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ABSTRACT 

 In the common map turtle, females are much larger than males.  In general, larger 

females can produce more and/or bigger offspring.  It has also been shown that larger 

offspring survive better.  Therefore, larger female map turtles should be more attractive 

to males.  If males incur non-trivial costs of mating, such as missed opportunities or 

sperm limitation, they should mate preferentially with larger females. Accordingly, 

multiple paternity should be more common in larger females. To test this prediction, we 

captured 34 gravid females spanning the full size range of reproductive females and 

induced egg laying with oxytocin. We then collected blood samples from 338 hatchlings 

for paternity analyses.  The number of sires was deducted from the paternal alleles at 3 

microsatellite loci.  Due to laboratory setbacks, only eight of the 34 clutches were 

analyzed.  A third paternal allele was found only once, for one hatchling, at one locus.  

The fact that no strong evidence of multiple paternity was found is inconclusive.  Low 

sample size, sub sampling the clutches and the low variability of the three microsatellite 

loci reduce the ability to detect multiples sires in a clutch.  The question of multiple 

paternity augmenting with female body size in the common map turtle is left unanswered, 

but might soon come as the molecular laboratory work is almost sorted out: DNA 

extraction and PCRs are troubleshooted, and fragment analysis is soon to follow. 
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INTRODUCTION 

Animals exploit two types of mating systems : combat and scramble.  In the 

combat mating system, individuals fight each other to gain access to sexually receptive 

members of the opposite sex.  Males are usually bigger than females in this case since a 

larger body size tends to give a competitive advantage that translates into better mating 

success (Alcock, 2001; Gans & Huey, 1988; Shuster & Wade, 2003).  In a scramble 

mating system, individuals race to reach receptive members of the opposite sex first.  

More competitive individuals have a higher searching endurance, perseverance and 

perceptiveness, not agressivity (Alcock, 2001).  Females are usually bigger than males in 

this case (Shuster & Wade, 2003). 

In birds and mammals, males are usually larger than females (Kreb & Davies, 

1997).  Sexual size dimorphism, with females larger than males, is the norm for most 

freshwater turtles (Ernst et al., 1994).  However, sexual size dimorphism like the one 

found in the common map turtle (Graptemys geographica) is rarely this extreme, with no 

overlap between sexes: male carapace length is between 102 and 149 mm at maturity, 

while female carapace length is between 205 and 290 mm (Figure 1).  Males thus 

measure half the length of females and average 20% of their mass (Vogt, 1980).  Very 

little is known about the map turtle’s reproduction.  This gregarious and wary specie is 

very hard to approach.  Nesting females less than 190mm in carapace length have not 

been caught (Newman, 1906).  Courtship and mating apparently occur both in spring and 

autumn when the turtles are still aggregated at the hibernacula (Vogt, 1980).  During both 

seasons pairs of G. geographica have been observed walking at the bottom of the lake, a 

male following a female as if to mate (Ernst et al., 1994).  However, since males and 
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females are both able to store sperm (Kuchling, 1999), the actual time of mating is 

unknown and could occur all year long (Gist et al., 2001).  Courtship under the form of 

males stroking (‘titillating’) their forefoot claws on the female’s orbital region has been 

documented in other species of Graptemys such as G. ouachitensis and G. 

pseudogeographica, but not in G. geographica.  Elongated fore claws are not present in 

this specie like they are in the other two (Vogt, 1980).  A male may mount a female after 

cloacal contact, or swim to her head and, after making snout to snout contact, rapidly bob 

his head up and down.  Coitus can last 15 seconds to over 4 hours, during which time the 

male stays at a 45° angle above the female carapace and remains motionless, with his 

forelimbs usually hanging over his head (Vogt, 1980).  We strongly suspect map turtles 

use a scramble mating system, because the female is so much bigger than the male, and 

because males show no signs of aggression. 

 

This project studies sexual selection in the common map turtle.  Sexual selection 

occurs when individuals differ in their ability to conquer mates.  As mentioned earlier, 

males may compete directly (male-male competition), or indirectly by trying to appeal to 

member of the opposite sex (female choice) (Alcock, 2001; Krebs & Davies, 1997).  

Multiple paternity, which arises when more than one father sires a clutch, can occur in 

both the combat and the scramble mating system, due to direct and genetic benefits that 

are not mutually exclusive. 

It is interesting for females to mate with more than one male if they receive direct 

benefits in return.  Such direct benefits are nuptial gifts or access to resource-rich 

territories that will help them produce healthier offspring.  Protection from other sexually 
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harassing males can be offered through mate-guarding, before or after copulation.  

Parental care is another important direct benefit females can derive, when the male helps 

care for the offspring (Alcock, 2001; Krebs & Davies, 1997).  Male G. geographica 

being so small compared to females suggests that they cannot force copulations and that 

mating would follow female choice.  Because a single copulation is sufficient to fertilize 

all of a female’s eggs (Pearse et al., 2002) and because female turtles do not receive 

direct benefits such as nuptial gifts or parental care in exchange for copulation (Pearse & 

Avise, 2001; Kuchling, 1999), female G. geographica should not be expected to engage 

in multiple mating.  However, precisely since there is no parental care for the offspring, 

that nests are subject to heavy predation, and that emergent hatchling survival is very low 

(Gans & Huey, 1988; Kuchling, 1999), it is in the female’s top priority to acquire the best 

genetic benefits for her offspring.  Several hypotheses suggest that females gain from 

polyandry.  Such genetic benefits of multiple matings are indemnifying the female 

against the possibility that one of her mates is not fertile (Reynolds, 1996).  It could avoid 

genetic incompatibility between male and female genotypes (Zeh & Zeh, 1996), avoid 

inbreeding and genetic defects resulting from stored sperm (Reynolds, 1996).  It can 

promote the gain of ‘good genes’ for survival and sexual attractiveness, and increase 

genetic diversity among offspring (Pearse & Avise, 2001).  Stored sperm provides an 

opportunity for multiple paternity as a result of sperm competition or cryptic female 

choice (Pearse & Avise, 2001).   

 

In reproduction, individuals of both sexes should be picky when it comes to mate 

choice in order to maximize their own reproductive output.  From the female’s point of 
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view, eggs are very costly to produce/incubate.  The only way for a female to augment 

her fitness is by rearing more offspring (Alcock, 2001; Krebs & Davies, 1997).  This 

translates in a bigger body size in turtles (Iverson, 1992; Kuchling, 1999; Vogt, 1980).  

First off, the hard shell of turtles limits the interior volume available for food intake, 

breathing volume, energy and water storage, and reproductive output (Gans & Huey, 

1988; Kuchling, 1999).  Secondly, pelvic opening structure constrains egg size and 

offspring size in smaller bodied species (Congdon & Whitfield, 1987).  Larger turtles can 

therefore produce more eggs, since they can accumulate more resources, and/or bigger 

eggs, because of their larger pelvic opening (Gans & Huey, 1988).  Egg size is positively 

correlated to body size of hatchlings and larger hatchlings have a higher survival rate 

(Packard & Packard, 1988).  A larger body size is also valuable by decreasing the risk of 

predation when nesting (Kuchling, 1999).  Furthermore, larger females have survived 

longer (Shine, 2005), and viability should be an attractive trait amongst long lived species 

(Blouin-Demers et al., 2005).  Male preference for larger females has been documented 

in other reptiles, for example the garter snake (Shine et al., 2001).  For these reasons, we 

hypothesize that bigger females should be more attractive to males. 

