∂

∂v
(vρ(t, v)) +σ(t)

Excitation︷ ︸︸ ︷
(ρ(t, v) − ρ(t, v − h))

= I (t) (ρ(t, v + h) − ρ(t, v))︸ ︷︷ ︸
Inhibition

+δ(v − vr ) σ (t)

1∫
1−h

ρ(t, w) dw

︸ ︷︷ ︸
Reset

Due to the negative jump of potential by inhibition, the population is distributed along
the region (−∞, 1). By the conservation of the total population we have
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Fig. 5 The dynamics of the density ρ(t, v) at potential v is due to a drift term, jumps from v+h (inhibition),
from v − h (excitation) and the disappearing at the threshold with reset at vr

Fig. 6 Scheme for the evolution of a self inhibiting population with a conduction delay under an external
influence. The population receives a known external excitatory influence σ(t), and produces an activity
r(t). The own activity of the population r(t) will inhibit it as a feedback. Due to the delay of conduction
which is characterised by a delay kernel α, the feedback is given by J

∫ t
0 α(u)r(t − u) du

Fig. 7 Scheme for the evolution of a self inhibiting population without conduction delay. The situation is
similar to Fig. 6 but we suppose that the effect of the feedback is instantaneous and it is given by Jr(t)

1∫
−∞

ρ(t, w) dw = 1.

As previously we impose a zero incoming flux at the threshold, but we impose also the
same at v = −∞. We consider both cases of an instant propagation of the impulses
within the population or of propagation delays with a distribution α (Figs. 6, 7).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v)− ∂

∂v
(vρ(t, v))+σ(t) (ρ(t, v)−ρ(t, v − h))= I (t) (ρ(t, v + h)−ρ(t, v))

+ σ(t)δ(v − vr )

1∫
1−h

ρ(t, w) dw

I (t) = J
∫ t

0 α(s)r(t − s) ds with conduction delay, or
I (t) = Jr(t) without conduction delay

r(t) = σ(t)
∫ 1

1−h ρ(t, w) dw

ρ(t, 1) = 0
lim

v→−∞ vρ(t, v) = 0

ρ(0, .) = ρ0 ∈ L1+(−∞, 1),

(22)

with a given normalized initial data ρ0(v),

1∫
−∞

ρ0(v)dv = 1.

3.1 The case with conduction delay

Theorem 3 Assuming that α belongs to L∞(0,∞) and satisfies (7), then for all
σ ∈ C (R+, R+) and for all J ≥ 0, there exists a unique positive solution ρ ∈
C

(
R+, L1+(−∞, 1)

)
to Problem (22) with conduction delay.

We will not reproduce the proof here since it can be done in the same way as for
Theorem 1.

We present in Fig. 8 some simulations similar to the ones of Fig. 4 but in the case of
a self-inhibiting population. The presence of inhibition can be seen by an accumula-
tion present at vr − h, and then at vr − 2h, and so on. Finally the distribution tends to
stabilise to a steady state which can be seen in the lower left plot of Fig. 8. We finally
show in the lower right plot of Fig. 8 the activity of the population as a function of
time as we have shown it in Fig. 4.

3.2 The case without conduction delay

We state now the existence result for the model (22) without conduction delay.

Theorem 4 For all σ ∈ C (R+, R+) and for all J ≥ 0, there exists a unique positive
solution ρ ∈ C

(
R+, L1+(−∞, 1)

)
to Problem (22) without conduction delay.

Proof To prove Theorem 4, we introduce the following mapping

F : π �−→ ρ; C((0, T ), L1(−∞, 1)) �−→ C((0, T ), L1(−∞, 1)), (23)
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Fig. 8 Simulation of the nonlinear PDE (22), comparison between a Monte Carlo approach (red curve)
and the PDE simulation (black curve). A gaussian distribution is taken as initial condition ρ0; the excitatory
external influence σ(t) is taken constant σ = 50; potential jump size h = 0.025, reset potential vr = 0.1,
delay kernel α(u) = δ(u − 
) with 
 = 0.5, coupling parameter J = 5 (color figure online)
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where ρ satisfies the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v)− ∂

