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ABSTRACT 

 

Pollution is a major cause of biodiversity declines worldwide. Therefore, 

understanding exposure and uptake mechanisms for contaminants such as mercury (Hg) is 

a crucial step in our efforts to understand the causes of species decline. I investigated the 

influence of dietary reliance on the benthic food chain, and the influence of the proportion 

of zebra mussels in the diet, on the accumulation of Hg in freshwater fish and turtle species. 

I collected turtle blood samples and fish muscle samples in 2012 and analyzed these tissue 

samples for carbon and nitrogen isotope ratios (δ13C and δ15N), and for Hg concentrations. 

Isotopic ratios were used to calculate trophic level, dietary reliance on the benthic food 

chain, and the proportion of zebra mussels in the diet. Reliance on the benthic food chain 

was a good predictor of Hg concentration in fish muscle, but not in turtle blood. The 

proportion of zebra mussels in the diet was not a good predictor of Hg in turtles or in fish.  

My results indicate that dietary reliance on the benthos should be considered in future 

tissue Hg modelling studies for fish, and that this predictor variable could be used to 

identify other fish species likely to be burdened by high concentrations of Hg.  
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RÉSUMÉ 

 

La pollution est une des causes principales du déclin de la biodiversité dans le 

monde. Par conséquent, une bonne compréhension des mécanismes d'exposition et 

d'absorption des contaminants tels que le mercure (Hg) est une étape importante dans nos 

efforts pour comprendre la hausse du taux d’extinction associée à la pollution. J'ai étudié 

l'influence de la dépendance de la diète à la chaîne alimentaire benthique, et l'influence de 

la proportion de moules zébrées dans la diète, sur l'accumulation de Hg chez les poissons et 

les tortues d’eau douce. J'ai recueilli des échantillons de sang de tortue et de muscle de 

poisson en 2012. J’ai ensuite analysé ces échantillons de tissus pour obtenir les ratios 

d'isotopes d'azote et de carbone (δ13C et δ15N) et la concentration de Hg.  J’ai utilisé les 

ratios isotopiques pour calculer le niveau trophique, la dépendance de la diète à la chaîne 

alimentaire benthique et la proportion des moules zébrées dans la diète. Mes résultats 

démontrent que la dépendance de la diète à la chaîne alimentaire benthique est un bon 

prédicteur de la concentration de Hg dans le muscle de poisson, mais pas dans le sang de 

tortue. La proportion des moules zébrées dans la diète n'était pas un bon prédicteur de la 

concentration en Hg chez les tortues ou les poissons. Mes résultats indiquent que la 

dépendance alimentaire sur le benthos est une variable qui devrait être considérée dans les 

études futures de modélisation chez les poissons. De plus, cette variable pourrait être 

utilisée pour identifier les espèces de poissons susceptibles d'être affectés par des 

concentrations élevées de Hg. 
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GENERAL INTRODUCTION 

 

Biodiversity loss is a current global concern. Numerous factors are thought to 

contribute to biodiversity loss, but the most important threats are habitat destruction, 

climate change, pollution, invasion by non-native species, and increases in atmospheric 

carbon dioxide (CO2) (Dudgeon et al., 2006; Sala et al., 2000; Strayer and Dudgeon, 2010; 

Wilcove et al., 1998). Pollution ranks as the third most important threat to terrestrial 

species and as the second most important threat to aquatic species (Richter et al., 1997; 

Wilcove et al., 1998). Globally, over 50% of threatened freshwater vertebrate species are 

affected by pollution (Collen et al., 2013). Because biodiversity losses are observed in 

terrestrial, freshwater, and marine biomes (Burkhead, 2012; Gray, 1997; Payne et al., 2013), 

pollution can undoubtedly be considered a conservation and ecosystem health issue of 

capital importance. 

Heavy metals are a large class of environmental pollutants and, with other common 

pollutants such as dioxins and Polychlorinated biphenols (PCBs), they constitute a chemical 

mixture that seeps into water bodies and sediments and that causes adverse health effects 

(Järup, 2003). The effects to such chemical mixtures in the wild are often difficult to 

quantify because toxicants can have combined effects (Pietrock and Marcogliese, 2003). 

Even though heavy metals occur naturally in the Earth’s crust, they qualify as pollutants 

because they can be anthropogenically introduced in the environment in concentrations 

that exceed background levels, and because they can cause negative health effects. 

Whereas some pollutants are biodegradable, heavy metals are not. Instead, heavy metals 
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are transported in the atmosphere, displaced by water currents, and deposited in soils and 

sediments where they can remain and accumulate indefinitely. Within heavy metals, lead 

(Pb), cadmium (Cd), and mercury (Hg) are some that have been studied extensively because 

they pose a threat to human health. For centuries, these three heavy metals have been 

used for various purposes and released into the environment. For instance, Pb piping was 

once used to transport water. Although Pb emissions are generally decreasing worldwide 

(Pacyna and Pacyna, 2001), remnants of Pb piping can still be found in older constructions 

and infrastructures (Hodge, 1981). On the contrary, Cd emissions have greatly increased in 

the 20th century, mainly because Cd-containing items such as re-chargeable nickel (Ni) – Cd 

batteries are rarely re-cycled (Hellström et al., 2007). Cigarettes are the main source of Cd 

exposure for tobacco smokers (Satarug and Moore, 2004). Similarly, various human 

enterprises have accelerated the release of Hg into the environment. Global anthropogenic 

emissions of Hg come primarily from the combustion of fossil fuels in industrial and 

residential boilers and gold mining (Pacyna et al., 2006), whereas Hg-releasing natural 

processes include volcanic eruptions and forest fires (Nriagu, 1989). Historically in Canada, 

electricity generation, waste incineration, and non-ferrous mining and smelting constituted 

the main sources of atmospheric Hg. Recently, however, a Risk Management Strategy for 

Mercury was implemented after Hg was declared a toxic substance under the Canadian 

Environmental Protection Act of 1999; Canadian emissions have been significantly reduced 

since then. In the early 1990’s, for example, non-ferrous mining and smelting released over 

26 000 kg of Hg into the atmosphere annually whereas presently only about 210 kg are 

released annually from this industrial activity (Environment Canada, 2011). Although 
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Canada is working to reduce Hg emissions, other regions of the world are not. In 1995, for 

example, total North American emissions were estimated at 153 000 kg, whereas emissions 

from Asia were estimated at 1 281 000 kg (UNEP 2013). Since Hg can be disseminated from 

its emission point source in the atmosphere through a process called global distillation, high 

concentrations of Hg can be found in remote regions of the world. Consequently, 

decreasing Hg emissions in Canada may only offset the increase in emissions in other parts 

of the world (UNEP 2008). In fact, Hg is ubiquitous in the atmosphere and the rate at which 

is it deposited in the soils and sediments is thought to be a function of elevation, land 

cover, and proximity to urban areas (Miller et al., 2005). Although Hg liberated from the 

weathering of rock formations contributes to sediment and soil Hg concentrations, most of 

the Hg found in rural and remote sites comes from atmospheric transport and deposition of 

global anthropogenic emissions (Pacyna et al., 2010; Thomas, 1972). 

In aquatic ecosystems, Hg is found in the sediments, in the water column, and in the 

biota. Fugacity-based mass-balance models suggest that sediments are most often its major 

repository (Chon et al., 2012). Three forms of Hg are typically found in these aquatic 

environments: metallic Hg (Hg 0), divalent Hg (Hg2+), and methylmercury (MeHg). Together, 

these three forms are referred to as total Hg (THg). Recent studies focus on the presence 

and accumulation of MeHg in aquatic ecosystems because this form accumulates in animal 

tissues (Barrocas et al., 2010), and because it can cause adverse health effects (Eisler 1987, 

Scheuhammer et al., 2007). Figure 1 reviews Hg transformations and depicts the occurrence 

of the three forms within a lake ecosystem. 
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The rates at which Hg cycles between its different forms depend on several chemical 

and physical environmental factors. As a result, the concentration of bioavailable MeHg can 

vary within water bodies, even over very short distances. Water turbidity, for example, can 

increase physical transport and abundance of Hg in the water column by re-suspending the 

surface layer of deposited sediment particles (Gray et al., 2002). In addition, low pH can 

cause an increase in the rate at which Hg in the sediments is rendered bioavailable in a 

specific location (Kelly et al., 2003). Another example of a factor that plays a role in 

determining the rate of methylation of Hg is the amount of dissolved organic carbon (DOC) 

in the water column (Driscoll et al., 1995). DOC is created when water makes contact with 

organic soils causing organic compounds to leach into the water body. DOC plays a dual role 

in this context as it can either increase or decrease the amount of Hg that is rendered 

bioavailable through methylation. For instance, there is a positive correlation between Hg 

and DOC concentrations in water because Hg in the soil and sediments binds to organic 

materials that are carried away with the water in turbid areas. In addition, DOC reduces the 

amount of ultraviolet light penetrating the water column (Morris et al., 1995). Reducing 

ultraviolet light penetration inhibits the reduction of Hg2+ to Hg0, thereby increasing the 

amount of Hg2+ available for methylation. Organic matter also serves as carbon source for 

bacteria that can add a methyl group to the metal so these can remain and thrive in areas 

where DOC is present (Bisinoti et al., 2007). On the other hand, DOC can bind MeHg, 

thereby limiting its bioavailability in the water column and in the surface sediments (Driscoll 

et al., 1995). Still, the processes by which these factors interact with one another and with 

other lake parameters remain poorly understood. Nevertheless, these environmental 
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factors have often been used to explain within-lake and between-lake differences in THg 

concentrations (Bloom et al., 1991; Burger et al., 2004; Kamman et al., 2005; Riget et al., 

2007).  

Regardless of its concentration, bioavailable MeHg will eventually enter the food 

web. In lake ecosystems, MeHg enters the food web through micro-organisms who 

assimilate it directly from the water. For example, primary producers bioaccumulate MeHg 

by sequestering it in their cells and, as a result, their internal MeHg concentration comes to 

exceed that of the surrounding environment. MeHg has restricted lipophilic properties and 

a strong affinity for some proteins such as sulfur-containing amino acids (Carty and Malone, 

1979). Thus, in consumers, MeHg tends to be found in muscles and fat tissues. MeHg 

biomagnifies up food chains because of the tendency of primary producers and consumers 

to accumulate MeHg. Therefore, animals at the top of the food web tend to have higher 

concentrations of MeHg in their tissues when compared to those feeding at lower trophic 

levels (Boudou and Ribeyre, 1997). 

Once incorporated in animal tissues, MeHg causes biochemical, physiological, and 

neurological effects. The presence and intensity of these biological effects depend on the 

MeHg dose-response relationship and on the particular organism. In laboratory tests, 

freshwater fish vital functions such as reproduction, osmoregulation, foraging activities, 

anti-predator behaviours, and communication may be disrupted as a result of the 

accumulation of high concentrations of MeHg (Zillioux et al., 1993). These negative effects 

included impaired spermatogenesis and reduced egg deposition in fish exposed to 

concentrations ranging from 0.1 to 1.0 µg THg/L, and impaired spermatogenesis and 
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decreased intestinal nutrient transport in fish exposed to concentrations ranging from 1.0 

to 2.0 µg THg/L. In amphibians, exposure to 1.0 µg THg/L was related to decreased rates of 

successful metamorphosis and high embryo mortality (Eisler, 1987). More recent evidence 

reports similar findings, along with additional biochemical, genetic, and histological effects 

possible at concentrations of 0.1 µg Hg/g (Figure 2 and references therein). Still, most 

documented health effects of MeHg are the consequence of exposure to levels of MeHg 

that exceed environmental concentrations (Fimreite, 1974; Kamman et al., 2005; Monteiro 

and Furness, 2001), which typically range from 0.0001 to 0.5 µg Hg/L in north-American 

freshwater bodies (Mousavi et al., 2011).  

Instead of examining for the health effects of MeHg in natural populations, the 

majority of studies focus on Hg distribution by trophic level. Initially, information from gut 

content analysis and inferred feeding habits were used to estimate trophic level (e.g. 

Nriagu, 1989; Richter et al., 1997; Wilson, 1992). These methods had limitations since they 

provided no effective way of characterizing complex food webs, and because they only 

offered information on recent dietary intakes. Because these methods were not very 

precise and only reflected recent dietary intake, opposing conclusions were reached by 

different researchers: some were able to detect a correlation between trophic level and 

tissue Hg concentration (e.g. Mason et al., 1996) while others found no such relationship 

(e.g. Williams and Weiss, 1973). A more recent technique than gut content analysis 

involving stable isotope ratios offers an alternative way to quantify trophic position. With 

this technique, a more precise characterization of contaminant transfer in food webs is 

possible. The stable nitrogen (N) isotopes are useful because 15N predictably increases in 
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abundance relative to 14N with each trophic transfer (Cabana and Rasmussen, 1996). 

Therefore, depending on the turnover rate of the tissue used for isotope analysis, the 

trophic level can be estimated over several seasons. Following the adoption of this 

technique for quantifying trophic position, the positive correlation between trophic level 

and tissue MeHg concentration became apparent in the literature, and comparing 

biomagnification rates became possible (e.g. Bergeron et al., 2007; Campbell et al., 2008; 

Campbell et al., 2005; Chen et al., 2008). One way to compare biomagnification rates across 

food chains is to plot the linear relationships between the logarithm of MeHg concentration 

(log μg MeHg/g in the tissue, wet weight) and δ15N values, and then to use the regression 

slope as a measure of the rate of biomagnification (Kidd et al., 1995). In this graphical 

representation, the y-axis intercept can be thought of as a baseline input of the pollutant at 

the level of the primary producers. Using this method, a range of biomagnification rates for 

MeHg have been calculated for various food webs and these usually fall between 0.1 - 0.3 

(Chen et al., 2008; Dennis et al., 2005). The mechanisms underlying the variation in tissue 

burdens and in biomagnification rates for MeHg are unknown, but they may be related to 

differences in the number of trophic levels used in the calculation of the rate (Atwell et al., 

1998), to the seasonally variable food web structure (Zhang et al., 2012), or to the presence 

or absence of invasive species at the study sites (Hogan et al., 2007).  

Overall, only a small proportion of studies focus on factors, other than trophic level, 

that may affect MeHg distribution in the food web. In fact, the United Nations Environment 

Programme (UNEP) (2013) stated in their most recent report that there is a major gap in 

our ability to predict MeHg uptake by living organisms, and that this gap warrants further 
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investigation. Therefore, there is a need to be able to forecast which species are likely to be 

burdened with high concentrations of MeHg with some level of confidence, especially for 

species at risk. The goal of my thesis is to identify key components of animal feeding 

ecology that are likely to influence MeHg accumulation, and to determine how these 

components influence MeHg accumulation. Furthermore, I want to create models capable 

of predicting MeHg concentrations in the tissues of freshwater species of fish and turtles. 

In chapter one, I attempt to determine whether the MeHg load of freshwater 

species is a function of the horizontal food web structure, i.e., the dietary reliance on the 

benthic food web versus the pelagic food web. Since the highest concentration of all forms 

of Hg (THg) in lakes is usually found in the sediments, and since species vary in their 

accumulation of MeHg, I test the hypothesis that the variation in the amount of MeHg 

accumulated is a function of the proximity to the benthos in the food web. I use N and C 

isotope ratios to quantify the proportion of the diet that is tightly linked to the benthic food 

chain and compare it to animal tissue MeHg burdens using a Bayesian mixing-model. 