Males can sire offspring more quickly than females can produce them, and so 

their reproductive success is limited by access to receptive females (Krebs & Davies, 

1997; Alcock, 2001).  Even if there is no combat or courtship in map turtles, sperm itself 

might not be so cheap to produce.  Olsson et al. (1997) demonstrated that 

spermatogenesis might entail a major part of reproductive costs of male adders, reducing 

the number of times they can remate successfully.  Spermatogenesis is an episodic event 

in temperate turtles: it begins in early summer and sperm leaves the testes to be stored in 
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the epididymys in autumn.  If mating is indeed promiscuous and occurs all year long, it is 

advantageous for males to conserve sperm and aliquot it amongst receptive females (Gist 

et al., 2001).  Mating can be time consuming; coitus itself can last up to four hours (Vogt, 

1980).  Thus, if males incur non-trivial costs of mating, such as missed opportunities or 

sperm limitation, they should mate preferentially with larger females.  Therefore, we 

think that multiple paternity should be more common in clutches of larger female map 

turtles. 

  

Multiple paternity has been documented in marine turtles (Kichler et al., 1999; 

Moore, 2001; Crim et al., 2002; Hoekert et al., 2002) and in every freshwater species 

studied to date: painted turtles (Chrysemys picta; Pearse et al. 2002), snapping turtles 

(Chelydra serpentine; Galbraith, 1991), wood turtles (Clemmys insculpta; Galbraith, 

1991 in Galbraith et al., 1993), and giant Amazon side-neck turtles (Podocnemis 

expansa; Valenzuela 2000).  In most cases, a high percentage of clutches was multiply 

sired. 

 

In this study, microsatellite analysis will be used to determine if the occurrence of 

multiple paternity in a natural population of the common map turtle (Graptemys 

geographica) is correlated to female body size.   
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METHODOLOGY 

3.1  Field work:  

Between June 7
th

 and August 11
th

 of the 2005 nesting season, 34 gravid females 

spanning the full size range of reproductive females were captured in Lake Opinicon (47° 

37'N, 76° 13'W, Figure 2).  Most females were hand caught while nesting on land on 

sandy Hump Island (n= 25) or by snorkelling around the island (3).  One nesting female 

was caught on Dr Weatherhead’s grassy property.  Five other females were also caught in 

basking traps: 2 in Brooks Bay and 3 in Telephone Bay.  Based at the Queen’s University 

Biology Station, we would venture out to Hump Island around 9 am in the morning or 

around 7 pm in the evening.  (Note: snorkelling is fruitless in the evenings because the 

sun is too low on the horizon to see anything in the water; algal blooms also decrease 

visibility during the day).  Gravid females were recognized by feeling their abdomen for 

eggs with our fingers through the opening of the turtles’ hind legs.  Females were 

identified numerically in the order they were caught (#1-36), as well as alphanumerically 

by a unique marginal scute code.  (Due to confusion, there never was a female #8, and 

female #13 escaped).  Females were measured with callipers and weighed, and blood 

samples (0.03-0.05 ml) were drawn from the coccygeal vein.  Egg laying was induced by 

an intramuscular injection of oxytocin (20 USP units/ml, 0.5 ml/kg) (Ewert and Legler 

1978).  Females were placed in a water bath in a dark room where they released their 

eggs.  Females shot in the morning who didn’t lay eggs by noon were given a second 

identical injection of oxytocin.  After egg laying we felt the females’ abdomen to verify if 

they were still retaining eggs (which never seemed to be the case).  Females were set free 

at their capture site in the following days.  Two females were caught a second time as 
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they were gravid with their second clutch of the season: females # 4 and #32.  Female #4 

was caught 24 days after her first capture, and laid only a single egg after one oxytocin 

injection.  We were afraid her eggs perhaps weren’t fully formed, and so we chose to 

release her instead of forcing her to release her eggs.  Clutches were incubated in moist 

vermiculite (1:1 m/m) at 29ºC.  Water was added every third day to compensate 

evaporation.  The hatchlings emerged 55-65 days later (mean = 60.23, SE = 0.63).  

Hatchlings were processed and identified numerically in the order they emerged (#1-

338).  Some eggs took a few days longer to hatch.  Hatchlings were weighed and 

measured.  Blood (0.03-0.05 ml) was drawn from all 338 surfacing hatchlings, either 

from the coccygeal vein (Figure 3) or subcarapacial vein using a 0.5ml insulin syringe 

fitted with a  28! gage needle (Bulté et al., 2005).  Dead eggs (n = 67) were dissected to 

acquire tissue samples. All blood and tissue samples were stored in 70% ethanol at 4°C.  

Shortly after being processed, hatchlings were released at the site where their mother was 

captured. 

 

3.2  Lab work 

Molecular genetic techniques able to identify single individuals are providing 

answers to a variety of questions concerning mating systems and kinship (Moon et al., 

2006).  Microsatellites are stretches of DNA consisting of short tandem repeats of 

nucleotides in a non-coding region.  Their often numerous alleles differ in the number of 

these repeats.  Individuals seldom inherit the same copy from their mother and from their 

father, and so two unrelated individuals rarely have the same pair of sequences (Alberts 
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et al., 2002; Queller & Strassmann, 1993).  This makes microsatellites a great tool for 

assessing multiple paternity (Alberts et al., 2002; Moon et al., 2006). 

Turtles are diploid: one DNA copy coming from the mother, the other from the 

father (Ernst et al., 1994).  Knowing the mother’s genotype, one can subtract it from the 

hatchling’s genotype and deduce the father’s allelic contribution.  After doing this for all 

the siblings in the clutch, if more than two father alleles are present for more than one 

hatchling at more than one locus, we can incur that more than one father sired the clutch 

(Lee & Hays, 2004).  To achieve these results, three steps are necessary for every 

individual: extraction of the DNA from the blood sample, Polymerase Chain Reaction 

(PCR) of the desired microsatellite loci, and automated Fragment Analysis (FA) 

revealing allele sizes.  

Unless otherwise specified, all manipulations were performed wearing gloves and 

with sterile autoclaved pipette tips and tubes in CAREG’s common molecular laboratory 

at the University of Ottawa.  Two different sets of pipettes were used to avoid 

contamination: Dr Blouin-Demers’ for DNA extractions and a second set borrowed from 

Dr Guy Drouin for PCRs and FAs. 

 

 

3.2.1  DNA extraction  

DNA was isolated from all hatchlings’ and mothers’ blood samples (n=374) using a 

salt extraction method, slightly modified from De Souza’s (2001) protocol.  Because the 

ethanol in which samples were stored inhibits the activity of proteinase used in this 

technique, the alcohol had to be evaporated before proceeding with the extraction. 
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3.2.1.1  Initial evaporation step (and spectrophotometry of extracted samples) 

Different techniques were tried in attempt to standardize the final quantity of 

purified DNA obtained from raw samples.  We tried either shaking or not the raw 

samples prior to pipetting to homogenize the blood in the solution, and varied the initial 

volumes pipetted for the evaporation step.  After the DNA extraction of the first few 

samples was completed, their concentration was assayed with one of two different 

spectrophotometers.  We wanted to figure out the optimal volume to pipett from the raw 

blood samples in the initial evaporation step that would give desirable DNA 

concentrations at the end of the extraction process. 

The DNA samples were diluted in water (1/50) and their absorbance was read at 

260nm (for DNA quantity) and at 280nm (to verify the purity of the sample).  The first 

spectrophotometer used, the BioMate 3 Thermospectronic in CAREG’s common 

molecular lab, analyzes one sample at a time with quartz cuvettes borrowed from Dr 

Marc Ekker’s lab.  The initial reading of a blank (consisting of the same water used to 

dilute the extracted samples) need not be repeated between each subsequent sample.  The 

second spectrophotometer used is the Synergy HT from Bio-tek Instruments Inc. situated 

in the BioSciences building, and was utilized with the kind help of Dr Alp Oran.  This 

spectrophotometer and the KC4 program version 3.4 read 96 DNA samples at once on a 

Corning Inc Costar 96 well UV flat bottom plate (courtesy of Dr Oran).  At least 300µl 

are needed to fill the quartz cuvette, but the plate’s wells cannot hold more than 200µl.  

