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Abstract
Objective: Individual habitat preference can reduce intraspecific competition for re-
sources and may differ between age groups, sexes, and adult phenotypes. The Channel 
Catfish Ictalurus punctatus is a widespread species occurring in diverse freshwater 
habitats. This species displays breeding philopatry, returning to nesting sites occupied 
in previous years. Larger Channel Catfish tend to nest in the main channels of large 
rivers, whereas smaller fish tend to prefer smaller tributaries. The purpose of our study 
was to determine whether this habitat segregation potentially associated with habitat 
preference affects the genetic structure of a population. We hypothesized that spatial 
segregation of breeding sites in the Ottawa River and its smaller tributaries at Lac des 
Chats reduced gene flow within the population, resulting in genetically differentiated 
demes associated with lacustrine-like and fluvial habitats.
Methods: Microsatellite allelic data was collected from 162 Channel Catfish.
Result: We found little genetic variation between the Ottawa, Mississippi, and 
Madawaska rivers. Furthermore, our analyses suggested that the sampled specimens 
comprised one panmictic population. Fish from one site in the Ottawa River, how-
ever, were significantly differentiated from fish from a nearby site also in the Ottawa 
River as well as from fish from the Mississippi River tributary.
Conclusion: Given that fish from sites further up the Ottawa River were not differ-
entiated from fish from these sites, it is unlikely that geography can account for the 
differences observed; rather, assortative mating may explain the differentiation. We 
propose that panmixia within the population is caused by ontogenetic changes in 
habitat selection, straying individuals, or sex-biased dispersal and philopatry.
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INTRODUCTION

Intraspecific variation in habitat preference can occur 
within populations, where individuals differ in the hab-
itats they select (Robinson et al. 1996; Violle et al. 2012; 
Dehnhard et al.  2020). Individual habitat preference 

and specialization is a strategy that reduces intraspecific 
competition for resources (Svanbäck et al.  2008; Violle 
et al.  2012; Dehnhard et al.  2020). This habitat varia-
tion can occur between age groups, sexes, and polymor-
phic adult phenotypes (Robinson et al. 1996; Marra and 
Holmes  2001; Ward et al.  2006; Violle et al.  2012; Mills 
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et al. 2021). For example, Antarctic fur seals Arctocephalus 
gazella display sexual segregation of foraging sites 
(Kernaléguen et al. 2016; Jones et al. 2020). Females for-
age closer to pupping sites because they are constrained 
by parental care, whereas males travel further from pup-
ping sites, potentially seeking areas of high food density to 
support their larger body sizes (Kernaléguen et al. 2016; 
Jones et al.  2020). Another example is the link between 
habitat specialization and polymorphic adult morphology 
of Arctic Char Salvelinus alpinus (Snorrason et al. 1994; 
Kapralova et al.  2015). Arctic Char display four adult 
morphs partially determined by genetics and environ-
mental conditions (Snorrason et al.  1994; Kapralova 
et al.  2015). Benthic and limnetic morphs differ in cra-
nial, fin, and gill raker morphology, as well as coloration 
linked with differences in diet and habitat use (Snorrason 
et al. 1994; Kapralova et al. 2015).

Differences in intraspecific habitat preference can 
lead to habitat segregation and subsequently influence 
the genetic structure of a population. If reproduction is 
restricted to individuals occupying the same preferred 
habitats, gene flow will be constrained between different 
habitats (Rausher 1984; Hellberg 1994; Stepien et al. 2009). 
These subpopulations may genetically diverge over time, 
thus increasing genetic diversity within the population, 
further reinforced by selection for different traits be-
tween habitats (Rausher  1984; Jaenike and Holt  1991; 
Hellberg 1994; Berner and Thibert-Plante 2015). Smaller 
subpopulations, however, are more prone to genetic drift, 
potentially reducing genetic diversity within the popu-
lation (Lande  1976; Allendorf  1986; Lynch et al.  2016). 
Genetically distinct subpopulations have been observed 
in many species that demonstrate intraspecific habitat 
preference variation, such as American bullfrogs Litho-
bates catesbeianus (Cloyed and Eason 2017), flour beetles 
Tribolium castaneum (Agashe and Bolnick  2010), Arctic 
Char (Adams et al.  2006), and White Sharks Carcharo-
don carcharias (Jorgensen et al. 2010). As subpopulations 
accrue genetic differences over time due to assortative 
mating, reproductive isolation and speciation may occur 
within a metapopulation (Markert et al. 1999; Via 2001; 
Berner and Thibert-Plante 2015; Igarashi et al. 2018).