In chapter two, I investigate how the zebra mussel (Dreissena polymorpha), an 

invasive bivalve, influences the trophic transfer of MeHg to lake predators. Zebra mussels 

filter large volumes of water while feeding compared to other freshwater filter-feeding 

mollusks (Strayer et al., 1999). Zebra mussels therefore accumulate more MeHg than other 

freshwater bivalves (Figure 2-1). Since their accidental introduction in North American 

water bodies, some native predatory species have changed their diet to include this new 

prey item (Bulté and Blouin-Demers, 2008; Molloy et al., 1997). Because freshwater 

vertebrate predators vary in their consumption of zebra mussels, I test the hypothesis that 
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the amount of MeHg accumulated in freshwater vertebrates that feed on zebra mussels is a 

function of the proportion of zebra mussels in their diet. Predators that feed heavily on 

zebra mussels should have a heavier MeHg burden.  
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Figure 1. The generalized Hg cycle in freshwater ecosystems: Hg from the 

atmosphere comes primarily in the metallic form (Hg 0). In an aquatic system, 

Hg0 is either deposited, or it is oxidized to the divalent form (Hg2+). In turn, 

Hg2+ can be deposited into the sediments or rendered bioavailable by 

bacteria who add one or two methyl groups to the ion to form 

methylmercury (MeHg). These transformations are also reversible so that 

Hg2+ can be reduced to Hg0, and MeHg can be demethylated.  MeHg can be 

incorporated in the sediments or it can enter the food web.  Once in the food 

web, MeHg bioaccumulates and biomagnifies so top predators are likely to 

have high concentrations of MeHg in their tissues. 

 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

TH
g 

(µ
g/

g)
 

A 

B 

C 

TH
g 

 (
µ

g 
TH

g/
g)

  

Figure 2. Concentration of mercury (µg THg/g) in various types of animal tissues and 

associated effects on biochemistry, gene expression, behaviour, reproduction, histology, 

growth, and infection in fish (A), birds (B), and turtles (C). Values are either mean effects 

concentrations or minimum concentrations at which effects were observed. THg 

concentration values are as cited in Scheuhammer et al. (2007), Burger et al. (1997), and 

Wolfe et al. (1998) for birds, in Sandheinrich and Wiener (2011) for fish, and from Hopkins 

et al. (2013) and Meyer-Schöne (1993) for turtles. The x-axis is log-transformed to facilitate 

visualization. 
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CHAPTER 1: DIETARY RELIANCE ON THE BENTHIC FOOD CHAIN INFLUENCES MERCURY 

ACCUMULATION IN FRESHWATER TURTLES AND FISH 

  



13 
 

ABSTRACT 

 

Differences in feeding ecology are known to affect the accumulation of 

contaminants such as mercury (Hg) in aquatic animals. Modelling the accumulation of Hg in 

animals can help identify which animals are likely to accumulate high concentrations of Hg. 

Since most of the Hg in lakes is found in the sediments, I predicted that Hg burden should 

increase with dietary reliance on the benthic food chain. I created averaged multiple linear 

regression models to predict Hg burdens in fish and turtles species from their dietary 

reliance on the benthic food chain, while controlling for other factors known to influence 

Hg accumulation (sex, size, location, and trophic level) using training and testing sets. There 

was a positive relationship between Hg burdens and dietary reliance on the benthic food 

chain for both fish and turtles. For turtles, however, the averaged models explained only a 

small portion of the observed variation in tissue Hg concentration, with R2 values ranging 

between -0.05 and 0.74. For fish, a larger proportion of the variation was explained by the 

models, with R2 values ranging between 0.50 and 0.77. The results indicate that the reliance 

on the benthic food chain is an important Hg predicting variable for fish, but not as much 

for turtles. In addition, model generalization to independent data sets is a possibility for the 

fish models. Future attempts to model Hg accumulation in fish should include dietary 

reliance on the benthic food chain as a predictor variable.  
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INTRODUCTION 

 

Pollution from mercury (Hg) is a global concern. Various industrial activities release 

Hg into the environment where it disperses around the globe by atmospheric transport. The 

most important source of Hg in the environment is the burning of fossil fuels and the 

industrial mining and smelting of metals (UNEP, 2013). In Canada, Hg was declared a toxic 

substance under the Canadian Environmental Protection Act of 1999 and emissions 

decreased significantly after a Risk Management Strategy for Mercury was implemented 

(Environment Canada, 2011). In the early 1990’s, for example, non-ferrous mining and 

smelting released over 26 000 kg of Hg into the atmosphere annually whereas presently 

only about 210 kg are released annually from this industrial activity in Canada (Environment 

Canada, 2011). Although Hg emissions rates in Canada have decreased in the past decades, 

rates in other parts of the world have increased (UNEP, 2013). Since Hg travels in the 

atmosphere to remote regions of the globe, and since it gets deposited in soils, water 

bodies, sediments, and biota, decreasing emission rates in Canada may only serve to offset 

emission increases in other parts of the world.  

Once deposited from the atmosphere, Hg can be chemically transformed through 

biotic and abiotic processes. Recent studies focus on the presence and accumulation of 

methylmercury (MeHg) in aquatic ecosystems since this form accumulates in animal tissues 

(Barrocas et al. 2010), and since it can cause adverse health effects (Eisler 1987, 

Scheuhammer et al., 2007). The threshold level at which MeHg can cause adverse health 

effects (TEL), however, is not well defined in the literature. Sandheinrich and Wiener (2011) 
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conclude from reviewing recent findings that adverse health effects in fish are possible at 

muscle concentrations of 0.3–0.7 µg MeHg/g. In addition, others have recently reported 

detectable effects in fish with muscle tissue concentrations that were below 0.1 µg MeHg/g 

(Drevnick et al., 2008; Larose et al., 2008; Moran et al., 2007; Webb et al., 2006). Direct 

mortality has only been observed in systems subjected to extreme contamination where 

animal tissues had 6 to 20 µg Hg/g (Wiener and Spry, 1996). Even though MeHg is 

conventionally defined as a neurotoxin, these studies suggest that it could also cause 

alterations in gene transcription, histological changes, and increases in macrophage 

aggregates (Figure 2). 

MeHg biomagnifies along food chains (Atwell et al., 1998; Boudou and Ribeyre, 

1997; van der Velden et al., 2013). Therefore, top predator tissue concentrations often 

exceed the threshold effect level (Kamman et al., 2005), making health effects possible in 

wild animal populations. How MeHg is incorporated at the base of the pelagic and benthic 

food chains, and how it is distributed in the food web remains poorly understood. This 

makes it difficult to explain why MeHg concentration in animal tissues varies within species 

and between species (e.g. Bates and Hall, 2012; Burger et al., 2010; Coelho et al., 2006; van 

der Velden et al., 2013). For instance, variations in MeHg tissue concentrations between 

animals have been related to differences in the number of trophic levels present in an 

ecosystem (Atwell et al. 1998), to the seasonally variable food web structure (Zhang et al., 

2012), and to the presence or absence of invasive species at the study sites (Hogan et al., 

2007). Lake sediments are considered a major repository for all forms of Hg (Chon et al., 
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2012). Overall, only a small proportion of studies focus on factors that determine which 

animals are likely to accumulate large concentrations of MeHg, other than trophic level.  

Recently, stable isotope analyses have improved our understanding of food web 

structures. The stable nitrogen (N) isotopes are useful because 15N predictably increases in 

abundance relative to 14N with each trophic transfer (Cabana and Rasmussen, 1996). 

Therefore, the N stable isotope ratio (δ15N) offers a way to estimate trophic level averaged 

over long time intervals. Depending on the turnover rate of the tissue used for isotope 

analysis, the trophic level can also be estimated over several seasons. Similarly, the carbon 

isotope ratio (δ13C) provides information on which carbon (C) source is preferentially used. 

In aquatic ecosystems, pelagic primary producers have lower ratios than benthic primary 

producers. Because the δ13C is defined at the level of the primary producer and maintained 

along food chains, a consumer’s reliance on the benthic or pelagic food chains can be 

estimated. Together, δ13C and δ15N can be used to conceptualize a two-dimensional food 

web in which trophic level and reliance on the benthic food chain are the dimensions. 

Previous studies have combined data from stable isotope analyses and data on 

contaminants, but these typically focus on fish and birds (Anderson et al., 2009; Riget et al., 

2007). Moreover, these studies typically use the raw δ15N as a representation of the trophic 

level, and the raw δ13C as a measure of carbon sources in the food web. However, δ13C and 

δ15N comparisons across systems are complicated by the intrinsic differences in isotopic 

ratios that exist at the base of the food chains within and between lakes (Cabana and 

Rasmussen, 1996). Therefore, existing studies cannot be used to make predictions in other 

locations and cannot be compared to one another. 
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In this chapter, I use δ15N, δ13C, and Bayesian mixing model analyses to examine the 

patterns of MeHg biomagnification in the fish and turtle community of three Rideau Canal 

lakes. I test the hypothesis that MeHg accumulation in these animals can be predicted from 

their position in the vertical and horizontal food web structure. Since most MeHg in a lake is 

usually found in or near the sediments (Chon et al., 2012), I predict that MeHg burden 

should increase with dietary reliance on the benthic food chain. To my knowledge, no 

previous study has employed a mixing model to eliminate the ambiguities associated with 

using raw isotope data to derive a predictive model for turtle and fish tissue MeHg 

concentrations.  

METHODOLOGY 

 

Study area ― Sampling took place in eastern Ontario (Canada) on the Rideau Canal, a series 

of lakes, rivers, and human-made canals linking Ottawa to Kingston. I captured turtles, fish, 

and prey samples in Indian, Newboro, and Upper Rideau Lakes. Hg concentrations in the 

sediments of the three lakes ranged from 0.01 to 0.22 µg/g dry weight (LeBlond, 2009). In 

each lake, I trapped animals at two sites. The sites were located at 44° 34' 58.276" N, 

6° 19' 33.837" W and 44° 36' 10.986" N, 76° 18' 33.479" W for Indian Lake, 44° 37' 46.178" 

N, 76° 20' 7.976" W and 44° 38' 38.674" N, 76° 17' 30.885" W for Newboro Lake, and 

44° 39' 52.744" N, 76° 20' 9.974" W, and 44° 42' 16.131" N, 76° 18' 56.427" W for Upper 

Rideau Lake. Every site was a shallow bay where turtles and fish were likely to be found.  

Turtle capture ― I captured painted and musk turtles in May and June 2012 using two sets 

of paired fyke nets. Each net was 3.5 m long and composed of seven 0.9 m diameter steel 
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rings. Two throats were fitted at the second and fourth rings in each net to prevent the 

escape of captured animals. Two 4.6 m wings and one 10.7 m long lead were also fastened 

to each net. Nets, throats, wings and leads were built with 5.08 cm knotted nylon mesh. I 

emptied the nets every 24 hours to avoid deaths by asphyxia. The turtles I captured were 

transported in plastic bins to my field laboratory (Queen’s University Biological Station) 

where I collected blood samples, and where I recorded morphological measurements. I 

marked each turtle with a notch on the carapace using a file to avoid resampling the same 

individual. I kept turtles overnight and released them at the site of capture on the next fair-

weather day.  

Fish capture ― Pumpkinseeds (Lepomis gibbosus) were captured at the same time as 

turtles using the same fyke nets. Blackchin shiners (Notropis heterodon) and brook 

silversides (Labidesthes sicculus) were captured using a seine net, which was dragged along 

the shores at each site. I euthanized all fish (50 Blackchin shiners, 20 pumpkinseeds, and 49 

brook silversides) using sharp blows to the head followed by spinal cuts. I then sealed fish 

individually in polyethylene bags and put them on ice for transport back to our field 

laboratory (Queen’s University Biological Station). There, I kept them frozen at -20°C. 

Blood sampling ― I collected 0.5 ml of blood from 39 musk turtles and 60 painted turtles by 

subcarapacial vein puncture (Dyer and Cervasio, 2008) using 1 ml un-heparinized syringes 

fitted with 25 gauge, 38 mm needles. The total blood volume for each individual was split in 

two and frozen in two separate 1.5 ml microcentrifuge tubes. These were immediately 

frozen at -20oC pending analyses. Half of the blood volume per individual was frozen at         
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-60°C and then lyophilized for isotopic analyses. For each turtle, I also measured the 

carapace length using a 50 cm tree caliper, and recorded the mass using a 300g Pesola 

spring scale. I determined the sex of each individual using secondary sexual characteristics 

(Moll, 1973). 

Fish muscle sampling ― Frozen whole fish were thawed in warm waters. I weighed 

pumpkinseeds using a Scout scale with 600 x 0.1 g capacity, and I weighed blackchin shiners 

and brook silversides with a 600 x 0.1 mg capacity microscale. Fish were also measured 

(length, height, and width) using an electronic Powerfist calliper with a 300 mm capacity. 

The length of the fish was measured from the tip of the snout to the base of the tail. To 

measure the maximal height and width, the calliper was held parallel (lengthwise) to the 

fish. Using a filleting knife, I made a transverse cut behind the gills, downward with a slight 

angle towards the head. Then, holding the fish by the tail, I made a longitudinal cut from 

the base of the tail to the first cut behind the gills. For pumpkinseeds, only one side of the 

fish was filleted. For blackchin shiners and brook silversides, I filleted both sides of each 

fish. I store muscle samples in 15 ml flat cap centrifuge tubes. I then weighed the muscle 

samples, froze them at -60° C, and lyophilized them.   

Prey species sampling ―In lakes, carbon isotopic differences exist between primary 

producers that are pelagic and those that are benthic: pelagic primary producers are 

depleted in 13C when compared to benthic primary producers because the periphyton that 

covers submerged surfaces reduces access of the benthic primary producers to the underlying 

inorganic carbon (Hecky and Hesslein, 1995). Because the trophic fractionation of the carbon 

isotopes between trophic levels is low (France, 1995), the carbon isotope ratio (δ13C) 
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defined at the level of the primary producer is maintained in the food web. Therefore, the 

δ13C of prey items can be used to calculate the proportion of energy that a consumer 

derived from the benthic and pelagic zones (Post, 2002). To determine fish and turtle 

reliance on both prey items, I obtained three composite samples of banded mystery snails 

(Viviparus georgianus) and of zebra mussels (Dreissena polymorpha) from each sampling 

site. Because snails are grazers (Buckley, 1986), they represent the benthic food chain prey 

items. Because zebra mussels are filter feeders (Horgan and Mills, 1997), they represent the 

pelagic food chain prey items. I collected both species of mollusks by removing them from 

the surface of rocks or logs submerged in the water using a dip net or by hand. The mussel 

and snail samples were transported on ice to our field laboratory, and depurated for 24 

hours in lake water to allow for their gut contents to be excreted. Each composite prey 

sample consisted of 10 individual snails or zebra mussels. I extracted the muscle from each 

mollusk, placed them in a 45 ml screw-cap centrifuge tube, froze them at -60°C, and then 

lyophilized them. 