∂v
(vρ(t, v))+σ(t) (ρ(t, v)−π(t, v − h))= S(I (t)) (π(t, v + h)−ρ(t, v))

+ σ(t)δ(v − vr )

1∫
1−h

π(t, w) dw

I (t) = Jσ(t)
∫ 1

1−h π(t, w) dw

ρ(t, 1) = 0
lim

v→−∞ vρ(t, v) = 0

ρ(0, .) = ρ0 ∈ L1+(−∞, 1),

(24)

where S is the positive part function, given by

S(I ) = max(0, I ).

It is clear that F is a well defined mapping. As we have done it before we show that
the mapping F is a contraction for T sufficiently small.

Let π be an element of the ball B(0, M) of C((0, T ), L1(−∞, 1)), where M is
supposed to be strictly larger than 1. We will show that for T sufficiently small, the
image ρ of π by F is still in B(0, M). We have

∂

∂t
ρ(t, v) − ∂

∂v
(vρ(t, v)) + σ(t)ρ(t, v) + S(I (t))ρ(t, v)

= σ(t)π(t, v − h) + S(I (t))π(t, v + h) + σ(t)δ(v − vr )

1∫
1−h

π(t, w) dw.

As we have done it before, we deduce an estimate of |ρ(t, v)|: we have

∂

∂t
|ρ(t, v)|− ∂

∂v
(v|ρ(t, v)|)+σ(t)|ρ(t, v)| + S(I (t))|ρ(t, v)| ≤ σ(t)|π(t, v − h)|

+ S(I (t))|π(t, v + h)| + σ(t)δ(v − vr )

1∫
1−h

|π(t, w)| dw.

Integrating the last in equation with respect to v, we get

d

dt

1∫
−∞

|ρ(t, v) dv| ≤ σ(t)

1∫
−∞

|π(t, v)|dv + S(I (t))

1∫
−∞

|π(t, v)|dv.
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As π is in the ball B(0, M),

sup
0<t<T

1∫
−∞

|π(t, v)| dv ≤ M, S(I (t)) ≤ J‖σ‖∞M.

Integrating in time

1∫
−∞

|ρ(t, v) dv| ≤
1∫

−∞
|ρ0(w)| dw

︸ ︷︷ ︸
=1

+T (J‖σ‖∞M2 + ‖σ‖∞M).

We can deduce from the previous computations that for M strictly larger than 1, it is
always possible to find T such that the image ρ is still in the ball B(0, M) if π was
in it. We are going to show now that F is a contraction for T sufficiently small. Let
ρ1, ρ2, π1, π2 be in B(0, M) such that

ρ1 = F(π1), ρ2 = F(π2).

We denote

ρ = ρ1 − ρ2, π = π1 − π2,

I1(t) = Jσ(t)

1∫
1−h

π1(t, w) dw, I2(t) = Jσ(t)

1∫
1−h

π2(t, w) dw.

We then get that ρ satisfies the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v)− ∂

∂v
(vρ(t, v))+σ(t)ρ(t, v)+S(I1(t))ρ(t, v)+(S(I1(t))−S(I2(t)))ρ2(t, v)

= σ(t)π(t, v − h) + S(I1(t))π(t, v + h) + (S(I1(t)) − S(I2(t)))π2(t, v + h)

+ σ(t)δ(v − vr )

1∫
1−h

π(t, w) dw

ρ(t, 1) = 0
lim

v→−∞ vρ(t, v) = 0

ρ(0, .) = 0.

(25)
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As previously, we get an estimate on |ρ(t, v)|. We have

∂

∂t
|ρ(t, v)| − ∂

∂v
(v|ρ(t, v)|) + σ(t)|ρ(t, v)| + S(I1(t))|ρ(t, v)|

≤ |(S(I1(t)) − S(I2(t)))||ρ2(t, v)| + σ(t)|π(t, v − h)| + S(I1(t))|π(t, v + h)|

+ |(S(I1(t)) − S(I2(t)))||π2(t, v + h)| + σ(t)δ(v − vr )

1∫
1−h

|π(t, w)| dw.