Another example of a widespread species that occurs 
in a diversity of habitats is the Channel Catfish Ictalurus 
punctatus (Ictaluridae, Siluriformes). Channel Catfish are 
distributed throughout North America, occupying streams, 
rivers, and lakes (Wellborn 1988; Dames and Coon 1989; 
Pellett et al. 1998; Hubert 1999; Sotola et al. 2017). Chan-
nel Catfish migrate between protective overwintering 
deepwater habitats and shallow-water spawning sites with 
abundant food in the summer (Dames and Coon  1989; 
Pellett et al.  1998; Hubert  1999). These migrations are 
prompted by water temperature; autumnal migrations 

coincide with water temperatures dropping between 10 
and 13°C (Pellett et al.  1998). Temperatures associated 
with spring migrations are still unknown. On average, 
Channel Catfish migrate ~8–16 km but can migrate up to 
100–500 km (Pellett et al. 1998; Sotola et al. 2017). Chan-
nel Catfish display breeding philopatry, an annual return 
to previously occupied nesting sites (Greenwood  1980; 
Pellett et al. 1998; Pearce 2007; Hastings et al. 2017; Sotola 
et al.  2017; Winger et al.  2019). During the summer, 
Channel Catfish return to previously occupied territories 
and rarely travel further than 5.7 km from this location 
(Pellett et al. 1998; Sotola et al. 2017). About 30–40% of the  
population, however, strays throughout the river and its 
tributaries (Pellett et al. 1998).

Site fidelity is related to Channel Catfish size; fish of 
intermediate size (~280–380 mm) tend to roam through-
out tributaries of large rivers (Dames and Coon  1989; 
Pellett et al.  1998). Both smaller (<250 mm) and larger 
(>380 mm) fish tend to remain within 2–5.7 km of their 
nesting sites throughout the summer, preferring large river 
channels (Dames and Coon 1989; Pellett et al. 1998; Sotola 
et al.  2017). Larger fish are better able to defend high-
quality territories and thus could have more incentive to 
return to those sites in following years (Pellett et al. 1998). 
Furthermore, smaller fish unable to establish territories 
due to competition could be forced into less desirable hab-
itats, resulting in little incentive to return to those sites 
(Pellett et al. 1998). Therefore, a smaller roaming fish that 
reaches a large size should eventually establish a territory 
and return to that site annually. This hypothesis, however, 
has not yet been formally tested. Conversely, breeding 
site fidelity and habitat preference may be influenced by 
intraspecific variation in habitat preference and genet-
ics, reinforced by lower migration and the separation of 
breeding populations between different spawning habitats 
(fluvial and lacustrine) (Bolnick et al. 2009). Channel Cat-
fish as short as 170 mm and weighing 0.34 kg can spawn 
(Wellborn  1988; Hubert  1999), indicating the possibility 
of a smaller adult subpopulation that may prefer smaller 
tributaries to large lakes and rivers. These smaller fish can 
reproduce within the tributaries, separated and protected 

Impact statement

Habitat segregation of breeding Channel Catfish 
populations does not translate into genetic iso-
lation of lacustrine-like and fluvial subpopula-
tions, improving our understanding of gene flow. 
Ottawa River catfish are as genetically diverse 
as wild American populations and more diverse 
than domestic stocks.
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from the larger fish in lakes and the main channels of 
rivers. Genetic substructuring of populations has been 
observed between fluvial and lacustrine habitats in fresh-
water fishes, such as Threespine Stickleback Gasterosteus 
aculeatus (Bolnick et al.  2009). Furthermore, the migra-
tory Neotropical Dorado Brachyplatystoma rousseauxii 
exhibits differences between habitat-associated subpop-
ulations within ~300 km (Carvajal-Vallejos et al.  2014). 
Genetically distinct subpopulations potentially linked 
with philopatry occur within the western Amazon River 
and the upper Madeira River, a tributary of the Amazon 
River (Carvajal-Vallejos et al. 2014).