 

Mercury analyses  

 

Total mercury (THg) and methylmercury (MeHg) analyses were performed on 25% of the 

samples. The results from this analysis indicated that, on average, the part of THg that was 

MeHg was 95% in musk turtles, 83% in painted turtles, 100% for brook silversides, and 91% 

in blackchin shiners (Figure A1 – 1). Therefore, I used THg concentrations as a good 

approximation of MeHg concentrations in my analyses (see THg Concentration as a 
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Measure of MeHg Concentration in APPENDIX I, and Figure A1-1). In all subsequent 

sections, I use THg concentrations to represent MeHg concentrations.  

Total Mercury ― Whole blood samples from each turtle, lyophilized muscle samples from 

each fish, and lyophilized composite prey samples were analyzed for total mercury (THg) 

content by combustion-amalgamation-cold-vapor atomic absorption spectrophotometry 

following the Environmental Protection Agency (EPA) method 7473 and using the MA-3000 

Mercury Analyzer Latest Direct Combustion Technology from Nippon Instruments 

(detection limit was 0.002 ng THg). For quality assurance, each group of 10 samples 

included a standard reference material (DORM-3 or DORM-4), and each set of 100 samples 

was initiated by purging the instrument twice.  

Methylmercury ― Organomercury (MeHg) concentrations were determined in 25% of the 

fish and turtle tissue samples and in one snail and one zebra mussel composite prey sample 

at each site by capillary gas chromatography coupled with atomic fluorescence 

spectrometry (GC-AFS) as described by (Cai et al., 1997). Initial extracts of fish tissue and 

turtle blood samples were subjected to sodium thiosulfate clean-up and the organomercury 

species were isolated as their bromide derivatives by acidic KBr and CuSO4 and subsequent 

extraction into a small volume of dichloromethane. Hg analysis was then performed using 

the P S Analytical Hg speciation system model PSA 10.723. This is an integrated gas 

chromatography - Hg atomic fluorescence instrument which is comprised of an Ai 

Cambridge (UK) model GC 94 gas chromatograph equipped with a CTC A200S autosampler, 

an optic injector module, and coupled to the PSA Merlin Detector via a pyrolysis oven held 

at 800°C. A fused silica analytical column with dimensions of 15 m x 0.53 mm i.d. 

http://hg-nic.us/merchandise/add_item.php?id=5
http://hg-nic.us/merchandise/add_item.php?id=5
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(Megabore), coated with a 1.5 µm film of DB-1 (J&W Scientific), was used. The column 

temperature was held at 40°C for 30 seconds, programmed at 30°C/min to 85°C, which was 

held for 1 min, then programmed at 20°C/min to a final temperature of 200°C, and then 

held for 1 min. A split/splitless injector was used in the splitless mode and maintained at 

150°C. The carry gas and make-up gas flows were 4.0 ml/min of helium and 60 ml/min of 

argon, respectively. For the PSA Merlin detection system, the sheath gas flow was 150 

ml/min of argon. Other parameter settings were the same as those reported previously. 

Data were acquired by a real-time chromatographic control and data acquisition system 

(EzChromTM, Scientific Software Inc., CA). 

Carbon and Nitrogen Isotope Ratios – Samples and standards were weighed into tin 

capsules and loaded into an elemental analyser (Isotope Cube manufactured by Elementar, 

Germany) interfaced to an isotope ratio mass spectrometer (Delta Advantage 

manufactured by Thermo, Germany) (IRMS). Sample/Std was flash combusted at about 

1800C (Dumas combustion) and the resulted gas products was carried by helium through 

columns of oxidizing/reducing chemicals optimised for CO2 and N2. The gases were 

separated by a "purge and trap" adsorption column and sent to IRMS interface (Conflo III 

manufactured by Thermo, Germany) then to IRMS. Internal standards used were 

(d15N,d13C in ‰): C-51 Nicotiamide (0.07,-22.95), C-52 mix of ammonium sulphate + 

sucrose (16.58,-11.94), C-54 caffeine (-16.61,-34.46), blind std C-55: glutamic acid (-3.98, -

28.53).  These cover the natural range. These analyses were performed at the G.G. Hatch 

Lab at the University of Ottawa, Ontario, Canada. The analytical precision is based on the 

internal std (C-55) which is not used for calibration and is usually better than 0.2 ‰. 
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Trophic Level and Reliance on the Benthos ― I calculated trophic level using the equation 

suggested by Post (2002): λ + (δ15Nsecondary consumer – [δ15Nbase1 * α + δ15Nbase2 * (1 – α)]/Δn, 

where λ  is the trophic position of primary consumers, α is the proportion of N in the 

consumer derived from the base of food chain one (benthic food web), δ15Nbase1 is the N 

isotope ratio for the primary consumer at the base of food chain one, δ15Nbase2 is the N 

isotope ratio for the primary consumer at the base of food chain two, and Δn is the trophic 

fractionation of N. For the calculation of the reliance on the benthos in terms of diet, I used 

the Bayesian mixing-model package SIAR in R 2.15.3 (©The R foundation for Statistical 

Computing). The N and C isotopic ratios of snails and zebra mussels were used to represent 

the benthic and pelagic food chains, respectively. Predators are slightly enriched in δ13C and 

significantly enriched in δ15N relative to their prey (Post, 2002). To correct for this 

enrichment, I added 0.23‰ and 2.2 ‰ to the δ13C and δ15N of turtles respectively 

(Seminoff et al., 2007). For fish, the values added to the δ13C and δ15N values were 

calculated following the equation provided by Caut et al. (2009). 

Modeling ― I built separate models to predict the THg concentration in fish and in turtles 

using multiple regression. I used the following predictor variables where applicable: SIZE (as 

the % maximum within each species), SEX (only for turtles), sampling lake (LAKE), SPECIES, 

proportion of snails in the diet (PSNAIL), and trophic level (TL). SIZE and TL were included 

because previous studies showed that they can influence the level of THg accumulation in 

animals (Canli and Atli, 2003; Kidd et al., 1995).  

I looked for evidence of multicollinearity among the possible THg predicting 

variables (See Collinearity, APPENDIX I) (Smith et al., 2009). Then, for each group of animals, 
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I first used multiple regressions to build models including all the predictors on the full data 

set. I used the log transformed THg data to satisfy the assumptions of normality and 

homoscedasticity. Using the MuMIn package in R, I calculated the second order Akaike’s 

Information Criterion (AICc) for each candidate model, and made a final model selection 

based on ΔAICc and Akaike weights (Burnham and Anderson, 2002). Models with ΔAICc < 4 

were used in the calculation of the parameters of the final average model. The averaged 

predictive model also took into account the relative Akaike weight of each candidate model. 

I also calculated the relative importance of the predictive variables for each model using the 

MuMIn package. All averaged models included the full list of parameters originally 

considered. Standard Errors (SE) and 95% confidence intervals (95% CI) of each average 

model coefficient were used to validate the model since these measures provide 

information on the uncertainty related to a coefficient’s predictive ability. 

To further validate the ability of these models in predicting THg concentrations in 

animals, I also used multiple regressions to build models including all the predictors on 

several training sets. These were then validated using their complementary testing sets. 

There were 8 testing sets in total for each group of animals; 4 of the testing sets were 

composed of site-specific data, and 4 others were composed of random sampling points 

taken out of the original data set.  Using the MuMIn package in R, I calculated the second 

order Akaike’s Information Criterion (AICc) for each candidate training model, and final 

model selection was based on ΔAICc and Akaike weights (Burnham and Anderson, 2002). 

Model with ΔAICc < 4 were used in the calculation of the parameters in the average final 

model. The averaged predictive model also took into account the relative Akaike weight of 
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each candidate model. All averaged models included the full list of parameters originally 

considered, and the relative importance of the predictive variables for each model was also 

calculated using the MuMIn package. I then used the resulting predictive models to 

calculate predicted THg concentrations in the testing sets. I plotted observed (OBS) THg 

values against predicted (PRE) THg values in the testing set and compared the slope and 

intercept of this regression line to the best possible predictive model line (1:1).  In the best 

predictive model, plotting OBS vs. PRE values should give a regression line (mx + b) in which 

m = 1 and b = 0 (Piñeiro et al., 2008). I performed statistical analyses with JMP 10.0 (SAS 

Institute, Inc., Cary, NC; http://www.jmp.com) and R 2.15.3 (©The R foundation for 

Statistical Computing). Power analyses were performed to calculate the minimum required 

sample size for the multiple regression analyses using G*Power 3.1.7 © Franz Faul, 

Universität Kiel, Germany 1992 – 2013.  

RESULTS 

 

Turtles  

 

Model Variables – I measured the concentration of THg in the blood of 39 musk turtles (30 

males and 9 females) and 60 painted turtles (40 males and 20 females). The average THg 

concentration was 5.04 ± 1.89 ng/g and 10.53 ± 1.53 ng/g for musk and painted turtles, 

respectively. The concentration of THg was significantly different between the two species 

of turtles (t(97) = 2.26, p = 0.03) (Figure 1 – 1A).  

I examined multicollinearity between each continuous predictor variable and found 

that VIFs values and correlation coefficients were low, indicating that the predictors used in 
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the models were not strongly correlated with one another (see Collinearity in APPENDIX I, 

and Figure A1 – 2A). As a result, all predictor variables were considered. SIZE showed little 

variability, but in contrast, PSNAIL and TL were measured over a large range of possible 

values for both species of turtles (Table 1 – 1A). 

Modeling and Validation – Using the full dataset in the multiple regression analysis, 

I obtained seven models with ΔAICc < 4 and these models had between two and five 

parameters (Table A1-1A). Akaike weights for the models ranged from 0.05 to 0.31. Since 

Akaike weights were generally low (< 0.90), the final averaged model took into account all 

seven candidate predictive models. The most important variables in the averaged final 

model were TL and SPECIES. The least important variable was LAKE. All three continuous 

variables had a positive relationship with THg, but only the effect of TL was significant (z = 

5.31, p < 0.0001). The only categorical variable to significantly affect THg was SPECIES (z = 

3.66, p = 0.0003). To validate the model, I looked at the SE and 95%CI for each averaged 

coefficient. All parameters except TL had high SE and 95% CI (Table 1 – 2A).  

 Cross-Validation – Using multiple regression analysis, I obtained between 3 and 11 

candidate models with ΔAICc < 4 for both site-specific and random training sets (Table A1 – 

2). Candidate models for all the training sets had between two and five parameters.  Akaike 

weights ranged from 0.03 to 0.62 and were generally low. Therefore, instead of picking the 

best model, I averaged all candidate models for each training set. The most important 

variable in all eight training models were SPECIES and TL. The least important variable 

varied between PSNAIL, SEX, and LAKE. PSNAIL, TL, and SIZE all had a positive relationship 

with THg, with the exception of PSNAIL who had a negative relationship with THg in one of 
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the training sets. Across all predictive models, only TL and SPECIES consistently and 

significantly affected THg concentration in blood.  

Six out of eight averaged models significantly predicted THg in the testing sets. The 

model obtained for each training set was used to calculate predicted THg concentrations in 

testing sets. Then, OBS and PRE THg concentrations in the testing set were examined for 

correlation. R2 values from the six averaged models that significantly predicted THg were 

generally low, and between 26 to 82% of the variation remained unexplained by the models 

(Table 1 – 3A). Moreover, the slope of these relationships deviated from the 1:1 slope 

expected from a good predictive model by 2 to 122% (Figure 1 – 2), and these deviations 

averaged 51.88 ± 15.88 %. THg in turtles from the third site-specific training set (S3) seemed 

to be best predicted by the corresponding average model (R2 = 0.74, m = 0.98, b = 0.12). All 

other models had lower predictive power. 

Fish  

 

Model variables – I measured the muscle THg concentration in 50 blackchin shiners, 20 

pumpkinseeds, and 49 brook silversides. The concentrations of THg were significantly 

different between the three species of fish (F(2, 116) = 24.85 , p < 0.0001) (Figure 1 – 1B). 

Blackchin shiners had 234.55 ± 20.43 ng THg/g, brook silversides had 158.27 ± 18.09 ng 

THg/g, and pumpkinseeds had 409.13 ± 29.72 ng THg/g. 

I examined multicollinearity between each continuous predictor variable and found 

that VIFs values and correlation coefficients were low. This indicates that the predictors 

used in the models were not strongly correlated with one another (see Collinearity in 
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APPENDIX I and Figure A1 – 2B). As a result, all predictor variables were considered. Fish 

trophic level showed little variability between and within species, but PSNAIL and SIZE had 

high variability within species (Table 1 – 1B).    

Modeling and Validation – From the multiple regression analysis that considered 

the full dataset, I obtained two models with ΔAICc < 4 (Table A1 – 1). These models had four 

and five parameters. Akaike weights for the models were 0.85 and 0.15. Since Akaike 

weights were low (< 0.90), the final averaged model took into account the two candidate 

predictive models. All predictive variables were as important in the model, with the 

exception of trophic level which was less important. All continuous predictor variables had 

a significant effect on THg, with SIZE (z = 9.07, p < 0.0001) and PSNAIL (z = 2.61, p = 0.01) 

having a positive linear relationship, and TL having a negative linear relationship with THg (z 

= 2.34, p = 0.02). The only categorical variable that had a significant effect on THg was 

SPECIES (z = 7.78, p < 0.0001). To validate the model, I looked at SE and 95% CI, and these 

were smaller for the fish average predictive model than for the turtle predictive model 

(Table 1 – 2B).  

 Cross-Validation – I obtained between 2 and 4 models with ΔAICc < 4 for both site-

specific and random training sets (Table A1 – 3). All candidate models had between three 

and five parameters. Akaike weights ranged between 0.11 and 0.88, so models were 

averaged in every case instead of relying on the model with the highest weight. The most 

important variable in all training sets were LAKE, SPECIES, and SIZE and these variables were 

all ranked equally in terms of importance. The least important variable alternated between 

PSNAIL, TL, or a combination of both, depending on the training set. Even though these 
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variables ranked as less important, they were only slightly less important than LAKE, 

SPECIES and SIZE. In every training set, PSNAIL and SIZE had a positive relationship with 

THg, whereas TL has a negative relationship with THg, and this negative relationship was 

significant in half the training sets (coefficient = -0.00 – -0.32, z = 0.03 – 2.75, p = 0.01 – 

0.98).  

All training sets significantly predicted THg in the testing sets. Plotting OBS vs. PRE 

THg concentrations in the testing sets showed that between 50 and 77 % of the variation in 

THg is explained by the models (Table 1 – 3B). Moreover, the slope of the relationship 

between OBS and PRE THg deviated from the expected 1:1 slope indicative of a good 

predictive model by 2 – 19 % and these deviations averaged 11.75 ± 1.91 % (Figure 1 – 3). 

THg in fish from site 2 (S2) and from the third random training set (R3) seemed to be best 

predicted by their corresponding training set (R2 = 0.77, m = 1.02, b = 0.14 and R2 = 0.77, m 

= 1.11, b = -0.25), and the model predictions at S2 were the least biased due to the 

predictive model’s minimal deviation from the 1:1 expected regression line.  