Integrating this equation on the domain and using the fact that

S(Ii (t)) ≤ J‖σ‖∞
1∫

−∞
|πi (t, w)| dw ≤ J‖σ‖∞M, ∀i = 1, 2,

|S(I1(t)) − S(I2(t))| ≤ J‖σ‖∞
1∫

−∞
|π(t, w)| dw,

we get

d

dt

1∫
−∞

|ρ(t, w)| dw ≤ |(S(I1(t)) − S(I2(t)))|M

+ ‖σ‖∞
1∫

−∞
|π(t, w − h)| dw + J‖σ‖∞M

1∫
−∞

|π(t, w + h)| dw

+ |(S(I1(t)) − S(I2(t)))|M + ‖σ‖∞
1∫

1−h

|π(t, w)| dw

≤ (3M J‖σ‖∞ + ‖σ‖∞)

1∫
−∞

|π(t, w)| dw.

Integrating in time we deduce that for T sufficiently small, the mapping F is a con-
traction.

We can see that the fixed point ρ is actually a solution of the problem (22) without
conduction delay on [0, T ]. Then ρ is non negative and

1∫
−∞

|ρ(T, w)| dw =
1∫

−∞
ρ(T, w) dw = 1.

The previous reasoning can then be iterated in time on R+. 
�
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4 Discussion on the modeling

In this paper we have proved the mathematical well-posedness of a nonlinear non
local deterministic model for large populations of leaky integrate-and-fire neurons.
This model is based on the paper of Omurtag et al. (2000) where neurons respond by
a finite potential jump to receiving a spike. In this section we will discuss the situa-
tions where there is no well-posedness result and we will compare these results with
those obtained with the model with a diffusion approximation for small jumps h. The
idea under such approximation is to remove the nonlocal jump term ρ(t, v − h) and
ρ(t, v + h) present in (10) and in (22). This kind of nonlocal term makes hard the
computation of the stationary state, and the nonlinear analysis of the model. Let μ be
defined by

μ(t) = hσ(t).

Assuming that h is small we have

σ(t)(ρ(t, v − h) − ρ(t, v))  μ(t)
∂

∂v
ρ(t, v) − h

2
μ(t)

∂2

∂v2 ρ(t, v),

and

σ(t)

1∫
1−h

ρ(t, w) dw  μ(t)ρ(t, 1) − h

2
μ(t)

∂

∂v
ρ(t, 1).

Plugging these two last expressions in (10), one obtains the diffusion approximation
for the integrate-and-fire model of self-excitatory neurons given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v) + ∂

∂v
((μ(t) − v)ρ(t, v)) − h

2
μ(t)

∂2

∂v2 ρ(t, v) = δ(v − vr )r(t)

μ(t) = hσ0(t) + J h
∫ t

0 α(u)r(t − u) du with conduction delay, or
μ(t) = hσ0(t) + J hr(t) without conduction delay

r(t) = −h

2
μ(t)

∂

∂v
ρ(t, 1)

ρ(t, 1) = 0

lim
v→−∞(μ(t) − v)ρ(t, v) − h

2
μ(t)

∂

∂v
ρ(t, v) = 0

ρ(0, .) = ρ0 ∈ L1+(−∞, 1).

(26)

Let us remark that this equation has the same structure than the Fokker Planck equation
for the noisy integrate-and-fire neuron model. We will not discuss here the well-posed-
ness of the model (26) in the case of conduction delay. We present in Fig. 9 a numer-
ical simulation for a comparison between the model for a self excitatory population
with potential jumps and its diffusion approximation. The diffusion approximation
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Fig. 9 Comparison between the nonlinear PDE (10) with potential jumps (black curve) and its diffusion
approximation PDE (26) (red curve). All parameters are the same as in Fig. 4 (color figure online)

smoothes out the oscillations due to the jump effect at low potentials but neverthe-
less it allows a good simulation of the activity of the population. This model without
conduction delay was studied in Cáceres et al. (2011).
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Let us now discuss the situations where the mathematical well-posedness of the
model was not proved as in Sect. 2.3 for J ≥ 1.