To date, few studies have investigated how the physical 
environment has potentially affected the genetic structure 
of Channel Catfish populations. The environment can in-
fluence the genetic diversity of a species at several spatial 
scales. Previous studies have focused on large geographi-
cal areas and have provided evidence that isolation by dis-
tance and population fragmentation via dam construction 
have influenced the genetic structure of the species (So-
tola et al. 2017). Less is understood, however, about how 
local environmental heterogeneity and habitat segregation 
of breeding populations at smaller spatial scales (~50 km) 
may also influence the genetic diversity of Channel Cat-
fish. The purpose of our study was to investigate whether 
breeding habitat preferences associated with fluvial and 
lacustrine-like breeding habitats in Channel Catfish trans-
lated into genetic differentiation within a population of 
the Ottawa River and its tributaries. We hypothesized that 
habitat segregation potentially linked with breeding site 
preferences has reduced gene flow and promoted genetic 
differentiation between shallow river subpopulations and 

deep lake-like subpopulations in Lac des Chats. We pre-
dicted that Channel Catfish from the Ottawa River would 
be genetically distinct from individuals within its tributar-
ies. Conversely, if segregation of breeding populations is 
not caused by habitat preference, the population should 
not demonstrate genetic substructuring associated with 
habitat type or river. To test this hypothesis, we collected 
Channel Catfish from Lac des Chats of the Ottawa River 
and from the Mississippi, Madawaska, and Bonnechere 
rivers. Using microsatellite allelic data, we estimated the 
relative genetic differentiation of each subpopulation 
sampled.

METHODS

We collected 162 Channel Catfish from Lac des Chats, a 
~40-km reach of the Ottawa River between Portage-du-
Fort, Québec, and Chats Falls Generating Station, dur-
ing summer 2018 (Figure  1). Two hydroelectric dams 
delineate this portion of the river and prevent upriver fish 
movements. This reach of the Ottawa River has become a 
reservoir due to the presence of both dams. Three major 
tributaries meet the Ottawa River between the dams: the 
Mississippi River, the Madawaska River, and the Bonne-
chere River. These smaller rivers, and the shallow banks 
of the Ottawa River, offer ideal summer nesting sites for 
Channel Catfish that provide cover, such as wood debris, 
large rocks, undercut river banks, etc. (Hubert 1999; Haxton 
and Chubbuck 2002). Throughout their distribution, Chan-
nel Catfish spawn as early as March and as late as August, 
exhibiting latitudinal differences in exact spawning months 

F I G U R E  1   Aerial view of the ~40-km Ottawa River reach known as Lac des Chats, between Portage-du-Fort and Chats Falls Generating 
Station at the border between Québec and Ontario, Canada. The inset depicts the study location in Canada with a white star. Collecting sites 
are indicated by white markers. Ottawa River collection sites are labeled Ot1–Ot5, the Mississippi River collection site is labeled Mis, and the 
Madawaska River collection site is labeled as Mad. Map data: Google Earth Pro, Maxar, CNES/Airbus.
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(Hubert 1999). Northern American populations from South 
Dakota and Wyoming typically spawn from mid-June to 
July (June  1977; Hubert and O'Shea  1991; Hubert  1999). 
Given the more northern latitude of Ottawa, we collected 
fish between June and August from five sites along the Ot-
tawa River and from one site in each tributary using a com-
bination of angling and hoop nets. We selected these sites 
based on two criteria: (1) even distribution throughout Lac 
des Chats and its tributary rivers and (2) empirically deter-
mined sites of high Channel Catfish abundance. We meas-
ured total body length with a measuring board and weight 
with a spring scale. We collected muscle tissue samples 
from each individual and stored them in 95% ethanol.