DISCUSSION 

 

A number of factors are known to influence the accumulation of THg in animal 

tissues. These include age and size of the animal (Farkas et al., 2003), trophic level (Atwell 

et al., 1998; Coelho et al., 2006; Kidd et al., 2011; Power et al., 2002), and surrounding 

wetland morphology (Snodgrass et al., 2000). Only a few studies attempt to create 

predictive models for animal tissue THg concentration using physiological and ecological 

factors (e.g. Greenfield et al., 2001; Qian et al., 2001). The influence of other factors, such 
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as the dietary reliance on various carbon sources, as measured by δ13C signatures, is still 

debated. Some show that dietary reliance on various carbon sources can influence the 

accumulation of MeHg (Bergeron et al., 2007; Power et al., 2002), while others do not 

consider it a useful predictor of tissue concentrations (Chumchal and Hambright, 2009). The 

lack of consensus may be due to the fact that basal δ13C varies inexplicably and significantly 

between and within lakes (Doucett et al., 1996). When included as a variable in models, it 

introduces a lot of unexplained variance, making it difficult to discern its main effect. 

Nevertheless, creating a simple model capable of predicting which species is likely to be 

burdened by high levels of THg from known feeding ecology parameters is important in a 

conservation context. 

In this study, I attempted to create a predictive model capable of forecasting THg 

burdens in freshwater animal tissues based on feeding ecology and relative body size. I use 

trophic position and reliance on the benthic food chain as feeding ecology parameters. 

Instead of using δ13C as a direct way of tracing carbon origins within the different lake 

zones, however, I converted the ratio to a measure of dietary reliance on the benthic food 

chain using a mixing model. I then created predictive models using data obtained from two 

species of turtles and three species of fish, and these models were validated using SE and 

95% CIs. In addition, I created a series of training sets and corresponding testing sets. 

Models created from the training sets were validated on their matching testing sets as a 

way to assess whether the results of this analysis could be generalized to independent data 

sets. My prediction was that there should be an increase in tissue THg concentration with 

an increase in dietary reliance on the benthic food chain. The ability of all models to predict 
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THg from feeding ecology parameters and from relative size was greater in fish than in 

turtles so my prediction was supported by the fish data.  

Turtles 

 

In general, the predictive models of THg accumulation performed poorly for this 

group. The large SE and 95% CI obtained on the parameter coefficients from the full 

averaged model indicate that this model did not fit the THg concentration data well, and 

that predictions could only be made with low precision. Similarly, in the cross-validation 

exercise, an average of over 75% of the variation in THg concentration remained 

unexplained by the models, suggesting that they made poor predictions. In addition, the 

large deviations from the 1:1 line obtained when plotting OBS vs. PRE THg concentrations 

indicates that predictions made from these models were biased. It is therefore not 

advisable to generalize these models to independent data sets.  

Of all the variables included in the training models, trophic level (TL) seemed to have 

the overall strongest relationship with turtle blood THg concentration. In fact, TL was the 

most important variable in all the models, and the relationship between THg and TL was 

constantly positive (Table 1 – 4A). This supports the prediction that THg (as a measure of 

MeHg concentration) biomagnifies in the food web. The variable SPECIES was equally 

important in all the models. The magnitude of its effect on THg concentration, as indicated 

by its comparatively large coefficients, suggests that there are some inherent qualities 

specific to each species of turtles that can influence their THg accumulation. In this case, 

painted turtles had more THg in their blood than musk turtles (Figure 1 – 1). Although I 
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cannot determine which species-specific quality is responsible for the differences in 

accumulation of THg from the results of this study, potential explanations can be found in 

the literature. For example, physiological turnover rates can vary across species and can 

affect metal accumulation (Wang and Fisher, 1999). In mammals, metabolic rate can be 

used to estimate blood turnover rate: larger animals have slower metabolic rates per unit 

mass, and have slower blood turnover rates (MacAvoy et al., 2006). My results could 

indicate a similar trend in turtles: the larger painted turtle could accumulate more THg in its 

blood as a result of slower tissue turnover. In addition, the percent haemoglobin in turtle 

blood varies between 5.9 and 11.2 in freshwater species (Dessauer, 1970). Since the 

methylated form of Hg, MeHg, preferentially binds proteins, those with higher blood 

haemoglobin concentrations may accumulate more THg in their blood. Thus, although the 

models could only poorly predict THg accumulation in turtles, my results support the 

inclusion of the variables SPECIES and TL in future attempts to model THg accumulation in 

these animals.  

PSNAIL, or reliance on the benthic food chain, consistently ranked as one of the 

least important variables in the training models. Moreover, the relationship between THg 

and PSNAIL was not consistently positive in the cross-validation exercise (Table 1 – 4A), and 

no statistically significant linear dependence of the mean THg concentration on PSNAIL was 

detected. This makes it impossible to interpret the effect of PSNAIL on THg concentration’s 

conditional mean. Similarly, the PSNAIL coefficient in the model based on the full dataset 

had high SE and 95% CI (Table 1 – 2A), indicating that it could not be quantified with 

certainty in the stepwise regression analysis. Consequently, my initial prediction that THg 
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burden should increase with dietary reliance on the benthic food chain is not supported by 

my data on turtles. Moreover, I did not reach my goal of creating a predictive model for THg 

burden in turtles since the cross-validation exercise showed that the application of the 

model could not be extended to other sites of study.  

Fish 

 

 Models made far more accurate predictions of THg accumulation for fish than for 

turtles. The SE and 95% CI on the averaged model coefficients created using the full fish 

dataset were smaller than for turtles, meaning that the model parameters were estimated 

with more accuracy for fish (Table 1 – 2). Similarly, in the cross-validation exercise, I found 

that the training models explained on average 64% of the variation in THg concentration in 

the testing sets, suggesting that generalization to independent data set could be possible. 

Moreover, whereas I could only make biased estimates of THg concentration in turtle 

blood, predictive models provided THg concentration estimates in fish muscle that were 

less biased since the OBS vs. PRE regression line deviated less from the 1:1 linear fit 

expected from the best possible predictive model.  

Interestingly, the variables that were the most important in the models were LAKE, 

SIZE, and SPECIES, and not the variable related to fish feeding ecology. Because most fish 

species grow continuously during their lives, the relationship between age and size is strong 

(Mommsen, 2001). The positive relationship between THg concentration and size for this 

variable is therefore consistent with the expected positive relationship between age and 

THg concentration caused by the ability of the methylated form of Hg to bioaccumulate. 
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LAKE and SPECIES were as important as SIZE in the models. Much like it was the case for 

turtles, the effect of SPECIES could be explained by differences in protein content in the 

muscle (Kinsella et al., 1977) or it could be due to varying rates of tissue turnover between 

the different species of fish (MacAvoy et al., 2006). In this case, the pumpkinseeds had the 

most THg in their muscles, and the brook silverside had the lowest concentration of THg in 

the muscle (Figure 1 – 1B). Yet, I cannot determine the exact reason why THg concentration 

varied between species from my data set. Likewise, the significant effect of LAKE cannot be 

explained from my data set. However, I can speculate that ecological parameters such as 

the variation in methylation rates of Hg across the three lakes due the presences and size of 

surrounding wetlands (Ullrich et al., 2001), or the differences in amounts of THg found 

across and within the three lakes (LeBlond, 2009) could explain the effect of LAKE. In fact, 

fish from Newboro Lake had relatively more THg in their tissues than fish from Upper 

Rideau and Indian Lakes. Likewise, Newboro Lake has the highest average surface sediment 

concentration of THg with 0.16 ± 0.03 µg/g compared to Indian and Upper Rideau Lakes 

which had an average of 0.11 ± 0.02 µg/g THg in the surface sediments (LeBlond, 2009). 

Since the models predicted THg concentration in fish with some degree of accuracy, my 

results support the inclusion of these predictive variables in future similar modeling 

exercises. 

Trophic level (TL) consistently ranked as the least important variable, and PSNAIL 

alternated between being as important as SIZE, LAKE and SPECIES, and being the second 

least important variable. However, TL and PSNAIL were always only slightly less important 

than the other variables. Thus, all the predictor variables that I considered in the models 
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were valuable. My initial prediction was that there would be an increase in THg 

concentration in animal tissues with an increase in dietary reliance on the benthic food 

chain as measured by the proportion of the diet that was derived from the benthos 

(PSNAIL). As predicted, PSNAIL had a consistent positive relationship with THg across all 

training models and in the full model (Table 1 – 4B). In addition, the estimated rate of 

change of the conditional mean of THg concentration with respect to PSNAIL, when all 

other predictor variables were fixed, was the highest of all the predictor variables. This 

means that PSNAIL had the most conditional influence on THg concentration in fish muscle.  

On the contrary, the relationship between TL and THg concentration in fish muscle was 

consistently negative, and the z-scores for the TL coefficients were only significant in some 

of the models, making any interpretation regarding its meaning unadvisable. In summary, 

my study indicates that the reliance of the benthic food web is an important predictor of 

THg burden in fish. 

Applications and future modeling exercises 

 

The models I built with my set of variables cannot be used to predict THg burden in 

turtles accurately for a number of reasons: the training models poorly predicted THg in 

testing sets, the THg estimations were biased, and SE and 95% CI of the full dataset model 

parameter coefficients were large. For fish however, the models built with the same 

variables were able to predict THg burdens with some accuracy. Therefore, the fish models 

could be used to predict THg concentrations in external data sets, as long as the data come 

from a site with similar concentrations of THg in the sediments. This restriction is necessary 



36 
 

because when THg is present in concentrations typical of industrially polluted areas, the 

ecosystem’s Hg methylation capacity gets overloaded, leaving higher concentrations of THg 

available in the ecosystem. Because such systems end up with more THg than MeHg, THg 

tends to accumulate at a faster rate in organisms (Bergeron et al., 2007). In areas of high 

concentration then, it cannot be assumed that THg concentration equals MeHg 

concentration in animal tissues. The rates of accumulation could therefore be influenced by 

other unknown factors.  

Based on the results of this study, I recommend that conservation strategies focus 

on trophic level to identify turtle species that are likely to be burdened by THg. For fish, I 

recommend that reliance on the benthic food web be considered. Future modelling studies 

should use transformed isotopic ratios to represent trophic level and reliance on the 

different food chains. This is especially important when sampling occurs in several locations 

because a lot of unexplained variation exists in isotopic signatures within and between 

lakes. Furthermore, the C and N isotopes give a coarse estimate of diet composition (i.e. 

benthic vs. pelagic). Within each source, there exist a lot of prey items that may vary in 

their ability to accumulate and transfer Hg. I therefore also recommend including a more 

refined estimate of diet composition in future models.  

A major issue that I encountered was that the snail species I chose to represent the 

benthic food chain, the banded mystery snail (Viviparus georgianus), is an occasional filter-

feeder. I chose this species of snail because it is the most abundant in the study lakes, and 

because it is the only one that can be found throughout the sampling season. This means 

that, at least in some instances, this primary consumer integrates both the pelagic and 



37 
 

benthic food chains. This is a potential problem because when I calculated the reliance on 

the benthos using Bayesian mixing models, I assumed that my representatives of the 

benthic and pelagic food chains were sufficiently distinct from one another in terms of 

isotopic signatures. Since the snail has the option of filter-feeding, its carbon isotopic 

signature can resemble that of the pelagic representative. To determine whether this was 

an issue in my data set, I plotted the isotopic signatures of the benthic and pelagic 

representatives and looked for overlap in carbon isotope ratios. In some locations, the δ13C 

of the pelagic primary consumers resembled that of the benthic primary consumer, but 

there was never any overlap in the range of δ13C values. For that reason, the assumption 

that the representatives must be distinct is met within my data set. In addition, I ran the 

mixing-model analysis a few times using snail and zebra mussel δ13C values typical of a 

situation in which the zebra mussel filter-feeds and the snail grazes, and concluded from 

the results of this hypothetical scenario that the fact that snails can filter-feed should not 

affect the predictive ability of the models (see Snails and Filter-Feeding in APPENDIX II and 

Figure A2 – 2). Still, reliance on the benthic food web may have been more accurately 

measured if the benthic representative had been an obligate grazer.  

Another issue I encountered is related to the measure of age in turtles. The 

methylated form of Hg (MeHg) bioaccumulates in turtles, so older individuals are expected 

to have more THg in their tissues when compared to younger individuals. However, there is 

currently no accurate way to measure turtle age for wild individuals.  Whereas size can be 

used as a surrogate of age in fish because they grow indeterminately, turtle growth rates 

diminish significantly or stops completely in adults (Galbraith et al., 1989), making size a 
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poor predictor of age. It is possible then that having a way to estimate turtle age, and 

including turtle age as a variable in the models, could improve its ability to predict THg 

concentration in turtle blood.  
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SIZE PSNAIL TL

A. Turtles

Musk 10.82 ± 0.13 (8.00 - 12.20) 0.56 ± 0.03 (0.11 - 0.85) 2.76 ± 0.07 (1.86 - 3.52)

Painted 13.97 ± 0.12 (10.30 - 16.00) 0.49 ± 0.04 (0.02 - 0.95) 2.47 ± 0.10 (0.71 -4.48)

B. Fish

Blackchin Shiner 4.35 ± 0.10 (2.31 - 5.66) 0.45 ± 0.01 (0.33 - 0.78) 3.00 ± 0.04 (2.38 - 3.44)

Brook Silverside 5.76 ± 0.07 (4.81 - 7.52) 0.45 ± 0.01 (0.36 - 0.99) 2.98 ± 0.02 (2.68 - 3.37)

Pumpkinseed 13.23 ± 0.27 (9.59 - 19.00) 0.41 ± 0.04 (0.22 - 0.79) 3.08 ± 0.07 (2.47 - 3.68)

 

  

Table 1 – 1. Variability in measurements of the predictors used in modeling THg concentrations in 

turtles (n = 99) and in fish (n = 119). Size of the animals is indicated in centimeters (cm) and 

PSNAIL is a proportion. Trophic level (TL) was calculated using the formula described in Post et al. 

(2002). All measurements are given as average (M) ± standard error (SE) (minimum – maximum). 