With the Synergy HT spectrophotometer three blanks per plate were used and positive 

controls consisted of previously analyzed DNA samples on the BioMate.  A sample’s 
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reading at 260nm was always corrected by subtracting the reading of the blanks.  This is 

done automatically and a receipt is printed on the BioMate spectrophotometer, and the 

KC4 program on the Bio-tek spectrophotometer can export the corrected 260nm readings 

to an Excel file.  The following formula was used to infer the sample’s DNA 

concentration in (ng/µl): 

 

DNA concentration  =  corrected absorbance   x   dilution factor   x   DNA constant 

(ng/µl)   at 260nm 

 

=  0.abc  x  50  x  50 

 

Sample purity was also examined by dividing the absorbance at 260nm by the one at 

280nm; if the ratio falls between 1.8 and 2.0, the sample is of good quality (which was 

usually the case with our samples).   

 

After analyzing the first extracted samples, we found the following recipe for the 

evaporation step gave the most desirable DNA concentration at the end of the extraction: 

first shaking the raw blood sample and pipetting 125µl into a 1.5ml Eppendorf tube.  

Tubes were left uncapped, covered with a layer of Kimwipes (taped in place over the tube 

rack to prevent debris from falling in the samples) and placed to dry in a fume hood.    

Evaporation lasted 1-2 days, until all the ethanol was gone and the blood was a little dry 

dark clump.  The blood disintegrates in the ethanol over time (after 4 months or so), and 

so it is possible to pipette cells with a p200 Gilson pipette without clogging the tip.  125µl 

sampled enough blood to allow us to see a DNA pellet at the end of the extraction, thus 

making the process easier, and gave DNA concentrations ranging from 10-125 ng/µl.  
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DNA samples with concentrations higher than this range (for example samples isolated 

previously with different initial evaporation volumes) were diluted and placed in 0.6ml 

Eppendorf tubes in the working solutions boxes, while the original DNA sample was 

saved and placed elsewhere in stock boxes. 

 

3.2.1.2  Lysis step 

Once the blood was dry and had the aspect of a little dark clump, the DNA 

extraction could continue.  600µl of cell lysis buffer and ~15µl of Proteinase-K were 

added to the samples, which were placed in a 55ºC water bath until the blood cells 

ruptured (usually 1-3 days).  Samples were flicked with fingers, vortexed, and more 

Proteinase-K was added if necessary when the clumps of blood weren’t disintegrating.  

Samples didn’t spend more than 24h at a time at 55ºC; the temperature was lowered to 

40ºC overnight.  When the samples transformed into a homogenous yellowish solution, 

De Souza’s protocol (2001) was followed for the next extraction steps, and 12 samples 

took ~1.5 hours to complete. 

 

3.2.1.3  Final extraction step   

200µl of Protein precipitation solution (7.5 M Ammonium Acetate) was added, 

samples were vortexed for 15 seconds and centrifuged at maximum speed for five 

minutes.  The top aqueous phase was removed and placed in a new autoclaved 1.5ml 

Eppendorf tube.  600µl of isopropanol was added, causing the DNA to precipitate in a 

white stringy mass floating freely in the solution.  Samples were centrifuged at maximum 

speed for five minutes to collect the DNA in a small pellet.  The supernatant was 
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removed and the pellet was washed with 200µl of 70% ethanol.  Samples were 

centrifuged again at maximum speed for three minutes.  The ethanol was removed and 

the pellet left to dry for ~20 minutes, after which it was resuspended in TE (10 mM Tris-

HCl, 0.2 mM EDTA, pH 7.5).  Samples were then incubated at 37ºC until homogenous in 

the solution (usually overnight).  If a pellet was still visible, tubes flicked with fingers or 

vortexed for a few seconds, then centrifuged and placed again at 37ºC until the pellet 

dissolved.  Samples were then stored at 4°C. 

 

3.2.2  Polymerase chain reaction 

PCRs took a month to troubleshoot (once we actually obtained bands) because no 

one at the University of Ottawa ever used such a small reaction volume.  We used the 

microsatellite primers (Invitrogen) TerpSH 2U (5’-3’: TGG CCA GCA GGA GTA 

ATG), TerpSH 2L (CTA TTA GGG CAG AGA CGA), TerpSH 5U  (TTG CTG CTA 

TAT GCT TAA T), TerpSH 5L (CCT CCC TGC CTA TTG A), TerpSH 7U (CAC ACA 

CAC TGT ATT TTG ATA) and TerpSH 7L  (CTA TGC CCT TTC TAG TTT G) 

developed for the Malaclemys terrapin (Hauswaldt & Glenn 2003) and used successfully 

by Freedberg et al. (2005) on another species of map turtles, Graptemys khonii.  PCR 

amplification were optimized with unlabeled primers and tested on 2% agarose gels.  A 

gradient PCR was performed to find the optimal annealing temperatures of the 3 sets of 

primers.  PCRs were performed in 10µl volumes consisting of 1X buffer, 0.2mM dNTPs 

(both reagents domestically made in Dr Marc Ekker’s lab), 4 pmole forward primer, 4 

pmole reverse primer, 0.5 Units Taq DNA polymerase (Invitrogen), 6.1µl of water and 

1µl of DNA template (concentration ranged 40ng/µl-100ng/µl).  Three master mixes, one 
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for every pair of primers, were performed with all reagents except the DNA to minimize 

pipetting and omission errors.  Thus, to know each individual’s genotype, three PCR 

reactions were necessary.  All reagents (including the DNA) were homogenized prior to 

pipetting.  PCR manipulations were performed on ice.  PCR cycles were performed on 

Eppendorf Mastercycler® epgradient machines.  For primers TerpSH 5 and 7, an initial 

amplification cycle (2 min at 94ºC) was followed by 30 cycles of 1min at 94ºC, 1 min at 

50ºC, 1 min at 72ºC, and a final extension of 1 min at 72ºC.  For primer TerpSH 2, the 

annealing temperature was increased to 55ºC.  These cycles last approximately two 

hours.  See Annex B.  We were in communication with Dr Travis Glenn, who developed 

the SH primers used in this study, in order to obtain a copy of his clone to use as a 

positive control during our PCRs.  Those efforts were unsuccessful and our PCRs were 

never done with positive control.  

           Depending on the number of samples analyzed, PCR reactions could be placed in 

0.2ml Eppendorf tubes, or in a 96 well plate (ABgene Thermo-fast
®
).  Since primers SH 

5 and 7 have the same annealing temperature, they can share the same thermocycler, 

which means no more that 48 samples can be processed at once, unless they each have 

their own cycler.  In CAREG’s common molecular facility, five PCR cyclers are 

available and must be reserved before use. 