There are at least three explanations for the absence of well-posedness result:

– the solution does exist but the mathematical tools of the proof are not powerful
enough (or not well used) to prove this existence;

– some events may occur that are not taken into account in the model; under these
events the mathematical model may have no solution and more elaborate model
may be necessary;

– when proving results of well-posedness the solution is sought in some functional
space; the a priori choice for this space may not be well adapted and the solution
may exists in a larger space.

First we rule out the first hypothesis: we have shown in Sect. 2.3 that for the model
(10) without conduction delay there exist initial data such that the reception rate given
by (18) is singular at the initial instant.

The same holds true for the diffusion approximation (26) without conduction delay
even for any value of J > 0 (i.e. also for 0 < J < 1 unlike our result for the model
with jumps). Here μ(t) is given by

μ(t) = hσ0(t)

1 + h2

2
J

∂

∂v
ρ(t, 1)

.

The expression of μ(t) is singular if the denominator of the right hand side is zero.
Here one can always find an initial repartition ρ0 such that μ is singular at the initial
instant. Furthermore for this model the authors of Cáceres et al. (2011) give an upper
bound of the time when a weighted L1 norm of the solution blows up for initial data
sufficiently concentrated near the threshold. For J < 1 there is no amplification factor
and the occurrence of a blow up seems unrealistic.

The second hypothesis is quite interesting from the biological viewpoint as it may
be related to the synchronization of the firing of the population. It is a well established
observation that some populations of neurons exhibit periods of totally or partially
synchronized firing as well as periods of desynchronized firing. Some neuroscientists
find this synchronization mechanism quite meaningful to understand neural coding.
Many mathematical studies have been devoted to this problem, a pioneering work
being Mirollo and Strogatz (1990).

An inadequacy of our model seems to be due to the fact that it includes the artificial
feature of excitatory networks of integrate-and-fire neurons with instantaneous syn-
apses. With this integrate-and-fire model, a neuron will respond to an input by firing at
exactly the same time as any superthreshold excitatory input. If, when a neuron fires,
any other neurons are close to threshold, they will also fire at the exact same moment.
These firings in turn will imply new potential jumps and new firings. Eventually, all
neurons may fire at the same time. Such phenomena, called cascade firing event, have
been pointed out recently in Newhall et al. (2010) and Newhall et al. (2010) for pop-
ulation of excitatory integrate-and-fire neurons. If the cascade is not complete, in the
sense that not all neurons of the population, but just a part of them fire, the authors of
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DeVille and Peskin (2008) and DeVille et al. (2010) called such event big burst. They
add to their model a second step of evolution with time being fixed during the burst.
In our model for large population a neuron can experience only one potential jump
at each instant. Adding burst mechanisms similar to the one of DeVille and Peskin
(2008) may be the subject of a new research.

We may also discuss our results with respect to the third explanation considered
above: we were seeking the solution as being in L1 in potential and continuous in time.
But at instants of partial or full synchrony the firing rate becomes a Dirac mass in time.
So is the reception rate σ and the population density ρ becomes discontinuous in time
and will include Dirac masses in potential after the reset. We are clearly outside the
spaces used in this paper. But if one wants to extend the model (10) to these spaces,
he is faced to the difficulty of defining the product of σ with a Dirac mass by ρ being
discontinuous at the same time. This is also a subject for a new research.

Let us go back to the comparison between the model with jumps and its diffusion
approximation for small jumps. For self-activating populations without conduction
delay we have seen that the result on the existence of a singularity in the diffusion
approximation differs from the model with jumps in the case 0 < J < 1. We now turn
to self-inhibitory populations following the same ideas. Let μ and ν be defined by

μ(t) = hσ(t), ν(t) = hI (t).