40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Coefficient SE 95% CI

A. Turtles

Intercept -1.03 0.55 -2.12, 0.06

SIZE 0.01 0.00 0.00, 0.02

SPECIES 0.27 0.07 0.13, 0.42

TL 0.30 0.05 0.19, 0.42

PSNAIL 0.20 0.15 -0.09, 0.49

SEX 0.03 0.08 -0.12, 0.19

LAKE 0.00 0.10 -0.20, 0.20

B. Fish

Intercept 1.73 0.35 1.03, 2.43

LAKE -0.13 0.05 -0.21, -0.05

PSNAIL 0.41 0.15 0.10, 0.71

SIZE 0.01 0.00 0.01, 0.02

SPECIES 0.17 0.04 0.09, 0.25

TL -0.22 0.10 -0.41, -0.04

Table 1 – 2. Averaged parameter coefficients for two logistic 

regression models predicting THg concentrations in A. turtles (n = 

99) and B. fish (n = 119). Standard error (SE) and 95% confidence 

intervals (95% CI) are given for each parameter. 
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Training Set R2
p m b

A. Turtles Site 1 0.26 0.0121 1.13 -0.24

Site 2 -0.05 0.8977 0.06 0.60

Site 3 0.74 p < 0.0001 2.46 0.84

Site 4 -0.05 0.8307 0.08 0.54

Random 1 0.47 0.0005 2.22 -0.84

Random 2 0.53 0.0002 1.44 -0.32

Random 3 0.30 0.0071 1.14 -0.09

Random 4 0.29 0.0080 1.34 -0.13

B. Fish Site 1 0.50 0.0004 1.19 -0.64

Site2 0.77 < 0.0001 1.02 0.14

Site 5 0.70 < 0.0001 0.90 0.19

Site 6 0.65 < 0.0001 0.91 0.30

Random 1 0.66 < 0.0001 0.89 0.26

Random 2 0.57 < 0.0001 0.82 0.36

Random 3 0.77 < 0.0001 1.11 -0.25

Random 4 0.52 < 0.0001 0.86 0.31

 

 

 

 

 

 

 

 

 

 

 

  

  

Table 1 – 3. Predictive ability assessment for 16 averaged 

models predicting turtle and fish tissue THg concentration on 

internal data (n = 19 – 30). Coefficient of determination (R2), p-

value (p), and slope (m) and intercept (b) of the linear fit 

between observed (OBS) and predicted (PRE) THg 

concentrations (ng/g) are presented. The name of the training 

set refers to the data that was taken out of the full data set to 

create the testing set. 
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A. Turtles S1 S2 S3 S4 R1 R2 R3 R4

Intercept -0.59 -1.69 -1.32 -0.47 -0.27 -0.76 -0.65 -0.62

Lake 0.00 0.00 0.02 0.00 0.06 0.05 0.00 0.00

PSNAIL 0.30 0.00 0.16 0.18 0.27 0.17 0.16 0.08

Size 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01

Sex -0.07 0.01 -0.04 0.04 0.02 0.05 0.13 0.05

Species 0.30 0.29 0.32 0.25 0.20 0.25 0.21 0.24

TL 0.24 0.35 0.30 0.63 0.24 0.28 0.30 0.32

B. Fish

Intercept 1.84 1.98 2.11 1.34 1.80 1.02 1.66 0.95

Lake -0.20 -0.04 -0.13 -0.12 -0.12 -0.13 -0.12 -0.07

PSNAIL 0.69 0.35 0.34 0.21 0.40 0.86 0.48 0.92

Size 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01

Species -0.52 0.18 0.17 0.17 0.15 0.16 0.15 0.16

TL -0.07 -0.27 -0.32 -0.14 -0.25 -0.03 -0.23 0.00

Table 1 – 4. Parameter coefficients for eight averaged multiple linear regression models 

predicting THg for A. turtles (n = 19 – 20) and B. fish (n = 19 – 30). The number of the study 

site S1 – S4, and the number of the random sub-samples R1 – R4 refer to the data excluded 

from each training set to create the testing set. The z-score of the coefficients highlighted in 

grey were not significant.   
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Figure 1-1. Total mercury (THg) concentration (ng/g) in A. musk (n = 39) and painted (n = 60) turtle 

blood and B. blackchin shiner (n = 50), brook silverside (n = 49), and pumpkinseed muscle (n = 20) 

across lakes Indian, Newboro, and Upper Rideau. * p < 0.05, ** p < 0.001 *** p < 0.0001 
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Figure 1 – 2. Correlations between predicted and observed THg concentrations 

in turtles in log-transformed ng/g (n = 19 – 20). The dark line represents the 

model linear fit and the pale line is the 1:1 linear fit within the boundaries of 

the axes. 
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Figure 1 – 3. Correlations between predicted and observed THg concentrations in 

fish in log-transformed ng/g (n = 19 – 30). The dark line represents the model 

linear fit and the pale line is the 1:1 linear fit within the boundaries of the axes. 
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CHAPTER 2: THE PROPORTION OF ZEBRA MUSSELS (DREISSENA POLYMORPHA) IN THE 

DIET OF MUSK TURTLES (STERNOTHERUS ODORATUS) AND PUMPKINSEEDS (LEPOMIS 

GIBBOSUS) DOES NOT INFLUENCE THE ACCUMULATION OF MERCURY 
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ABSTRACT 

 

Differences in feeding ecology are known to affect the accumulation of 

contaminants such as mercury (Hg) in aquatic animals. Modelling the accumulation of Hg in 

animals can help identify which animals are likely to accumulate high concentrations of Hg. 

Since zebra mussels can accumulate more Hg than native mussels in their tissues due to 

their relatively high filtering rates, I predict that Hg burden should increase with an increase 

in dietary reliance on zebra mussels as a prey item. I created averaged multiple linear 

regression models to predict Hg burdens in pumpkinseeds and musk turtle, two species that 

consume zebra mussels, from the proportion of zebra mussels in their diets. I also 

controlled for other factors known to influence Hg accumulation (sex, size, location, and 

trophic level). The proportion of zebra mussels in the diet was the most influential variable 

in both fish and turtle models. However, none of the regression coefficients could be 

estimated significantly, making any interpretation of my results not advisable. Errors in 

predictions were mostly due to unexplained variance, and R2 values between observed and 

predicted Hg values were 0.11 for musk turtles, and 0.22 for pumpkinseeds. The results 

indicate that the proportion of zebra mussels in the diet of musk turtles and pumpkinseeds 

is not a good predictor of Hg burdens.  
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INTRODUCTION 

 

Biotic exchanges, defined as the successful accidental or intentional introduction of 

plants or animals to an ecosystem, is ranked in the top five threats to biodiversity (Sala et 

al., 2000), and as the second most important threat after habitat destruction (Lowe et al., 

2000). Generally, biotic exchanges are a relatively more important threat in freshwater 

ecosystems because of activities such as fish stocking, long distance navigation by ship, and 

because the spread of non-native species may be facilitated by water currents and by the 

lack of physical barriers within water bodies (Lodge et al., 1998). Non-native species can 

disrupt native communities and even cause extinctions. For instance, the Nile perch was 

introduced into Lake Victoria in the 1950s and caused the disappearance of 200 of the 300 

species of endemic cichlids that were present before the invasion (Witte et al., 1992). 

Invasive species can also alter levels of primary productivity. In plants, for example, 

biomass, primary productivity, nitrogen (N) availability, and N fixation rates all increase 

significantly in communities with invasive species (Ehrenfeld, 2003). Furthermore, invasive 

species can shift the balance of energy transfers between pelagic and benthic food chains. 

The introduction of largemouth bass (Micropterus salmoides) and rock bass (Ambloplites 

rupestris) in Canadian lakes, for instance, caused a decrease in trophic level and a shift 

towards the pelagic food chain in Salvelinus namaycush, the native lake trout (Vander 

Zanden et al., 1999). Effects can also cascade down the food web. For example, after the 

introduction of the opossum shrimp (Mysis relicta), zooplankton populations decreased due 

to predation by the introduced shrimp. As a result, planktivorous kokanee salmon 
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(Oncorhynchus nerka) population collapsed, which lead to the displacement of a number of 

salmon predators, including grizzlies and bald eagles (Ellis et al., 2011; Spencer et al., 1991). 

As globalization causes biogeographic barriers to disappear, invasive species are becoming 

more common and prevalent (Mooney and Hobbs, 2000; Vince, 2011). However, the impact 

that invasive species have on ecosystems often remains only partially characterized.   

Zebra mussels (Dreissena polymorpha) are bivalves endemic to most of Europe, but 

invasive in North America. This mollusk is believed to have reached North American waters 

via ballast water discharge of Atlantic-crossing vessels (Hebert et al., 1989). The invasion 

was discovered in 1988 in Lake St-Clair, Ontario, Canada. Since 1988, zebra mussels have 

colonized the majority of the Great Lakes basin (Griffiths et al., 1991), they are now part of 

the primary threat to the viability of native species in near-shore zones in some of the Great 

Lakes (Lake Ontario Biodiversity Strategy Working Group 2009), and they are considered 

one of world’s worst 100 invaders (Lowe et al., 2000). Zebra mussels are filter-feeders with 

a high filtration rates (10 to 100 ml/individual/day: Mackie, 1991), and they can remove 

from the water column particles that are 150 µm to 1.22 mm in size (Horgan and Mills, 

1997). Zebra mussels can also re-suspend bottom sediments and filter them. Since 

sediments are a repository for contaminants such as polychlorinated biphenyls (PCBs) and 

heavy metals (Chon et al., 2012; Martinez et al., 2010), zebra mussels may be exposed to 

more contaminants while re-suspending sediments and, as a result, accumulate more 

contaminants than other bivalves or gastropods. In fact, sediment contaminant 

concentrations often correlate well with zebra mussel contaminant burdens (e.g. Kwan et 

al., 2003; Regoli et al., 2001).  
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One contaminant of concern is mercury (Hg). Hg is a heavy metal that has 

anthropogenic and natural origins. Its natural origins include volcanic eruptions and the 

weathering of rocks (Nriagu, 1989). Its anthropogenic sources include industrial smelting 

and gold mining (UNEP, 2013). Once Hg is in the atmosphere, it is transported to remote 

regions of the globe and deposited in soils, water bodies, and sediments. Hg is therefore 

ubiquitous: it can be found in industrial regions of the globe as well as in remote regions. 

In aquatic environments, three forms of Hg are typically found: metallic Hg (Hg0), 

divalent Hg (Hg2+), and methylmercury (MeHg). Once in the water column or in the 

sediments, Hg0 is either deposited, or it is oxidized to Hg2+. In turn, Hg2+ can be deposited 

into the sediments or rendered bioavailable by bacteria who add one or two methyl groups 

to the ion. These transformations are also reversible so that Hg2+ can be reduced to Hg0, 

and MeHg can be demethylated. Studies on Hg focus on MeHg because it is bioavailable 

(Barrocas et al., 2010), because it is the form that dominates in vertebrate tissues (Bloom, 

1992), and because it is has known toxic effects (Mark and James, 2011; Scheuhammer et 

al., 2007). 

Since the introduction of the zebra mussel, several species have changed their diets 

to include them as a food item. This is the case for several species of waterfowl in the Great 

Lakes including the lesser scaups (Aythya affinis), the greater scaups (Aythya marila), the 

buffleheads (Bucephala albeola), the canvasback (Aythya valisineria), and Bucephala 

clangula, the common golden eye (Custer and Custer, 1996). Reptiles and fish, such as map 

turtles (Graptemys geographica), musk turtles (Sternotherus odoratus), pumpkinseed 

(Lepomis gibbosus), and carps (Cyprinidae family) have also altered their dietary habits to 



51 
 

include zebra mussels (Bulté and Blouin-Demers, 2008; French, 1993; Patterson and 

Lindeman, 2009). The zebra mussel is also an important prey item for the round goby 

(Neogobius melanostomus), an invasive and extremely abundant species in Lake Erie 

(Marsden and Jude, 1995; Ray and Corkum, 1997). All have become predators of the 

invasive mussel, but to varying degrees. In the Great Lakes waterfowl community, for 

instance, gastrointestinal content analyses revealed that lesser scaup stomachs contained 

98.6% zebra mussels whereas canvasback stomachs contained 9% zebra mussels (Custer 

and Custer, 1996). Since zebra mussels can contain more MeHg than native food items, 

predators of zebra mussels may accumulate more MeHg post zebra mussel invasion. 

Because MeHg causes several deleterious health effects in animals (Wolfe et al., 1998), an 

increase in MeHg burden via the consumption of zebra mussels is cause for concern.  

MeHg causes several deleterious health effects in animals: it influences 

development, behaviour, and reproduction. Because MeHg negatively affects reproduction, 

it not only affects the health of individuals, but also impacts populations (Barr, 1986). Most 

studies look at total Hg tissue concentrations (THg). Since MeHg is the predominant form in 

animal tissues, measuring THg concentrations often provides a good estimate of THg 

concentrations. Deleterious effects associated with THg are often caused by exposure to 

doses that exceed environmentally relevant concentrations (Fimreite, 1974; Kamman et al., 

2005; Monteiro and Furness, 2001), but more subtle cellular, histological, and genetic 

effects are possible at THg concentrations typical of North-American freshwater bodies 

(0.0001 to 0.5 µg/L: Zillioux et al., 1993). For example, white sturgeons with muscle THg 

concentrations of 0.04 to 0.52 µg/g showed reduced plasma testosterone and estradiols, 
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were smaller, and were in poorer overall condition when compared to sturgeons with lower 

muscle THg concentrations (Webb et al., 2006). In addition, gene transcription in cutthroat 

trout (Oncorhynchus clarkii) was altered at whole body concentration of 0.06 µg THg/g ww 

(Moran et al., 2007), and histological changes were observed in brook trout (Salvelinus 

fontinalis) with whole body concentrations ranging from 0.05 to 0.29 µg THg/g ww 

(Schwindt et al., 2008). Effects such as altered gene transcription, decreased feeding, 

increased time to first spawn, and decreased antioxidant enzyme activity have also been 

observed in other freshwater fish (reviewed in Sandheinrich and Wiener, 2011). Similarly, in 

birds effects like the production of fewer fledged young, elevated levels of corticosteroid 

hormone in blood, and decreased foraging and brooding have been reported in individuals 

contaminated with THg (reviewed in Scheuhammer et al., 2007).  

Knowing which environmental factors are likely to influence the accumulation of the 

methylated form of Hg in wild animal populations is crucial. In fact, the United Nations 

Environment Program (UNEP) (2013) stated in their most recent report that there is a major 

gap in our ability to predict MeHg uptake by living organisms. There is therefore a need to 

be able to forecast, with some level of confidence, which species are likely to be burdened 

with high concentrations of MeHg.  

I tested the hypothesis that the proportion of zebra mussels in the diet of 

consumers influences their accumulation of MeHg. To test my hypothesis, I measured the 

proportion of the diet composed of zebra mussels and the concentration of MeHg in two 

species known to consume zebra mussels: pumpkinseeds and musk turtles. I predicted a 
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positive relationship between the proportion of zebra mussels in the diet of those two 

consumers and the concentration of MeHg in their tissue. 

METHODOLOGY 

 

Study area ― Sampling took place in eastern Ontario (Canada) on the Rideau Canal, a series 

of lakes, rivers, and human-made canals linking Ottawa to Kingston. I captured turtles, fish, 

and prey samples in Indian, Newboro, and Upper Rideau Lakes. Hg concentrations in the 

sediments of the three lakes ranged from 0.01 to 0.22 µg THg/g dry weight (LeBlond, 2009). 

In each lake, I trapped animals from two distinct sites. The sites were located at 

44° 34' 58.276" N,  76° 19' 33.837" W and 44° 36' 10.986" N, 76° 18' 33.479" W for Indian 

Lake, 44° 37' 46.178" N, 76° 20' 7.976" W and 44° 38' 38.674" N, 76° 17' 30.885" W for 

Newboro Lake, and 44° 39' 52.744" N, 76° 20' 9.974" W, and 44° 42' 16.131" N, 

76° 18' 56.427" W for Upper Rideau Lake. Every site was a shallow bay where turtles and 

fish are likely to be found.  