 

3.2.2.1  PCRs with tubes 

When tubes are used, it saves time not to identify them prior to starting the 

experiment.  A schematic can be drawn of where the PCR sample should go in the 96 

well thermal cycler on an excel sheet (see appendix A).  Three PCR racks are gathered 
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and each is identified SH2 or 5 or 7.  Then three empty 0.2ml tubes are picked up and 1µl 

of DNA of the desired sample is pipetted in each tube.  Tubes are placed down in the 

following order: one on the PCR rack corresponding to the SH2 reaction, the other of the 

2
nd

 PCR rack corresponding to the SH5 reaction, and the last tube on the 3
rd

 PCR rack 

corresponding to the SH7 reaction.  The same is repeated with all the DNA samples.  9µl 

of the related master mix is then aliquoted to each of the tubes on the matching PCR rack 

(i.e.: taken together are the SH2 master mix and the SH2 PCR rack occupied with tubes 

filled with DNA: these DNA tubes are filled with 9µl of master mix to complete the 10µl 

PCR reaction).  Tubes are closed once this is done.  Tubes are then identified with 

number on the caps (#1-x); add the same numbers manually to the Excel sheet.  Tubes are 

spun for a few seconds to insure the DNA and the master mix are in contact before being 

placed on the thermal cyclers.  Note: the manipulator must be very careful not to move 

the tubes out of the PCR racks before they are identified. 

 

3.2.2.2  PCRs with plates 

Plates are easier and faster to use since no caps need to be opened and closed and 

samples don’t need to be manually identified.  They are also great since the adhesive 

plastic cover can be pealed off one row/column at a time, making the transfer of PCR 

products to the fragment analysis plate less confusing.  However, errors are easier to 

make, such as mismatching wells. 

The same protocol described above can be used with plates and with tubes, except 

with a plate the master mix is distributed before the DNA.  Plates can’t be spun as well as 

tubes can, therefore the DNA is added second (following the Excel sheet diagram) and 
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placed at the bottom of the well directly in contact with the master mix.  The 10µl are 

then mixed by pipetting up and down a few times.  The plastic cover tapes the plate shut; 

care must be taken to insure the tape sticks properly the first time, because unsticking it 

can cause the solution in the wells to explode up and stick to the plastic cover, resulting 

in contamination or loss of reaction volume.  The plate can be spun on the IEC-MultiRF 

Thermo IEC plate centrifuge to insure the DNA and the master mix are in contact.   

 

 

3.2.3  Fragment analysis  

I didn’t have time to completely troubleshoot the fragment analysis, and 

attempted doing so until April 21
st
 2006.  Genotyping was done on Beckman Coulter’s 

CEQ 8000 Genetic Analysis System, which no one at the University of Ottawa knew how 

to use when I started my honors project in September 2005.  To reveal allele sizes, PCRs 

were performed with fluorescent primers that label amplification products, which were 

then recognized and sized by the CEQ.  These labeled products deteriorate quickly and so 

the PCRs needed for the Fragment Analysis were performed on that same day.  They can 

be kept wrapped in foil at 4°C for a few days (up to a week), but more PCR product 

needs to be included in the fragment analysis mix. 

The following WellRED dyes (Sigma-Proligo) were used to label the forward 

primers: D2 for SH2, D3 for SH5, and D4 for SH7.  To save money and maintain balance 

in the PCR reaction, we used 0.2 pmole of labeled forward primer and 0.2 pmoles of 

unlabeled forward primer.  The remaining PCR recipe stayed the same.  One fragment 

analysis for each individual was performed by combining (poolplexing) the PCR 
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products from all three PCR reactions together in one well.  (We wanted to do 

poolplexing as opposed to single plexing because reagent costs are decreased by 2/3 this 

way).  A 40µl poolplexing reaction consisted of 0.5µl of Size Standart 600 (Beckman 

Coulter), 27.5µl of Sample Loading Solution (Beckman-Coulter), and the following 

amounts of PCR products: 6µl SH2, 4µl of SH5, and 2µl of SH7.  (Less SH7 products are 

used because the D4 dye is very intense).  Samples were transferred directly to a CEQ 

sample plate with a 2-20µl multichannel pipettor borrowed from Dr Ekker’s lab.  The 

Size Standard and the SLS were ‘master mixed’ together, transferred to eight 0.6ml 

Eppendorf tubes and subsequently aliquoted to the sample plate’s wells using a 10-100µl 

multichannel pipettor borrowed from Dr Ekker’s lab.  The plate was spun of a IEC-

MultiRF Thermo IEC plate centrifuge to make sure i) no bubbles were present at the 

bottom of the wells, and ii) all the poolplexed solutions were in contact with one another 

(no Size Standart means no fragments will be sized).  A drop of mineral oil (Beckman-

Coulter) was added over the samples to prevent evaporation.  A buffer plate loaded with 

10 drops of Separation Buffer (Beckman Coulter) was run simultaneously with the 

sample plate.  The data collected from each sample plate was saved in the computer on 

the C drive in the “Carine Fragment Analysis” folder.  Two things were included in the 

folder name: the analyzed clutches’ mother number and the date the plate was run on.  

I didn’t have time to learn how to use the CEQ’s software to analyze the data.  

Instead I looked at each poolplexed sample’s results graph, and manually entered the size 

of the peaks in an excel spread sheet, as well as the date the sample was run.  This way, if 

some peaks seem ambiguous, all the original information about that sample can be 

retraced in the CEQ program by localizing the plate it was run on by clutch name and by 



 20 

date.  Some clutches were run on more than one plate to attempt to see the peaks that did 

not appear in the poolplexed samples on the first try. 

 

I assumed that clutches with more than two paternal alleles were fathered by more 

than one male.  A third allele appearing in only one offspring was classified as the result 

of an allelic mutation (Roques et al., 2006).  When the hatchling’s alleles didn’t match 

either of its mothers’, these peaks were considered possibly inaccurate.  To try to solve 

this problem, these samples were reanalyzed (a new PCR and fragment analysis were 

performed) to see if they gave different peaks.  Ambiguous samples that could not be 

retested were not considered for paternity analyses.  When a sample gave different results 

on different plates, I kept the ones that matched the mother’s genotype for paternity 

analyses.  One example of such ambiguous peaks is the occasional appearance of a high 

peak before the first peak on the Size Standard, occurring at all loci but more often for 

locus 5.  This peak wouldn’t appear or even give a hint of a peak when the same sample 

was run on other plates.  Since these results weren’t clear cut, and that these ambiguous 

peaks appeared at more than one locus, I arbitrarily chose not to include them in my 

analyses.  Another example of ambiguous peaks, for locus 5, is a peak at 75 nucleotides.  

Sometimes there would only be a hint of a peak, slightly higher than the background 

noise and much lower than another common peak at 135 nucleotides.  Since it was the 

only bump higher than the background noise for this locus, and that this locus has low 

heterozygosity (see discussion), I chose to keep it my analyses. 
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3.2.4  Statistical analysis 

Statistical analyses were performed in Excel and S-plus.  

Data from female #4’s second clutch was not included in the calculation on mean 

clutch size for the first linear regression (‘Total eggs laid’ vs ‘Maternal carapace length’) 

since the female did not lay her full clutch.  Data from both clutches of female #32 were 

included in all analyses.  In all analyses, I assumed that the females laid all their eggs. 
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RESULTS 

4.1  Clutch data 

Instead of using carapace length to characterize female body size as it is currently 

done in the literature, I thought at first that an estimate of her abdominal volume might be 

more accurate.  I arbitrarily used the formula to calculate a cylinder’s volume to define 

female abdominal volume:  

V = " • # • d
2 
• h 

where “d” represents the mean of half of both carapace length and carapace width [( ! 

CL + ! CW ) / 2 ], and “h” is the carapace height.  However, correlation between this 

new variable and carapace length, carapace width, plastron width, and carapace height all 

had a very high R
2
 of 0.98, 0.97, 0.99, and 0.80, respectively.  These correlations were all 

highly significant with a p-value of 0.  I therefore defined female body size as carapace 

length in the following analyses. 