Plugging the same kind of second order approximation in (22), we get the diffusion
approximation for the integrate-and-fire model of a self-inhibitory population. We
have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ(t, v)+ ∂

∂v
((μ(t)−ν(t)−v)ρ(t, v))− h

2
(μ(t)+ν(t))

∂2

∂v2 ρ(t, v)=δ(v−vr )r(t)

ν(t) = Jh
∫ t

0 α(u)r(t − u) du with conduction delay, or
ν(t) = Jhr(t) without conduction delay

r(t) = −h

2
(μ(t) + ν(t))

∂

∂v
ρ(t, 1)

ρ(t, 1) = 0

lim
v→−∞(μ(t) − ν(t) − v)ρ(t, v) − h

2
(μ(t) + ν(t))

∂

∂v
ρ(t, v) = 0

ρ(0, .) = ρ0 ∈ L1+(−∞, 1).

(27)

In the case without conduction delay, we get

ν(t) = −
J

h2

2
μ(t)

∂

∂v
ρ(t, 1)

1 + J
h2

2

∂

∂v
ρ(t, 1)

.

This expression for ν(t) is singular if the denominator of the right hand side is zero.
In Sect. 3.2 the model (22) without conduction delay was shown to be well-posed
for every J ≥ 0. Here, for any J ≥ 0, one can always find an initial repartition ρ0
such that there is a singularity at t = 0. Even one can use a similar argument to the
one used in Cáceres et al. (2011) to derive an upper bound for the time of bursting of
the solution for an initial condition sufficiently concentrated near the threshold. Once
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again this behaviour of the diffusion approximation does not seem realistic as it is not
plausible that the firing rate of a self-inhibitory population could blow up.

One can relate this unsatisfactory feature of the diffusion approximation to the fact
that, due to the boundary condition at v = 1, only the diffusive effect appear in the
expression of the firing rate: it has a symmetry (the expression is unchanged when
changing h to −h) which is not true for the model with jumps. In the diffusion term
activation and inhibition act in the same way.

5 Conclusion

In this paper we have proved the existence, uniqueness and positivity of the solution
of the model for a large population of self-excitory (10), as well as self-inhibitory (22)
integrate-and-fire neurons with conduction delay that was introduced in Omurtag et al.
(2000). To our knowledge, this result was not known. The delay, as long as its repar-
tition remains bounded smoothes the solution. We also took a special care to the case
when there is no delay in the feedback for both the excitatory (17) and inhibitory (22)
populations. It turned out that the model of inhibiting integrate-and-fire neurons (22)
without delay in the feedback is well-posed. Nevertheless in the case of an excitatory
population without propagation delay (17), the model can burst in finite time. It is
well-posed just for a weakly coupled (J < 1) population of neurons. Interpreting J as
the average number of connections received per neuron, the case J < 1 corresponds
to a population of neurons where one neuron is connected on average to less than one
upstream neuron. In other word, the network would be likely to have large numbers
of isolated neurons. Such neuron can receive action potentials from other populations
but not from the considered one.

The ill-posedness of the model (10) seems to be due to the well-known artificial
feature of excitatory networks of integrate-and-fire neurons with instantaneous syn-
apses. This feature may produce events called cascade firing events or big burst where
all the population or a part of it fires at the same time. Our model does not include a
description of these events as it is done in DeVille and Peskin (2008) and so it cannot
be valid over such a period. Including such events in the model will be the object of a
future research.

With respect to the properties of well-posedness we also discussed the diffusion
approximation and we have shown some drawbacks of this approach.

In the future, it seems to us be really interesting to show that for a constant external
stimulation with parameter σ0(t) = σ0 there exists an unique stationary state, both in
the linear case and nonlinear case. In the simulation (cf. Fig. 4 and see also Sirovich
et al. 2000 and Knight et al. 2000), the density function converges asymptotically to
an equilibrium. To our knowledge the existence of an unique equilibrium solution to
the model (10) is not known.

Probably the most important goal to reach, in order to predict the convergence to
an asynchronisation state or the occurrence of synchronisation as it has been proposed
in Fourcaud and Brunel (2002) and Sirovich et al. (2006), is to manage a nonlinear
analysis of the Eq. (10). More precisely, it is desirable to find under which condition
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the stability or unstability of the steady state occurs, which could give us a guess for
the existence of a periodic solution.
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