Turtle and fish capture ― I captured musk turtles and pumpkinseeds in May and June of 

2012 using two sets of paired fyke nets. Each net was 3.5 m long and composed of seven 

0.9 m diameter steel rings. Two throats were fitted at the second and fourth rings in each 

net to prevent the escape of captured animals. Two 4.6 m wings and one 10.7 m long lead 

were also fastened to each net. Nets, throats, wings and leads were built with 5.08 cm 

knotted nylon mesh. I emptied the nets every 24 hours to avoid deaths by asphyxia. The 

turtles I captured were transported in plastic bins to my field laboratory (Queen’s University 

Biological Station) where I collected blood samples from turtles, and where I recorded 
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morphological measurements. I marked each turtle with a notch on the carapace using a 

file to avoid recapture. I kept turtles overnight at my field laboratory and released them at 

the site of capture on the next fair-weathered day. Pumpkinseeds were euthanized at the 

site of capture using sharp blows to the head followed by spinal cuts. I then sealed fish 

individually in polyethylene bags and put them on ice for transport back to my field 

laboratory. There, I kept them frozen at -20° C. 

Blood sampling ― I collected 0.5 ml of blood from 39 musk turtles by subcarapacial vein 

puncture (Dyer and Cervasio, 2008) using 1 ml un-heparinized syringes fitted with 25 gauge, 

38 mm needles. The total blood volume for each individual was split in two and frozen in 

two separate 1.5 ml microcentrifuge tubes. These were immediately frozen at -20oC 

pending analyses. Half of the blood volume per individual was frozen at -60°C and then 

lyophilized for isotopic analyses. For each turtle, I also recorded the carapace length using a 

50 cm tree caliper, and the mass using a 300g Pesola spring scale. I determined the sex of 

each individual using secondary sexual characteristics (Moll, 1973). 

Fish muscle sampling ― Frozen whole fish were thawed in warm water. I weighed 

pumpkinseeds using a Scout scale with 600 x 0.1g capacity. Pumpkinseeds were also 

measured (length, height and width) using an electronic Powerfist calliper with a 300 mm 

capacity. The length of the fish was measured from the tip of the snout to the base of the 

tail. To measure the maximal height and width, the calliper was held parallel (lengthwise) to 

the fish. Using a filleting knife, I made a transverse cut behind the gills, downward with a 

slight angle towards the head. Then, holding the fish by the tail, I made a longitudinal cut 



55 
 

from the base of the tail to the first cut behind the gills. Only one side of the fish was 

filleted. I stored muscle samples in 15 ml flat cap centrifuge tubes. I then weighed the 

muscle samples, froze them at -60° C, and lyophilized them.   

Prey species sampling ― In lakes, carbon isotopic differences exist between primary 

producers that are pelagic and those that are benthic: pelagic primary producers are 

depleted in 13C when compared to benthic primary producers (Hecky and Hesslein, 1995). 

Because the trophic fractionation of the carbon isotopes between trophic levels is low 

(France, 1995), the carbon isotope ratio (δ13C) defined at the level of the primary producer 

is maintained in the food web. Therefore, the δ13C of prey items can be used to calculate 

the proportion of energy that a consumer derived from the benthic and pelagic zones (Post, 

2002).  To determine fish and turtle reliance on both prey items, I obtained three composite 

samples of banded mystery snails (Viviparus georgianus) and of zebra mussels (Dreissena 

polymorpha) from each sampling site. Because snails are grazers (Buckley, 1986), they 

represent the benthic food chain prey items. Because zebra mussels are filter feeders 

(Horgan and Mills, 1997), they represent the pelagic food chain prey items. I collected both 

species of mollusks by removing them from the surface of rocks or logs submerged in the 

water using a dip net or by hand. The mussel and snail samples were transported on ice to 

our field laboratory, and depurated for 24 hours in lake water to allow for their gut 

contents to be excreted. Each composite prey sample consisted of 10 individual snails or 

zebra mussels. I extracted the muscle from each mollusk, placed them in a 45 ml screw-cap 

centrifuge tube, froze them at -60°C, and then lyophilized them. 



56 
 

Mercury analyses  

 

Total Mercury ― Whole blood samples from each turtle, lyophilized muscle samples from 

each fish, and lyophilized composite prey samples were analyzed for total mercury (THg) 

content by combustion-amalgamation-cold-vapor atomic absorption spectrophotometry 

following the Environmental Protection Agency (EPA) method 7473 and using the MA-3000 

Mercury Analyzer Latest Direct Combustion Technology from Nippon Instruments 

(detection limit of 0.002 ng THg). For quality assurance, each group of 10 samples included 

a standard reference material (DORM-3 or DORM-4), and each set of 100 samples was 

initiated by purging the instrument twice.  

Methylmercury ― Organomercury (MeHg) concentrations were determined in 25% of the 

fish and turtle tissue samples and in one snail and one zebra mussel composite prey sample 

at each site by capillary gas chromatography coupled with atomic fluorescence 

spectrometry (GC-AFS) as described by (Cai et al., 1997). Initial extracts of fish tissue and 

turtle blood samples were subjected to sodium thiosulfate clean-up and the organomercury 

species were isolated as their bromide derivatives by acidic KBr and CuSO4 and subsequent 

extraction into a small volume of dichloromethane. Hg analysis was then performed using 

the P S Analytical Hg speciation system model PSA 10.723. This is an integrated gas 

chromatography - Hg atomic fluorescence instrument which is comprised of an Ai 

Cambridge (UK) model GC 94 gas chromatograph equipped with a CTC A200S autosampler, 

an optic injector module, and coupled to the PSA Merlin Detector via a pyrolysis oven held 

at 800°C. A fused silica analytical column with dimensions of 15 m x 0.53-mm i.d. 

http://hg-nic.us/merchandise/add_item.php?id=5
http://hg-nic.us/merchandise/add_item.php?id=5


57 
 

(Megabore), coated with a 1.5-µm film thickness of DB-1 (J&W Scientific) was used. The 

column temperature was held at 40°C for 30 seconds, programmed at 30°C/min to 85°C, 

which was held for 1 min, then programmed at 20°C/min to a final temperature of 200°C, 

and then held for 1 min. A split/splitless injector was used in the splitless mode and 

maintained at 150°C. The carry gas and make-up gas flows were 4.0 ml/min of helium and 

60 ml/min of argon, respectively. For the PSA Merlin detection system, the sheath gas flow 

was 150 ml/min of argon. Other parameter settings were the same as those reported 

previously. Data was acquired by a real-time chromatographic control and data acquisition 

system (EzChromTM, Scientific Software Inc., CA). 

The analyses of both forms of Hg on 25% of the samples in chapter 1 indicated that 

THg concentrations are a good approximation of MeHg concentrations in my system (see 

THg Concentration as a Measure of MeHg Concentration in APPENDIX I, and Figure A1-1). 

For this reason, in the results and discussion sections, THg is used interchangeably with 

MeHg.  

Carbon and Nitrogen Isotope Ratios – Samples and standards were weighed into tin 

capsules and loaded into an elemental analyser (Isotope Cube manufactured by Elementar, 

Germany) interfaced to an isotope ratio mass spectrometer (Delta Advantage 

manufactured by Thermo, Germany) (IRMS). Sample/Std were flash combusted at about 

1800C (Dumas combustion) and the resulted gas products carried by helium through 

columns of oxidizing/reducing chemicals optimised for CO2 and N2. The gases were 

separated by a "purge and trap" adsorption column and sent to IRMS interface (Conflo III 

manufactured by Thermo, Germany) then to IRMS. Internal standards (std) used were 
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(d15N, d13C in ‰): C-51 Nicotiamide (0.07,-22.95), C-52 mix of ammonium sulphate + 

sucrose (16.58,-11.94), C-54 caffeine (-16.61,-34.46), blind std C-55: glutamic acid (-3.98, -

28.53).  These cover the natural range. These analyses were performed at the G.G. Hatch 

Lab at the University of Ottawa, Ontario, Canada. The analytical precision is based on the 

internal std (C-55) which is not used for calibration and is usually better than 0.2 ‰. 

Trophic Level ― I calculated trophic level using the equation suggested by Post (2002): λ + 

(δ15Nsecondary consumer – [δ15Nbase1 * α + δ15Nbase2 * (1 – α)]/Δn, where λ  is the trophic position 

of primary consumers, α is the proportion of N in the consumer derived from the base of 

food web one (benthic food web), δ15Nbase1 is the N istope ratio for the primary consumer at 

the base of food web one, δ15Nbase2 is the N istope ratio for the primary consumer at the 

base of food web two, and Δn is the trophic fractionation of N. 

Proportion of zebra mussels in the diet ― Musk turtles feed almost exclusively on caddisfly 

larvae (order Trichoptera), snails, and zebra mussels (Patterson and Lindeman, 2009). 

Pumpkinseeds feed on a variety of gastropods and arthropods, but recent evidence from 

my study site reveals that their diet is mainly composed of zebra mussels and snails (Locke 

et al., 2013). To obtain the proportion of the diet that is composed of zebra mussels, I 

converted fish and turtle δ13C into proportions of pelagic (zebra mussels) and benthic 

(snails) prey with a two end-member mixing model using the Bayesian mixing-model 

package SIAR in R 2.15.3 (©The R foundation for Statistical Computing). Predators are 

slightly enriched in δ13C and significantly enriched in δ15N relative to their prey (Post, 2002). 

To correct for this enrichment in the model, I added 0.23‰ and 2.2 ‰ to the δ13C and δ15N 

of turtles respectively (Seminoff et al., 2007). For fish, the values added to the δ13C and 
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δ15N values were calculated following the equation provided in Caut et al. (2009). Because 

the diet of both the musk turtle and the pumpkinseed are not exclusively composed of 

zebra mussels and snails, the ratios obtained by the two end-member mixing model may be 

biased. However, since more than 85% of the food items consumed by both predators are 

zebra mussels and snails, I believe it is unlikely that the presence of other prey items would 

bias the mixing model results significantly.   

Modeling ― I built separate models to predict the THg concentration in pumpkinseeds and 

musk turtles using multiple regressions. I used the following predictor variables where 

applicable: SIZE (as the % maximum within each species), SEX (only for turtles), sampling 

LAKE, proportion of zebra mussels in the diet (PZEBRA), and trophic level (TL). SIZE and TL 

were included because previous studies showed that they can influence the level of Hg 

accumulation in animals (Canli and Atli, 2003; Kidd et al., 1995).  

I looked for evidence of multicollinearity among the possible Hg-predicting variables 

using the variance inflation factors (VIFs) method and the commonly used cut off value of 5. 

The VIFs were calculated using the “car” package in R. The results from the VIF method 

were corroborated with the calculation of correlation coefficient for each pair of continuous 

variables by restricted maximum likelihood (REML) method. For this, I used a threshold 

value of 0.70 (See Collinearity, APPENDIX II) (Smith et al., 2009).  

I used multiple regressions to build models including all the predictors on the full 

data set for the musk turtle and the pumpkinseed separately. Using the MuMIn package in 

R, I calculated the second order Akaike’s Information Criterion (AICc) for each candidate 



60 
 

model, and made a final model selection based on ΔAICc and Akaike weights (Burnham and 

Anderson, 2002). Model with ΔAICc < 4 were used in the calculation of the parameters in 

the average final model. The averaged predictive model also took into account the relative 

Akaike weight of each candidate model. I also calculated the relative importance of the 

predictive variables for each model using the MuMIn package. All averaged models 

included the full list of variables originally considered. Standard Errors (SE) and 95% 

confidence intervals (95% CI) of each average model coefficient were used to validate the 

model since they provide information on the uncertainty related to a coefficient’s 

predictive ability. I further validated the models using Theil’s coefficients and the root mean 

squared deviation (RMSD) (Paruelo et al., 1998; Piñeiro et al., 2008). I performed statistical 

analyses with JMP 10.0 (SAS Institute, Inc., Cary, NC; http://www.jmp.com) and R 2.15.3 

(©The R foundation for Statistical Computing). Power analyses were performed to calculate 

the minimum required sample size for the multiple regression analyses using G*Power 3.1.7 

© Franz Faul, Universität Kiel, Germany 1992 – 2013. 

RESULTS 

 

Variables  – Zebra mussels had a significantly higher proportion of MeHg (t5 = -7.54, p = 

0.0007, n = 6) and a higher concentration of MeHg (t5 = 3.30, p = 0.02, n = 6) in their tissues 

than snails (Figure 2 – 1). The average MeHg concentration was 23.49 ± 4.58 ng/g and 33.09 

± 3.03 ng/g in snails and zebra mussels, respectively.   
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I measured the concentration of THg in the blood of 39 musk turtles (30 males and 9 

females) and 20 pumpkinseeds. Musk turtle blood had 5.04 ± 1.89 ng THg/g and 

pumpkinseed muscle had 409.13 ± 29.72 ng THg/g. 

I examined multicollinearity between each continuous predictor variable (SIZE, TL, 

PZEBRA) and found that, for turtles, VIF values and correlation coefficients were low, 

whereas they were high for fish. (see Collinearity in APPENDIX II, and Figure A2 – 2). All 

predictor variables had high variability for both musk turtles and pumpkinseeds (Table 2 – 

1).  

Modeling and Validation  

 

Musk Turtles – In the multiple regression analysis, I obtained 17 models with ΔAICc < 4 and 

these models had between one and four parameters (Table A2 – 1A). Akaike weights for the 

models ranged from 0.02 to 0.17. Since Akaike weights were low (< 0.90), the final averaged 

model took into account all 17 candidate predictive models. The most important variable in 

the averaged model were PZEBRA and the least important variable was SEX (Table 2 – 2A). 

All three continuous predictor variables had a positive relationship with THg concentration, 

but none of these were significant (Table 2 – 3A). None of the categorical variables had a 

significant effect on THg. To validate the model, I looked at the SE and 95% CI for each 

averaged coefficient. All parameters had high SE and 95% CI.  

 The linear regression of observed (OBS) values versus predicted (PRE) values should 

have a slope of 1 and an intercept of 0 if the model predicted THg concentrations with 

perfect accuracy. Therefore, the OBS vs. PRE regression analysis can provides a series of 
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parameters that are indicative of model performance (Paruelo et al., 1998; Piñeiro et al., 

2008). In my model, the proportion of the linear variation in OBS values that is explained by 

the variation in PRE values (R2) was 0.11. I also calculated Theil’s partial inequality 

coefficients (Ubias, Uslope, and Uerror) to separate the error of the predictions to further 

characterize the model performance. These coefficients divide the variance in the observed 

values that is not explained by the predicted values. Ubias and Uslope were close to 0, 

whereas Uerror was close to 1, indicating that most the total error in prediction is due to 

unexplained variance. The value of RMSD, which is the mean deviation of the predicted 

values from the observed ones, was high (Table 2 – 4). The slope of the regression line 

between OBS and PRE values did not differ significantly from the value of 1 since the 95% CI 

on the slope encompassed the value 1. Similarly, the intercept did not differ from zero as 

zero was within the 95% CI.  