The smallest captured female measured 204mm in carapace length, and the largest 

female 274mm.  The mean clutch size was 11.16 (SE=0.49) eggs, and ranged from 6-15 

eggs.  Unhatched eggs were present in 77% of clutches.  Hatchling success (number of 

emergent hatchlings/number of eggs in the clutch) ranged from 0 to 100%.  Larger 

females did not lay more eggs than smaller females (log10 transformation of ‘Number of 

eggs in clutch’: R
2
=0.007, p=0.64, N=35; Figure 4), but laid heavier eggs (R

2
=0.26, 

p=0.013, N=23) from which larger offspring hatched (R
2
=0.29, p<0.001, N=35; Figure 

5).  The first clutches laid were not weighed, which is why the sample size is lower for 

that statistic.  There was no relation between female body size and hatching success, 

quantified as the number of emerging hatchling/number of incubated eggs (Squared 
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transformation of ‘Percentage of hatching success’: R
2
=0.04, p=0.26, N=34; Figure 6).  

Conditions of normality were tested with a Komolgorov-Smirnov GOF test and 

homocedasticity was inspected visually for these analyses.   

 

4.2  PCRs and fragment analysis 

Genotypes were collected for a fraction of eight clutches out of a possible 35 

clutches.  A mean of 40.97% (SE=6.39%) of those eight clutches was successfully 

genotyped at locus SH2, 49.31% (SE=6.12) at locus SH5, and 40.2% (SE=6.75) at locus 

SH7.  Since we always tried to genotype full clutches in one shot, unsuccessful results 

were the remaining percentages.  These unsuccessful results yielded ambiguous peaks or 

no peaks at all.  Fragment analysis was attempted for 110 out of a possible 338 

hatchlings.  A total of 36 were genotyped successfully at loci SH2 and SH7, and 43 

hatchlings at loci SH5 (Table I); this represents 11% and 13%.  Only three mothers were 

genotyped completely at all three loci.  A total of 4 (perhaps 5) different alleles were 

found at locus SH2, 2 alleles were found at locus SH5, and 5 (perhaps 6) alleles were 

found at locus SH7 (Table I).  The word ‘perhaps’ is used when the new allele was 

observed only once.   

 More than two paternal alleles were found only once, for hatchling #53 in clutch 

of female #1 at locus SH7.  Other than this case, multiple paternity was never detected 

(Table II).  Never were there clear results (unambiguous peaks) of a hatchling’s genotype 

not matching his mother’s. 
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DISCUSSION 

5.1  Discussion of methodology 

5.1.1  Field sampling  

 Since we captured four females the first night we went ‘turtle hunting’, and never 

caught that many on subsequent occasions, I believe we missed the beginning of the 2005 

nesting season.  Sampling before June 7
th

 might have given us more females.  This was 

impossible for me however, since I only started my stage at QUBS on June 7
th
 2005. 

 

5.1.2  Blood sampling 

We developed a new technique to bleed hatchling emydid turtles.  Published 

studies by Bennett (1986) and Wibbels et al. (1998) provided methodologies for bleeding 

hatchling sea turtles in the subcarapacial vein of the neck.  Weighting roughly 20g, sea 

turtles are twice the size of hatchling freshwater turtles, thus making the extraction 

process easier.  We succeeded in taking blood samples from the coccygeal vein, which 

runs along the dorsal midline of the tail (Figure 3).  Our success at obtaining blood from 

the coccygeal vein was independent of the size of the hatchling (logistic regression with 

carapace length as the independent variable: X
2

 = 0.0012, P = 0.97). This suggests that this 

technique could be practicable on hatchlings of smaller species, such as painted turtles 

(Chrysemys picta) or spotted turtles (Clemmys guttata) that overlap in size with the smaller 

common map turtle hatchlings (Ernst 1994).  We believe that the coccygeal vein should be 

preferred over the subacarapcial vein for venipuncture in hatchlings for three reasons. First, 

bleeding never occurred when we sampled from the coccygeal vein, whereas occasional 

bleeding occurred when we took blood from the subcarapacial vein.  Second, we obtained 

undesirable extracellular fluid more often and in greater amounts when we used the 
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subcarapacial vein. Third, vital organs are less likely to be damaged when blood is taken 

from the dorsal side of the tail than from the head and neck regions. We wrote an article on 

this technique that is now in press in Herpetological Review: see Bulté et al. (2006). 

 

5.1.3  Blood sample storage 

The initial evaporation step of the DNA isolation process was very time 

consuming.   Even though we were pipetting 125µl of every sample (blood mixed with 

ethanol) for evaporation, varying quantities of pure blood were collected, due to the 

varying amount of blood in the initial sample (0.03-0.05ml) and if the blood was pure or 

mixed with lymphatic fluids when it was taken from the specimens.  The volume of 

alcohol in the raw samples wasn’t controlled either.  More blood present in the 

evaporation tube meant more Proteinase-K and more time spent in the water bath were 

needed for the cells to lyse completely.  In order to skip this evaporation step, samples 

should be stored in Queens Lysis Buffer in a 1:8 ratio of blood to buffer instead of 70% 

ethanol, as suggested by De Souza (2001).  Since this is a lysis buffer, blood cells will 

have already started to disintegrate, shortening the time needed for the lysis step. 

 

5.1.4  Polymerase chain reaction 

  When troubleshooting the PCRs, we were originally using Dr Ekker’s 

domestically made Taq but it wasn’t performing enough in a 10µl volume.  We then 

switched to commercial Taq (Invitrogen).  We started using 0.1µl of Invitrogen’s Taq 

compared to the 0.4µl we were using with Dr Ekker’s Taq.  I forgot to adjust the water 

volume of the PCR reaction when we switched reagents, making final reaction volumes 
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9.7µl instead of 10µl.  I realized my mistake on April 21
st
 2006.  PCRs still work in a 

9.7µl volume. 

 

5.1.5  Fragment analysis 

 Some authors (Hauswaldt & Glenn, 2003; Freedberg et al., 2005) use 1/10 labeled 

and unlabelled primers when performing fragment analysis.  This could be attempted if 

money is a concern. 

 

5.1.5.1  Fragment analysis: missing peaks 

Missing peaks, when no peaks appear on the fragment analysis sample’s results 

graph, could be due to the DNA.  The concentration of that sample was perhaps too high 

or too low, or alternatively the DNA could have been altogether omitted from the PCR 

tube. The first kind of error would be plausible if no peaks were observed at all three loci 

since 1µl of DNA from the same working solution tube is used in all three PCR reactions.  

This was minimized by assaying sample DNA concentration via spectrophotometry and 

diluting the appropriate samples to make suitable working solutions.   

 Errors could also occur from the PCR mix.  10µl is a small volume for a PCR 

reaction (pers. comm.: Gary Hatch, Dr John Basso).  By bad luck, perhaps not enough 

primers or Taq were present in that particular sample’s aliquot, and so the desired locus 

was not amplified at all, or at least not in satisfying concentrations to be detectable by the 

CEQ during the fragment analysis.  If pipetting errors diminished the final volume in the 

PCR tube, the reagents’ proportions are changed witch can offset amplification. One can 
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suspect this kind of error when visualizing the poolplexed sample’s graph and seeing 

background noise from that primer’s color but no peaks.   

Errors could occur again when preparing samples for the fragment analysis.  The 

first analyses were performed without a multichannel pipettor, and so omitting to put one 

of the three PCR reactions in the poolplexing tube is possible, which would result in no 

peaks for that locus.  One can suspect this kind of error when visualizing the poolplexed 

sample’s graph and seeing no background noise from that primer’s color.  Errors can 

occur also when using a multichannel pipettor.  It is difficult to pipet the same amount of 

solution in all 8 tips, especially when volumes are small like the ones desired for loci 7 

(2µl) and 5 (4µl).  Perhaps less PCR product was contributed to some poolplexed samples 

which diminished the intensity of those peaks beyond background noise level. 