Pumpkinseeds – In the multiple regression analysis, I obtained four models with ΔAICc < 4 

and these models had zero, one or two parameters (Table A2 – 1B). Akaike weights for the 

models ranged from 0.14 to 0.35, so all candidate models were used to calculate average 

parameters. The most important predictor in the averaged model was PZEBRA, which was 

followed closely by SIZE (Table 2 – 2B). PZEBRA had a negative relationship with THg 

concentration and SIZE had a positive relationship with THg concentration, but none of 

these were significant (Table 2 – 3B). To validate the model, I looked at the SE and 95% CI 

for the averaged coefficients. All coefficient estimates had high SE and 95% CIs. The R2 value 

was larger for the pumpkinseed model than for the musk turtle model (Table 2 – 4), and as 

is expected with an increase in the R2 value, the RMSD was smaller. As was the case for the 
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turtle model, most of the error on the predictions can be attributed to unexplained 

variance since Uerror was relatively high. The slope of the regression line between OBS and 

PRE values did not differ significantly from the value of 1 since the 95% CI on the slope 

encompassed the value 1. Similarly, the intercept did not differ from zero as zero was 

within the 95% CI.  

DISCUSSION 

 

 The factors governing the accumulation of THg in animals and the distribution of 

THg along food chains remain poorly understood. Several factors play a role, including 

trophic level (Atwell et al., 1998; Kidd et al., 2011; Power et al., 2002), age and size (Farkas 

et al., 2003), and the availability of THg in the environment (Snodgrass et al., 2000). The 

introduction of non-native species has also been shown to affect contaminant transfer in 

the food web by creating new pathways by which contaminants can enter the food web 

(Hogan et al., 2007). Similarly, the invasive zebra mussels in my study system accumulated 

more THg in their tissues than snails, and a higher proportion of the THg in their tissues was 

MeHg (Figure 2 – 1). I therefore tested the hypothesis that the proportion of zebra mussels 

in the diet of consumers influences their accumulation of THg. To test my hypothesis, I 

measured the proportion of the diet composed of zebra mussels and the concentration of 

THg in two species known to consume zebra mussels: pumpkinseeds and musk turtles. I 

predicted a positive relationship between the proportion of zebra mussels in the diet of 

those two consumers and the concentration of THg in their tissue. 
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 In this study, I also attempted to create a predictive model capable of forecasting 

THg burdens in musk turtles and pumpkinseeds, two freshwater species that have altered 

their diet to include the invasive zebra mussel as a prey item. I first calculated the 

proportion of zebra mussels in the diet of both species, and then I created predictive 

models and validated these models using SE and 95% CI for each parameter coefficient, and 

by analysing the regression between OBS and PRE THg values.  

 In general, the models performed poorly. The high SE and large 95% CI for each 

parameter coefficient from the average models indicate that the model did not fit the THg 

concentration well and that it could only make low precision predictions. The predictions 

made by the models were not biased according to the Ubias values and according to the fact 

that the slopes of the OBS vs. PRE regression did not significantly differ from 1, but the 

larger values for Uerror indicates that the error on the predictions were mostly due to 

unexplained variance in THg. This means that factors that I did not include in the models are 

responsible for much of the variation in THg concentrations in both musk turtles and 

pumpkinseeds. As shown in my first chapter, the reliance on the benthic food web can 

influence the accumulation of THg in aquatic organisms, and within-species variability in the 

reliance on the benthic food chain exists. It is possible that adding this variable in my 

models could have increased their performance. However, it was not possible for me to add 

a variable representing the link to the benthic food web in this study because of the strong 

correlation between the variable PZEBRA and the reliance on the benthic food web.  

 The fact that none of the coefficients could be estimated at a significant level is 

probably related to my small sample size, at least for the pumpkinseed model (n = 20). In 
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addition, because the correlation between SIZE and TL, and PZEBRA and TL, was strong for 

fish, TL had to be removed from the model. In the turtle model, the coefficients were not 

significant either, but the reasons for this might differ. MeHg bioaccumulates in animals 

(Kidd et al., 2011) and musk turtles can live many decades so age is likely to be an important 

predictor of THg tissue concentration in this species. However, there is no way to accurately 

age a turtle in the field, so this variable could not be included in my model. Still, for both 

pumpkinseed and musk turtle models, the small sample size made it impossible to estimate 

generalization error to other data sets since cross-validation by training and testing sets was 

not possible. A power analysis revealed that to obtain a probability equal to 0.8 of detecting 

the true effect of the predictor variable PZEBRA, a minimum sample size of 55 individuals 

was required for both musk turtles and pumpkinseeds. Since my sample size was smaller 

than 55 for both musk turtles and pumpkinseeds, it would not have been useful to split the 

data set into training sets and testing sets since that would only further decrease my ability 

to detect an effect of the predictor variables. However, judging by the large SE and 95% CI 

on the regression coefficients, and from the RMSD and Theil’s coefficients calculated from 

the regression between OBS and PRE THg values, I can conclude that the models would not 

fit external data well.  

Overall, the most important predictor variable in both the pumpkinseed and musk 

turtle model was PZEBRA (Table 2 – 2), indicating that amongst the variables chosen to 

predict THg, the proportion of zebra mussels in the diet was the most influential when all 

other variables were held constant. However, the relationship between PZEBRA and THg 

was positive for the musk turtles and negative for the pumpkinseeds. In addition, the z-
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scores for the parameter coefficients were not statistically significant. Thus, it is difficult to 

interpret the significance of the coefficients.  

A major issue that I encountered was that the snail species I chose to represent 

benthic prey items, the banded mystery snail, is an occasional filter-feeder. I chose this 

species of snail because it is the most abundant in my study lakes, and because it is the only 

one that can be found throughout the sampling season. This means that, at least in some 

instances, the snail integrates both the pelagic and benthic food chains. This is a potential 

problem because when I calculated the proportion of zebra mussels in the diet using 

Bayesian mixing models, I assumed that zebra mussels and snails were sufficiently distinct 

from one another in terms of isotopic signatures. Since the snail has the option of filter-

feeding, its carbon isotopic signature can resemble that of the zebra mussel, thereby 

influencing the resulting mixing-model proportions. To determine whether this was an issue 

in my data set, I plotted the isotopic signatures of the benthic and pelagic representative 

isotopic signatures and looked for overlap in carbon isotope ratios. In some locations, the 

δ13C of the pelagic primary consumers resembled that of the benthic primary consumer, 

but there was never any overlap in the range of δ13C values. For that reason, the 

assumption that the representatives must be distinct is met within my data set. In addition, 

I ran the mixing-model analysis a few times using snail and zebra mussel δ13C values typical 

of a situation in which the zebra mussel filter-feeds and the snail grazes, and concluded 

from the results of this hypothetical scenario that the fact that snails can filter-feed should 

not affect the predictive ability of the models (see Snails and Filter-Feeding in APPENDIX II 
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and Figure A2 – 2). Still, the proportion of the diet that is zebra mussels may have been 

more accurately measured if the benthic representative had been an obligate grazer.  

Based on the results of this study, I conclude that the proportion of zebra mussels in 

the diet does not significantly influence the accumulation of MeHg in musk turtle blood and 

pumpkinseed muscle, even though zebra mussels have a higher MeHg/THg proportion, and 

a higher concentration of MeHg in their tissues. Although the difference in MeHg 

concentration was significantly different between zebra mussels and snails, the difference 

might not be large enough be transferred to higher trophic levels.  
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Table 2 – 1. Variability in measurements of the predictors used in modeling THg 

concentrations in musk turtles (n = 39) and in pumpkinseeds (n = 20). Size of the animals 

is indicated in centimeters (cm) and PZEBRA is a proportion. Trophic level (TL) was 

calculated using the formula described in Post et al. (2002). All measurements are given 

as an average ± standard error (SE) (min – max). 

SIZE PZEBRA TL

Musk 10.82 ± 0.13 (8.00 - 12.20) 0.44 ± 0.03 (0.15 - 0.39) 2.76 ± 0.07 (1.86 - 3.52)

Pumpkinseed 13.23 ± 0.27 (9.59 - 19.00) 0.44 ± 0.04 (0.21 - 0.78) 3.08 ± 0.07 (2.47 - 3.68)
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Table 2 – 2. Relative 

importance of each predictor 

variable in the averaged 

model for A. musk turtles and 

B. pumpkinseeds. 

  

Relative 

Variable 

Importance

A. PZEBRA 0.69

TL 0.57

SIZE 0.42

LAKE 0.21

SEX 0.16

B. PZEBRA 0.52

SIZE 0.49
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Model 

averaged 

coefficients SE z-score p-value 95% CI

A. Intercept -0.12 0.73 0.16 0.88 -1.58, 1.34

PZEBRA 0.44 0.32 1.36 0.17 -0.20, 1.09

SIZE 0.01 0.01 1.30 0.19 0.00, 0.02

TL 0.15 0.13 1.11 0.27 -0.12, 0.42

SEX 0.02 0.13 0.15 0.88 -0.24, 0.28

LAKE 0.05 0.13 0.40 0.69 -0.21, 0.31

B. Intercept 2.42 0.33 6.94 p < 0.0001 1.74, 3.10

Pzebra -0.61 0.38 1.53 0.13 -1.40, 0.17

Size 0.01 0.01 1.47 0.14 0.00, 0.02

  

Table 2 – 3. Averaged parameter coefficients for two logistic regression models 

predicting THg concentrations in A. musk turtles (n = 39) and B. pumpkinseeds 

(n = 20). Standard error (SE), z-scores, p-values, and 95% confidence intervals 

(95% CI) are given for each parameter. 
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Table 2 – 4. Slope (m) and y-intercept 

(b) for the regression between 

observed and predicted THg 

concentrations, along with the 95% 

confidence intervals (95% CI) are given 

for the musk turtle and pumpkinseed 

models. R2, RMSD, Ubias, Uslope, and 

Uerror are also given.  

Musk Turtle Pumpkinseed

m 2.27 1.57

95% CI 0.37, 4.17 0.25, 2.89

b -0.76 -1.45

95% CI -2.78, 0.39 -4.82, 1.92

R2 0.11 0.22

RMSD 0.29 0.19

Ubias

0.00 0.00

Uslope 0.05 0.04

Uerror 0.95 0.14
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GENERAL CONCLUSION 

 

The main goals of the first chapter were to create multiple regression models 

capable of predicting total mercury (THg) concentrations in turtle and fish species from the 

Rideau Canal Lakes, and to determine whether dietary reliance on the benthic food chain 

influences the accumulation of THg in turtles and in fish. Because lake sediments are often 

a major repository for THg (Chon et al., 2012), I hypothesized that the variation in THg 

accumulation between species is a function of the dietary reliance on the benthic food 

chain. My prediction was that there would be an increase in THg concentration with an 

increase in dietary reliance on the benthic food chain. I built multiple linear regression 

models independently for fish and turtles on the full data sets. The analysis of the 

parameter coefficients obtained in the multiple regression models indicated that there was 

a significant positive effect of dietary reliance on the benthic food chain on the 

accumulation of THg in fish, but not in turtles. In addition, cross-validation by data-splitting 

showed that fish models could be used to predict THg concentrations in independent data 

sets, but not turtle models. It is possible that models made poor predictions for THg 

concentrations for turtles because these animals are omnivorous. Because omnivores 

consume a wide variety of prey items, the intraspecific variation in their isotopic signatures 

can be more marked than that of animals feeding on a narrow range of prey items. There is 

thus inherently more variation in the turtle isotope data than in the fish isotope data. 

Consequently, the error in the estimation of model coefficients is larger. Alternatively, 

because THg bioaccumulates, having a way by which to estimate turtle age could have 
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improved the model predictions by increasing the amount of variance that is explained by 

the model.  

 My second chapter was conceptualized post hoc when I noticed that zebra mussels 

consistently accumulated more THg (and proportionally more MeHg) than the banded 

mystery snail (Figure 2-1).  I therefore hypothesized that the variation in accumulation of 

THg could be a function of the proportion of zebra mussels in the diet of turtles and fish. I 

predicted that there would be an increase in THg concentration with an increase in 

consumption of zebra mussels in musk turtles and in pumpkinseeds. I built a multiple 

regression model using the proportion of zebra mussels in the diet as one of the predictor 

variables. Because the parameter coefficients for this variable could not be estimated with 

accuracy, and because a power analysis revealed that my sample size was small, I could not 

determine whether the consumption of zebra mussels influenced the accumulation of THg, 

but the data suggested that it did not. Future research should attempt to determine why 

zebra mussels accumulate more THg and MeHg, and why this increased contaminant 

burden is not transferred to higher trophic levels.  
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APPENDIX I 

 

 

Complementary results for THg concentration modelling as a function of reliance on the benthic 

food chain in turtles and fish  
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THG CONCENTRATION AS A MEASURE OF MEHG CONCENTRATION 

 

I used THg concentration as a measure for MeHg concentration in both turtle blood 

and fish muscle. Since MeHg bioaccumulates, most of the THg found in animals that feed in 

the higher trophic levels is MeHg (Lasorsa and Allen-Gil, 1995). For turtles, preliminary 

analyses showed that MeHg constituted 95.07 ± 2.46 % of the THg in the blood in musk 

turtles, and 83.20 ± 7.20 % of the THg in the blood of painted turtles. These ratios did not 

vary significantly from each other (t(18.24) = -1.56, p = 0.14), and were similar to other 

previously published ratios (Bergeron et al., 2007; Turnquist et al., 2011). For fish, MeHg 

made up 91.37 ± 6.05 % of the THg in the muscle of blackchin shiners, and 101.14 ± 2.73 % 

if the THg in the muscle of brook silversides. These percent ratios did not differ from one 

another (t(19.46) = 1.47, p = 0.16), and were similar to those previously published in the 

literature (Bloom, 1992). I therefore considered THg concentration a good approximation of 

MeHg concentration in turtle blood and fish muscle.  

COLLINEARITY 

 

When two predictor variables co-vary, it can be difficult to disentangle each 

predictor’s individual effect. Correlations between predictors can cause problems in the 

analysis and interpretation of model averaging results (Freckleton, 2011). For this reason, I 

tested the whole data set for multicollinearity amongst the predictor variables. I used the 

variance inflation factors (VIFs) method and the commonly used cut off value of 5. The VIFs 

were calculated using the “car” package in R. The results from the VIF method were 

corroborated with the calculation of correlation coefficient for each pair of continuous 
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variables by restricted maximum likelihood (REML) method. For this, I used a threshold 

value of 0.70 (Smith et al., 2009).  

I found that VIFs values and correlation coefficients were low, indicating that the 

predictors used in the models were not strongly correlated with one another. All VIFs were 

between 1.07 and 1.57, and correlation coefficients were between 0.02 and 0.4 (Figure A1 – 

2A). As a result, all predictor variables were considered in the model averaging exercise. 

 

CANDIDATE MODELS 

 

 The predictor variables I used to model MeHg concentrations in animals tissues 

were sex (SEX), size (SIZE), species (SPECIES), lake (LAKE), trophic level (TL), and reliance on 

the benthic food chain (PSNAIL). THg concentration in fish and turtles were log-transformed 

to satisfy assumption of normality and homoscedasticity. For fish and turtles separately, I 

built a model using the full data set, and eight training models using a subset of the data. 