  

5.1.5.2  Fragment analysis: ambiguous peaks 

Compared to single plexing, poolplexing the three PCR reactions in one well for 

the fragment analysis dilutes the labelled products disproportionately and causes crosstalk 

between different dyes, resulting in ambiguous peaks (Beckman Coulter, 2004).  Clear 

peaks should rise above the Size Standard, and there should be no more than two per loci.  

Unspecific amplification can cause other peaks, but they should not be as omnipresent as 

the ‘real’ peaks once the PCRs are optimized, which we think we achieved.  If peaks are 

too low, one can augment the amount of PCR product in the FA mix.  A second solution 

is performing an ethanol precipitation.  This purification step removes excess anions in 

the PCR products that interfere with the Sample Loading Solution (Beckman Coulter, ?).  

Contact the common molecular lab technician Philip Pelletier for method. 
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 Since locus SH5 only had two alleles total (see section 3.2), including the 

sometimes ambiguous peak at 75 nucleotides in paternity analyses when there was only a 

‘hint’ of a peak did not affect the estimate of multiple paternity.  This unique hint of a 

peak at 75 nucleotides occurred in different individuals, and other hatchlings had clear 

cut peaks at 75 nucleotides.  This leads me to believe that perhaps this ‘hint’ of a peak 

was caused by a mutation in the flanking sequence of the particular individual’s 

microsatellite locus that hampered this second allele from amplifying properly with SH2 

primers. 

 

 

5.2  Disscussion of results 

5.2.1  Clutch data 

 We captured females spanning the full range of reproductive females.  Clutch 

sizes ranging from 6-15 eggs are comparable to what is found in the literature (Ernst, 

1994), and the fact that larger females are more lay larger clutches is concordant as well 

(Iverson, 1992; Shine, 2005).   

 

5.2.2  Paternity analysis 

5.2.2.1  Undetectable multiple paternity? 

 To increase our ability of detecting multiple paternity we originally wanted to 

genotype all the offspring in each clutch at five microsatellite loci.  Due to incessant 

labwork setbacks (see appendix C), only three microsatellite loci were optimized, only 8 

clutches were attempted, and only 40.2% (SE=6.75) to 49.31% (SE=6.12) of these 
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clutches’ offspring were successfully genotyped.  The eight clutches chosen for analysis 

span the full range of reproductive females’ body size. 

 

Since a third paternal allele was discovered in one hatchling at one locus in one 

clutch only, this third allele could be the result of an allelic mutation and not be caused by 

multiple paternity (Rocques et al., 2006).  However, since the clutches were sub sampled 

(40-49%), perhaps we missed the other siblings possibly fathered by this second sire. 

 

The fact that no strong evidence of multiple paternity was found in these eight 

clutches of the common map turtle is inconclusive.  Because the fragment analysis wasn’t 

troubleshooted and often gave ambiguous graphs, I was very conservative when 

including peaks for the paternity analyses, and might have undervalued multiple 

paternity.  Moreover, sub sampling the clutch diminishes the power to detect additional 

fathers, especially if the ratio of fathers is highly skewed (Pearse et al., 2002); this might 

be the case in our clutch #1.  Not having the mother’s genotype (which occurred in 5 out 

of 8 clutches), hence not knowing if she is homo or heterozygous, diminishes the power 

to detect multiple sires as well.  Multiple paternity could also be underestimated 

whenever two paternal alleles are observed at one locus: I have no way of determining if 

one heterozygous male or two homozygous males fathered the clutch.  I therefore 

conservatively assume it was a heterozygous male.  Underestimating the number of sires 

this way would be infrequent if i) the microsatellite loci were highly variable and ii) if 

numerous loci were genotyped.  Evidently two males might share the same alleles at one 

locus but not at another.  Conversely, my analysis shows that the three microsatellite loci 
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used in this study have very low heterozygosity: 4 (maybe 5) different alleles were found 

in 36 hatchlings at locus SH2, 2 alleles in 43 offsprings at locus SH5, and 5 (maybe 6) 

alleles in 36 individuals at locus SH7.  Many hatchlings share the exact genotype as their 

mother, and the same alleles are present in many clutches.  It is thus impossible to guess 

the number of sires per clutch if the father alleles are unidentifiable.  With such low 

heterozygosity at all three loci, two males sharing an identical genotype at these loci 

could sire the same clutch and this would be undetected.  My data set is disappointing 

since Freedberg et al. (2005) who had used these loci on another species of map turtles 

observed that SH2, 5 and 7 yielded 14, 11 and 11 alleles, respectively in 209 turtles.  My 

low sample size and the low variability of the three microsatellite loci thus reduce my 

ability to detect multiples sires in a clutch.   

    

Other than the microsatellite loci not being variable, another cause to the neutral 

genetic information collected in this study could be an inbred population.  Inbreeding is 

defined as the mating of two related individuals (full sibs, cousins, etc.) (Roff, 2002).  

Since related individuals share the same alleles, inbreeding leads to loss of 

heterozygozity, gene depression, and loss genetic diversity in a population.  This could 

explain why the same alleles were present in different clutches and why the microsatellite 

loci had so little variance.  The heavy predation on nests could perhaps cause inbreeding 

if the surviving offspring at any given year are from the same clutch (Galbraith et al., 

1993), or if a particular mother’s nesting site is protected and her offspring survive every 

year.  However, Lake Opinicon’s population is unlikely to be one big family reproducing 
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solely amongst each other, since this lake is part of the Rideau Canal Waterway and is 

connected to other lakes from which immigration and emigration can occur.   

 

A third reason could explain the apparent low genetic variability of our turtle 

population: that it is situated at the northern limit of this species’ distribution.  G. 

geographica has an extensive range : from Quebec and northwestern Vermont, it extends 

west through the Great Lakes into southern Wisconsin and eastern Minnesota and then 

south into Kansas, northeastern Oklahoma, Arkansas, Tennessee, Alabama and 

northwestern Georgia (Ernst et al., 1994).  Outlying populations are often founded by 

fewer individuals which can result in a significant reduction in multilocus heterozygozity 

and allelic variation.  Reduced gene flow, small population size, and founder effects will 

all promote genetic drift and result in reduced genetic variation in peripheral populations 

(Lesica & Allendorf, 1995).   

 

 

5.2.2.2  Multiply sired clutches 

For the reasons stated in the previous section, multiple paternity in clutches of G. 

geographica has possibly been underestimated in this study.  I would have expected to 

see multiple paternity for several reasons.  First, multiple paternity has been found in 

numerous animal taxa (Reynolds, 1996).  It is a common phenomenon in both marine and 

freshwater turtles, and has been documented in every freshwater species studied to date 

(Pearse & Avise, 2001).  Second, turtles don’t form pair bonds (Kuchling, 1999), and so 

are free to mate repeatedly.  Third, map turtles are gregarious (Vogt, 1980), so it is 
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doubtful females are male limited.  Fourth, no mechanisms preventing female 

insemination by more than a single male have been found (Galbraith et al., 1993).  Fifth: 

female turtles can store viable sperm for up to four years (Pearse et al., 2001).  How the 

sperm from different males is stored in the sperm storage tubules (sequentially layered or 

mixed) is unknown (Gist & Congdon, 1998).  Therefore, even if females mate only once 

a year prior to the mating season, it is feasible that sperm from previous copulations 

could be mixed in with this newly acquired sperm before fertilization occurs, resulting in 

multiply sired clutches.  Furthermore, stored sperm comes at no extra cost to the female 

in painted turtles: in Pearse & Avise’s study (2001), hatchlings fathered by the same 

male’s sperm in consecutive years had the same hatching success as offspring sired by 

different males. 