Four of the training sets excluded site-specific data, and four other training sets excluded 

random data points. The models considered in the averaging exercise were those with 

ΔAICc < 4 (Burnham and Anderson, 2002). The MuMIn package in R was used to create the 

candidate models (Tables A1 – 1 to A1 – 3).  
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  Model k AICc ΔAICc w 

A. Turtle           

  SIZE, SPECIES, TL 3 75.60 0.00 0.31 

  PSNAIL, SIZE, SPECIES, TL 4 75.96 0.36 0.26 

  SEX, SIZE, SPECIES, TL 4 77.68 2.08 0.11 

  SPECIES, TL 2 78.00 2.40 0.09 

  PSNAIL, SEX, SIZE, SPECIES, TL 5 78.12 2.52 0.09 

  PSNAIL, SPECIES, TL 3 78.18 2.58 0.09 

  LAKE, SIZE, SPECIES, TL 4 79.10 2.58 0.05 

B. Fish           

  SPECIES,LAKE,SIZE,PSNAIL,TL 5 -135.91 0.00 0.85 

  SPECIES,LAKE,SIZE,PSNAIL 4 -132.41 3.49 0.15 

Table A1-1. Candidate multiple linear regression models predicting THg concentrations in 

A. turtles (n = 99) and B. fish (n = 119) for the full data set. Models are ranked by 

increasing order of second order Akaike Information Criterion (AICc and ΔAICc < 4). The 

number of parameters (k), as well as the Akaike weights (w), are listed. 
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  Training Set                  Model K AICc ΔAICc w 

          S1         

PSNAIL, SIZE, SPECIES, TL 4 59.48 0.00 0.25 

PSNAIL, SPECIES, TL 3 60.04 0.57 0.19 

SIZE, SPECIES, TL 3 60.47 1.00 0.15 

SPECIES, TL 2 61.19 1.72 0.11 

PSNAIL, SEX, SIZE, SPECIES, TL 5 61.22 1.75 0.10 

PSNAIL, SEX, SPECIES, TL 4 61.44 1.96 0.09 

SEX, SIZE, SPECIES, TL 4 62.40 2.92 0.06 

SEX, SPECIES, TL 3 62.82 3.35 0.05 

         S2         

SIZE, SPECIES, TL 3 43.63 0.00 0.62 

SEX, SIZE, SPECIES, TL 4 45.96 2.33 0.19 

PSNAIL, SIZE, SPECIES, TL 4 45.97 2.34 0.19 

         S3         

SIZE, SPECIES, TL 3 56.57 0.00 0.40 

PSNAIL, SIZE, SPECIES, TL 4 57.65 1.08 0.23 

SEX, SIZE, SPECIES, TL 4 58.66 2.09 0.14 

LAKE, SIZE, SPECIES, TL 4 59.81 3.23 0.08 

PSNAIL, SEX, SIZE, SPECIES, TL 5 59.81 3.24 0.08 

SPECIES, TL 2 60.11 3.54 0.07 

         S4         

SPECIES, TL 2 66.85 0.00 0.39 

PSNAIL, SPECIES, TL 3 68.21 1.36 0.20 

SIZE, SPECIES, TL 3 68.83 1.98 0.14 

SEX, SPECIES, TL 3 68.95 2.10 0.14 

PSNAIL, SIZE, SPECIES, TL 4 70.31 3.46 0.07 

PSNAIL, SEX, SPECIES, TL 4 70.32 3.47 0.07 

Table A1-2. Candidate multiple linear regression models predicting THg 

concentrations in painted (n = 60) and musk turtles (n = 39) in the cross-

validation exercise. Models are ranked by increasing order of second order 

Akaike Information Criterion (AICc and ΔAICc < 4). The number of 

parameters (k) as well as the Akaike weights (w), are listed. Training set 

refers to the data excluded from the models to create the testing sets. 
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                  Tables A1-2. Continued. 

  Training Set                        Model k AICc ΔAICc w 

         R1         

PSNAIL, SPECIES, TL 3 53.99 0.00 0.26 

SPECIES, TL 2 55.08 1.09 0.15 

PSNAIL, SIZE, SPECIES, TL 4 55.18 1.19 0.14 

SIZE, SPECIES, TL 4 55.95 1.96 0.10 

PSNAIL, SEX, SPECIES, TL 4 56.32 2.33 0.08 

LAKE, TL 2 57.16 3.17 0.05 

SEX, SPECIES, TL 3 57.26 3.27 0.05 

LAKE, SPECIES, TL 3 57.39 3.40 0.05 

PSNAIL, SEX, SIZE, SPECIES, TL 5 57.46 3.47 0.05 

LAKE, PSNAIL, SPECIES, TL 4 57.74 3.74 0.04 

SEX, SIZE, SPECIES, TL 4 57.96 3.97 0.04 

         R2         

SIZE, SPECIES, TL 3 68.91 0.00 0.27 

SPECIES, TL 2 69.87 0.96 0.17 

PSNAIL, SIZE, SPECIES, TL 4 70.23 1.31 0.14 

SEX, SIZE, SPECIES, TL 4 70.78 1.87 0.11 

PSNAIL, SPECIES, TL 3 71.11 2.20 0.09 

LAKE, SIZE, SPECIES, TL 4 71.73 2.82 0.07 

PSNAIL, SEX, SIZE, SPECIES, TL 5 72.08 3.17 0.06 

SEX, SPECIES, TL 3 72.09 3.18 0.06 

LAKE, SPECIES, TL 3 72.55 3.64 0.04 

          R3         

SEX, SIZE, SPECIES, TL 4 59.12 0.00 0.20 

SPECIES, TL 2 59.44 0.33 0.17 

SIZE, SPECIES, TL 3 59.83 0.71 0.14 

SEX, SPECIES, TL 3 59.87 0.76 0.14 

PSNAIL, SPECIES, TL 3 60.59 1.47 0.10 

PSNAIL, SEX, SIZE, SPECIES, TL 5 60.70 1.59 0.09 

PSNAIL, SIZE, SPECIES, TL 4 61.06 1.94 0.08 

PSNAIL, SEX, SPECIES, TL 4 61.30 2.18 0.07 

TL 1 62.90 3.73 0.03 

         R4         

SPECIES, TL 2 65.34 0.00 0.31 

SIZE, SPECIES, TL 3 65.57 0.23 0.27 

SEX, SPECIES, TL 3 67.41 2.07 0.11 

PSNAIL, SPECIES, TL 3 67.41 2.07 0.11 

SEX, SIZE, SPECIES, TL 4 67.47 2.13 0.11 

PSNAIL, SIZE, SPECIES, TL 4 67.75 2.41 0.09 
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Training Set                              Model k AICc ΔAICc w 

     S1         

LAKE, PSNAIL, SIZE, SPECIES 4 -131.02 0.00 0.73 

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -129.01 2.01 0.27 

     S2         

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -120.26 0.00 0.88 

LAKE, SIZE, SPECIES, TL 4 -116.26 4.00 0.12 

     S3         

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -99.80 0.00 0.76 

LAKE, SIZE, SPECIES, TL 4 -97.53 2.27 0.24 

     S4         

LAKE, SIZE, SPECIES 3 -104.60 0.00 0.37 

LAKE, PSNAIL, SIZE, SPECIES 4 -103.99 0.61 0.27 

LAKE, SIZE, SPECIES, TL 4 -103.61 0.99 0.22 

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -102.69 1.92 0.14 

     R1         

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -100.28 0.00 0.70 

LAKE, PSNAIL, SIZE, SPECIES  4 -97.60 2.67 0.18 
LAKE, SIZE, SPECIES, TL 4 -96.61 3.66 0.11 

     R2         

LAKE, PSNAIL, SIZE, SPECIES 4 -111.25 0.00 0.77 

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -108.87 2.38 0.23 

     R3         

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -106.89 0.00 0.80 

LAKE, PSNAIL, SIZE, SPECIES 4 -104.07 2.82 0.20 

     R4         

LAKE, PSNAIL, SIZE, SPECIES 4 -113.29 0.00 0.77 

LAKE, PSNAIL, SIZE, SPECIES, TL 5 -110.85 2.45 0.23 

Table A1-3. Candidate multiple linear regression models predicting THg concentrations 

in brook silversides (n = 49), blackchin shiners (n = 50), and pumpkinseeds (n = 20). 

Models are ranked by increasing order of second order Akaike Information Criterion 

(AICc and ΔAICc < 4). The number of parameters (k), as well as the Akaike weights (w), 

are listed. Training set refers to the data excluded from the models to create the 

testing sets. 
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Figure A1 – 1. Percentage of THg that is MeHg in musk turtles (n = 39), painted turtles (n = 

60), blackchin shiners (50), and brook silversides (49). 
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SIZE 

VIF = 1.07 

PSNAIL 

VIF = 1.57 

TL 

VIF = 1.24 

SIZE 

VIF = 1.38 

PSNAIL 

VIF = 1.28 

TL 

VIF = 1.90 

A 

B 

Figure A1 – 2. Correlation matrix of continuous 

predictor variables in A. turtles (n = 99) and B. fish (n = 

119): Trophic level (TL), reliance on the benthic food 

web (PSNAIL) and size (SIZE). Correlation coefficients 

by REML method (r) and variance inflation factors (VIF) 

are given. 

B 
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APPENDIX II 

 

 

Complementary results for THg concentration modelling in turtles and fish as a function of the 

proportion of zebra mussels in the diet 
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THG CONCENTRATION AS A MEASURE OF MEHG CONCENTRATION 

 

I used THg concentration as a measure for MeHg concentration in both turtle blood 

and fish muscle. Since MeHg bioaccumulates, most of the THg found in animals that feed in 

the higher trophic levels is MeHg (Lasorsa and Allen-Gil, 1995). For turtles, preliminary 

analyses showed that MeHg constituted 95.07 ± 2.46 % of the THg in the blood in musk 

turtles. This ratio was similar to other previously published ratios for freshwater turtles 

(Bergeron et al., 2007; Turnquist et al., 2011). For fish, MeHg made up 91.37 ± 6.05 % of the 

THg in the muscle of blackchin shiners, and 101.14 ± 2.73 % if the THg in the muscle of 

brook silversides. These percent ratios did not differ from one another (t(19.46) = 1.47, p = 

0.16), and were similar to those previously published in the literature (Bloom, 1992). I 

therefore considered THg concentration a good approximation of MeHg concentration in 

turtle blood and fish muscle. 

COLLINEARITY 

 

When two predictor variables co-vary, it can be difficult to disentangle each 

predictor’s individual effect. Correlations between predictors can cause problems in the 

analysis and interpretation of model averaging results (Freckleton, 2011). For this reason, I 

tested the whole data set for multicollinearity amongst the predictor variables. I used the 

variance inflation factors (VIFs) method and the commonly used cut off value of 5. The VIFs 

were calculated using the “car” package in R. The results from the VIF method were 

corroborated with the calculation of correlation coefficient for each pair of continuous 
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variables by restricted maximum likelihood (REML) method. For this, I used a threshold 

value of 0.70 (Smith et al., 2009).  

I found that, for turtles, VIF values and correlation coefficients were low, whereas 

they were high for fish. This indicates that predictor variables were not strongly correlated 

with one another for turtles, but that collinearity may occur for fish model predictor 

variables. Turtle VIFs ranged between 1.17 and 1.82, and fish VIFs ranged between 2.19 and 

5.11 (Figure A2 – 2). As a result, all predictor variables were considered in the model 

averaging exercise for turtles, but TL (VIF = 5.11) was left out of the model averaging 

exercise for fish.  

CANDIDATE MODELS 

 

 The predictor variables I used to model MeHg concentrations in animals tissues 

were sex (SEX), size (SIZE), species (SPECIES), lake (LAKE), trophic level (TL), and the 

proportion of zebra mussels in the diet (PZEBRA). THg concentration in fish and turtles were 

log-transformed to satisfy assumption of normality and homoscedasticity. For fish and 

turtles separately, I built a model using the full data set. The models considered in the 

averaging exercise were those with ΔAICc < 4 (Burnham and Anderson, 2002). The MuMIn 

package in R was used to create the candidate models (Tables A2 – 1).  

SNAILS AND FILTER-FEEDING 

 

Because the banded mystery snail is an occasional filter-feeder, its ability to 

accurately represent the benthic food chain can be questioned. This is because filter-
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feeding causes the snail’s δ13C to resemble that of the zebra mussels. A difference of 10‰ 

in δ13C is typically observed at the base of the pelagic and benthic food chains (France, 

1995). In my data set however, the difference in δ13C between snails and zebra mussels, the 

chosen representatives of the benthic and pelagic food chains, was consistently smaller and 

averaged 4.49 ± 1.71 ‰. To determine whether this could affect the predictive ability of my 

models, I ran the mixing model analysis a few times using hypothetical δ13C values for snails 

and zebra mussels. I then compared the results of two scenarios: I compared the output of 

the model in which the δ13C for snails and zebra mussels were similar and the output for 

the model in which the δ13C values were 10‰ apart. The results show that the fact that 

snails were occasional filter-feeders in my system shifts the distribution to the right, i.e. the 

mixing model overestimates the proportion of snails in the diet. It does not affect the shape 

of the distribution however (Figure A2 – 2). Therefore, I conclude that using this species of 

filter-feeding snail as a representative of the benthic food chain should not affect the 

predictive ability of my models.  
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Model k AICc ΔAICc w

A. PZEBRA 1 22.25 0 0.17

PZEBRA, SIZE 2 23.41 1.17 0.1

PZEBRA, SIZE, TL 3 23.49 1.24 0.09

PZEBRA, TL 2 23.49 1.25 0.09

SIZE, TL 2 23.55 1.3 0.09

TL 1 23.58 1.33 0.09

PZEBRA, SEX 2 24.5 2.25 0.06

LAKE, PZEBRA 2 24.74 2.49 0.05

LAKE, TL 2 24.78 2.54 0.05

LAKE, SIZE, TL 3 25.39 3.14 0.04

PZEBRA, PZEBRA, TL 3 25.76 3.51 0.03

PZEBRA, SEX, SIZE 3 25.82 3.57 0.03

LAKE, PZEBRA, SIZE 3 25.9 3.65 0.03

SEX, SIZE, TL 3 26.04 3.79 0.03

SEX, TL 2 26.05 3.81 0.03

PZEBRA, SEX, TL 3 26.13 3.88 0.02

LAKE, PZEBRA, SIZE, TL 4 26.18 3.94 0.02

B. PZEBRA, SIZE 2 -2.37 0 0.35

Null 0 -2.34 0.03 0.35

PZEBRA 1 -0.85 1.52 0.16

SIZE 1 -0.46 1.91 0.14

 
  

Table A2 – 1. Candidate multiple linear regression models predicting 

THg concentrations in A. musk turtles (n = 39) and B. pumpkinseeds 

(n = 20) for the full data set. Models are ranked by increasing order of 

second order Akaike Information Criterion (AICc and ΔAICc < 4). The 

number of parameters (k), as well as the Akaike weights (w), are 

listed. 
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Figure A2 – 1. Correlation matrix of THg continuous 

predictor variables in A. musk turtles (n = 39) and B. 

pumpkinseeds (n = 20): Trophic level (TL), proportion of 

zebra mussels in the diet (PZEBRA) and size (SIZE). 

Correlation coefficients by REML method (r) and variance 

inflation factors (VIF) are given. 
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Figure A2 – 2. Frequency distribution of the proportion of snails in the diet of musk turtles 

when obtained by two end-member mixing model analysis when A. hypothetical δ13C values 

are used to create a 10‰ difference in ratio between snails and zebra mussels, and B. when 

the measured δ13C from the data set are used. 

 

A 

B 
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