Several hypotheses suggest that females gain from polyandry.  Females might be 

picky when it comes to mate choice; alternatively, multiple matings and multiple 

paternity could simply be the result of females conceding to mate as a tactic to avoid 

male harassment (Lee & Hays, 2004).  Proposed genetic benefits of multiple matings are: 

indemnifying the female against the possibility that one of her mates is not fertile 

(Reynolds, 1996); avoiding genetic incompatibility (Zeh & Zeh, 1996), inbreeding and 

genetic defects resulting from stored sperm (Reynolds, 1996); promoting the gain of 

‘good genes’ and increasing genetic diversity among offspring (Pearse & Avise, 2001).  

Stored sperm provides an opportunity for multiple paternity as a result of sperm 

competition or cryptic female choice (Pearse & Avise, 2001).  Thus, if females can detect 

variation in male genetic quality or compatibility, they could adjust their mating 

behaviour and sperm storage accordingly, and play an active role in enhancing their 
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overall genetic fitness (Pearse et al., 2002).  Therefore, the more sperm a female 

accumulates by mating with different males, the more choice she has to fertilize her eggs.  

Furthermore, by storing sperm, females might enjoy the benefits of multiple paternity 

over a long period of time (Roques et al., 2006). 

A few studies have suggested a significant biological advantage to multiple 

paternity.  Pearse et al. (2002) demonstrated that more eggs are laid in multiply clutches 

of painted turtles.  Madsen & Olsson (1998) demonstrated multiply sired broads of adders 

(V. berus) and sand lizards (L. agilis) have higher embryonic survival, fewer deformities 

and, in L. agilis, the offspring are heavier and survive better during their first year of life.  

Furthermore, normal looking young with malformed sibling (or half-siblings) in this 

natural population survive less well than young with no deformed siblings.  Conversely, 

Lee & Hays (2004) suggest that the environment (predation, temperature, flooding) plays 

a much stronger role in determining the success of clutches, than whether paternity has 

been single or multiple.  In our study most females were caught nesting at the same place, 

on Hump Island, so environment possibly plays a more subtle role. 

If multiple paternity was discovered, it would be interesting to see if it is related 

to female body size.  If a positive trend is observed, it would suggest that males are more 

attracted to larger females, as we predicted.  Pearse et al. (2002) found no significant 

relationship between female carapace length and single versus multiple paternity of 

clutches of painted turtles.  However, females that laid at least one multiply sired clutch 

were on average larger than females that laid only single-paternity clutches.  Their results 

suggested a potential male preference for larger female as mates.   
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If there was no trend to multiple paternity and female body size, it is possible 

males don’t select who they mate with.  Perhaps because there are no costs to 

spermatogenesis; we never tested this aspect of our hypothesis.  Or perhaps because 

larger hatchlings don’t enjoy a higher survival rate (Gibbons et al., 1999).  We gathered 

data on hatching success but this does not necessarily equal hatchling survival to age of 

reproduction.  Pearse et al.’s (2002) study revealed that more eggs were present in 

multiply sired clutches of painted turtles.  Larger turtles laid more eggs in that study, but 

this is not the case for this study of common map turtles.  My results show that the 

amount of eggs laid doesn’t increase with female body size (R
2
=0.007, p=0.64), but that 

larger females lay bigger eggs (R
2
=0.26, p=0.013).  If bigger hatchlings issued from those 

bigger eggs don’t survive better than smaller hatchlings, small and large mothers enjoy 

the same fitness, and should be equally attractive to males. 

 

5.2.2.3  Singly sired clutches 

It is also possible that female G. geographica sire their clutches with only one male.  

Several reasons could perhaps explain this trend.  Maybe the genetic advantages to 

polyandry stated previously are not biologically important enough.  Secondly, mating 

might entail some heavy costs.  Very little is known about the map turtle’s reproduction; 

the fact that no courtship has ever been documented doesn’t mean it is inexistent.  Vogt 

(1980) reported that copulation can last a long time, up to four hours.  Injuries or parasite 

transmission could also be suffered during mating (Krebs & Davies, 1997), which would 

discourage females from seeking additional mates. 
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Female map turtles could avoid multiple matings because they are so much bigger 

and stronger than males, that forced copulation by these conspecifics would not be an 

issue.  Storing viable sperm from years past like some turtles do (Kuchling, 1999) would 

also nullify the need to seek additional matings. 

Female map turtles might avoid multiple paternity by several mechanisms even 

though multiple matings arise.  First, even if there is sperm storage, sperm depletion can 

occur.  The fertility and/or hatching success of across year clutches is contradictory, with 

no changes in some species, like the previously mentioned painted turtle (Pearse & 

Avise, 2001), but a decline in others, like in the European pond turtle (Emys orbicularis; 

Roques et al., 2006) and the promiscuous green turtle (Chelonia mydas; Fitzsimmons, 

1998).  Second, (as mentioned above) we don’t know how the sperm is stored in the 

storage tubules or how it leaves the storage tubules to fertilize the clutches (Gist & 

Congdon, 1998).  Male precedence is feasible if the different sperms are layered on top of 

each other and don’t mix.  Third, through cryptic choice, females might choose to use 

sperm (Olsson et al., 1997) from only one male to fertilize the whole clutch.  Fourth, 

through sperm competition, one male’s sperm might be a better competitor and ‘win’ all 

the ova (Olsson & Madsen, 1998). 

 

5.2.2.4  Other turtles species 

In bottom-walking and terrestrial species, like the snapping turtle and the wood 

turtle, males are larger than females and can force copulation (Ernst et al., 1994). 

Male snapping turtles defend home ranges through combat (Pearse & Avise, 2001). 
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In wood turtles, male dominance hierarchies exist, and paternity analyses have shown 

that superior males fathered a significantly higher proportion of clutches compared to low 

ranking males (Galbraith 1991, in Pearse & Avise, 2001).  Multiple paternity is expected 

to occur when females are forced to suffer several matings. 

In aquatic species like the painted turtle, males are smaller than females but can 

overlap in size with them (Ernst et al., 1994).  Berry and Shine (1980, in Pearse et al., 

2002) believe forced copulation is unlikely in aquatic species.  Male painted turtles 

engage in an elaborate courtship to seduce a conspecific female, during which time the 

female can judge male quality (Pearse et al., 2002).  Perhaps multiple paternity evolved 

following female choice to mate several times in order to gain genetic benefits to her 

offspring, as discussed earlier. 

In map turtles, females are much bigger than males and no courtship has been 

documented.  How females judge male quality is unknown.  If multiple paternity occurs 

is also unknown.  
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FUTURE WORK 

Future work should finish troubleshooting the fragment analysis on the CEQ so 

clear graphs like the one in Figure 7 can be obtained reliably.  Then the sample size in 

this study should be enhanced, and other/more microsatellite loci used, hoping they are 

highly variable on the common map turtle.  The new genotypes should be combined to 

the ones acquired in the present study.  Hauswaldt & Glenn’s (2003) other loci (SH1, 

SH3, SH8) could be attempted.  Since SH2, 5 and 7  amplified effectively in this study 

and since SH1 and 8 amplified more often than SH7 when tested across seven turtle 

species by the authors, perhaps SH1 and 8 are good candidates for G. geographica.  In 

another study, King & Julian (2004) developed 26 microsattelite loci for the bog turtle 

and tested them on 13 species of emydidae, including G. geographica.  Though only four 

map turtles were tested, some loci demonstrated 4 or 5 alleles, which suggest a high 

degree of polymorphism.   

If multiple paternity was detected in our clutches of common map turtles, 

interesting questions could be asked.  Do the fathers sire the same proportion of the 

clutch?  Does multiple paternity increase hatching success?  And offspring size at 

hatching?  Are there more deformities in singly sired clutches than multiply sired ones?  

Analyzing dead eggs to see if they are full sibs or half sibs to live hatchlings would be 

interesting.  And perhaps the most interesting question in light of this study: does 

multiple paternity increase with female body size?   

Male costs of reproduction and hatchling survival could be analyzed as well, to 

give our hypothesis more weight. 
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CONCLUSIONS 

 

Multiple paternity is a common phenomenon in both marine and freshwater turtles, 

and has been documented in every freshwater species studied to date.  Potential 

advantages in terms of genetic advantages leading to higher hatchling survival have been 

discussed.  Female map turtle being so large compared to males suggests that she can 

avoid forced copulations and choose mating partners.  We think that larger females 

should be more attractive to males since they are more fecund, and that multiple paternity 

should accordingly be more common in their clutches.  Larger female do not lay more 

eggs than smaller females but their eggs are significantly heavier, which may lead to 

higher hatchling survival. 

 

No strong evidence of multiple paternity was detected in this project.  Persistent 

laboratory setbacks resulted in low sample size, sub sampling of clutches and low 

variability of the three microsatellite loci.  This severely reduced our ability to detect 

multiples sires in a clutch and rendered the results inconclusive.  The question of multiple 

paternity augmenting with female body size in the common map turtle is left unanswered.  

However, the answer might come soon, as DNA extraction and PCRs have been 

troubleshooted, and fragment analysis will soon follow with the help of CAREG’s 

common molecular facility’s technician, Philip Pelletier. 
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Figure 1.  Left At maturity, females G. geographica (N=226) are larger than males (N = 

271).  Right Fully mature male next to a fully mature female.  Data from Lake Opinicon’s 

population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Study site: Lake Opinicon, in the Rideau Canal Waterway.  Both enlargements 

are Hump Island, a popular nesting site. 
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Figure 3.  New technique developed for bleeding hatchling emydid turtles in the tail. 
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Figure 4.  Larger females do not lay more eggs than smaller females (N = 34 clutches). 
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Figure 5.  Hatchling body size increases with female body size (N = 336 hatchlings from 

35 clutches). Each data point represents the mean carapace length (mm) per clutch. 
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Figure 6.  There is no relation between hatching success and female body size (N = 35 

clutches). 
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Figure 7.  Example of a perfect poolplexed graph during fragment analysis with the 

CEQ.  Data from hatching #207. 
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Table I.  Total alleles detected in eight clutches of Common map turtles at loci 2, 5, and 

7 (SH2, 5 and 7) by fragment analysis.  M: Mother identification number; A: number of 

alleles found at this locus; N: number of hatchlings genotyped; %: percentage of clutch 

genotyped.  Gray rows indicate that the mother’s genotype was not obtained. 

 

M Loci 2 A N %  Loci 5 A N %  Loci 7 A N %  

1 170, 178 2 9 69.23 75, 135 2 7 53.85 90, 94
a
, 110, 115 4 7 53.85 

2 99, 170, 178 3 5 55.56 75, 135 2 6 66.67 90, 94, 110, 118 4 4 44.44 

5 170, 194 2 2 15.38 135 1 7 53.85 90, 94, 118 3 8 61.54 

17 170, 178, 194 3 5 35.71 135 1 3 21.43     0 0 

20 170, 178, 194 3 3 25 135 1 6 50 90, 110, 118 3 6 50 

22 178 1 4 36.36 75, 135 2 3 27.27 90, 110, 137
a
 2, 3

b
 4 36.36 

23 162
a
, 170, 194 2, 3

b
 4 33.33 135 1 6 50 90, 94 2 5 41.67 

31 170, 178 2 4 57.14 75, 135 2 5 71.43 90, 118 2 3 42.86 
a
 Indicates that this allele was found in only one individual. 

b 
Based on that one extra allele found in only one individual. 

 

 

 

Table II.  Probable father alleles detected in eight clutches of Common map turtles at 

loci 2, 5, and 7 (SH2, 5 and 7) by fragment analysis.  M: Mother identification number; 

A: number of alleles found at this locus; S: number of inferred sires in clutch.  Gray rows 

indicate that the mother’s genotype was not obtained. 
M Loci 2 A S Loci 5 A S Loci 7 A S 

1 170,178 2 1 75, 135 2 1 90, 94
a
,115 2, 3

b
 1, 2

b
 

2 (99 or 170), 178 1 or 2 1 75, 135 2 1 90, (94 or 118) 2 1 

5 170, 194 2 1 135 1 1 94, 118 2 1 

17 (170 or 178), 194 2 1 135 1 1       

20 (170 or 194), 178 2 1 135 1 1 90, 118 2 1 

22 178 1 1 75, 135 2 1 90, 137
a
 2 1 

23 170, (162
b
 or 194) 2 1 135 1 1 90, 94 2 1 

31 170, 178 2 1 75, 135 2 1 90, 118 2 1 
a
 Indicates that this allele was found in only one individual. 

b 
Based on that one extra allele found in only one individual. 
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ANNEX C 

Laboratory setbacks incurred during the fragment analysis 

 

-No one at the University of Ottawa was trained to use Beckman Coulter’s CEQ genetic 

system when I started my honors project in September. 

-There are gaps in the User’s Guides and Training manuals: information on how to 

transfer PCR products to the CEQ for fragment analysis (PCR volumes, special 

purification treatments) is not available.  When I called Beckman Coulter’s customer 

service to get this information, they told me to wait for a representative to show me how 

to do this. 

-PCRs had to be optimized before starting the fragment analysis, and we aimed to start 

this last step in January.  Effectively, PCRs were optimized on the 13
th

 of January 2006. 

-Although we requested the fragment analysis training in mid-December of 2005, the 

meeting was set for February 17
th
, and was postponed one more week due to an ice storm 

that day prevented the Beckman representative from driving from Montreal.  On 

February 24
th
 the training was cut early (only after being pushy was I shown how to 

visualize my data) and the representative assured us he would come back two weeks 

later.  On that day he arrived at 14:30 instead of 10:00 like scheduled, and we never got 

around to being shown how to use the CEQ program treat data (at that time I didn’t know 

it would be important).  

-On March 29
th 

95 viruses were detected on the computer that controlled the CEQ.  It 

took a week to clean it up, during which time I couldn’t perform fragment analyses. (It 

turns out the computer was hooked up to the internet without having an anti-virus 

installed). 

-The next two weeks of analysis were not conclusive, giving results worst than before.  

We finally figured out the capillary array was expired after spending 6 weeks at room 

temperature (the limit is four).  A new set took a week to arrive (Beckman won’t ship 

reagents kept at 4°C later than Tuesday, in case the package gets lost during a week end).  

The new capillaries arrived on the 12
th
 of April, and were defective (capillairy D was too 

long).  We attempted to run a plate anyway, by not placing any samples in row D, but 

machine won’t take it.  If one capillary is out, they are all out.  Beckman sent us a new 

array that arrived on April 18
th

.  As one last push to obtain results, (for my thesis due a 

week later), I ran a 96 well plate on the CEQ on the 21
st
 of April, and obtained zero 

results.  Obviously troubleshooting the fragment analysis needs more work.  This is when 

I gave up on lab work for this project. 

 

 

 