We extracted DNA from the muscle tissue samples 
with a homemade animal extraction kit and a modified 
protocol from Ivanova et al. (2006). We used the resulting 
extractions to amplify 16 microsatellite loci (Table S1 avail-
able in the Supplement in the online version of this article) 
chosen from a pool of 30 available loci for Channel Catfish 
(Vieira et al. 2016). We chose our loci based on successful 
amplification and allelic length variation (Waldbieser and 
Bosworth 1997, 2013; Waldbieser and Wolters 1999; Tata-
renkov et al.  2006). We used the following PCR recipe to 
amplify all microsatellite loci: 1X Dream buffer contain-
ing 2 mM MgCl2 (ThermoFisher Scientific), 0.2 mM of de-
oxynucleotides, 0.05 μM of forward primer labeled with 
5′-M13 or 5′-CAG tag (Table S1), 0.2 μM of reverse primer, 
0.2 μM 5′-labeled tag primers with fluorescent dye (FAM, 
VIC, NED, or PET; Table S1), 0.75 U of Dream Taq, about  
20–30 ng of template DNA, and nuclease-free water to adjust 
the final reaction volume to 15 μL. Using a Mastercycler pro 
S (Eppendorf Canada), we amplified our PCR products with 
the following heat cycling conditions: initial heating to 95°C 
for 3 min, 35 cycles of denaturation (95°C for 30 s), primer 
annealing (55°C for 30 s), and extension (72°C for 1 min and 
30 s) phases, and a final extension phase at 72°C for 10 min. 
Samples that could not be amplified on the first attempt were 
reamplified using an annealing temperature of 59°C.

Once we amplified all 16 microsatellite loci, we com-
bined the PCR products into two pools per individual 
for genotyping. Each pool contained eight loci: two loci 
of nonoverlapping allelic size ranges for each of the four 
fluorescent tags listed above. The first pool for each in-
dividual comprised BM1-37, IpCG18, IpCG11, IpCG14, 
IpCG01, IpCG54, IpCG08, and IpCG195. The second pool 
for each individual comprised IpCG12, POMC, 71–59, 
IpCG71, GY047K03, IpCG07, IpCG273, and BM1-33. Each 
genotyping reaction contained 8 μL of PCR product (1 μL 
per locus), 0.4 μL of fluorescent size standard ladder (LIZ), 
and 9.6 μL of HIDI formamide. We genotyped each indi-
vidual using a 3500 xL Genetic Analyzer (ThermoFisher 
Scientific). Finally, we visualized and scored alleles using 
GeneMarker version 2.6.4 (Hulce et al. 2011).

Using Micro-Checker version 2.2.3 (Van Oosterhout 
et al. 2004), we corrected allelic scoring errors in our mi-
crosatellite dataset and assessed each locus for the pres-
ence of null alleles and large allele dropout. Then, we used 
Arlequin version 3.5.2.2 (Excoffier and Lischer 2010) to 
estimate basic indices of genetic diversity within the 
sampled subpopulations (the number of alleles per locus 
[A], expected heterozygosity [HE], and observed hetero-
zygosity [HO]), to test for Hardy–Weinberg equilibrium 
(using a Bonferroni correction), and to test for linkage 
disequilibrium between loci (Holm 1979; Benjamini and 
Yekutieli 2001; Excoffier and Lischer 2010). We also esti-
mated allelic richness (AR) and the inbreeding coefficient 
(FIS) per locus for each collection site using HP-Rare ver-
sion 1.1 (Kalinowski  2005) and FSTAT (Goudet  1995, 
2002), respectively. To test our hypothesis, we used Arle-
quin to calculate pairwise subpopulation differentiation 
(FST) using the sum of squared differences for 16,000 
permutations and a hierarchical analysis of molecular 
variance (AMOVA) using the sum of squared differences 
for 16,000 permutations. We performed the pairwise sub-
population differentiation and AMOVA analyses after 
excluding loci with evidence of null alleles and linkage. 
For these analyses, we used nine loci: IpCG01, IpCG54, 
IpCG195, IpCG11, IpCG14, GY047K03, IpCG07, 71–59, 
and IpCG71. We assessed the statistical power of our dif-
ferentiation analyses with NeEstimator (Do et al. 2014) 
and POWSIM (Ryman and Palm 2006) using the effec-
tive population size (Ne), number of proposed subpop-
ulations (two [fluvial versus lacustrine], three [Ottawa, 
Mississippi, and Madawaska rivers], and seven [collec-
tion sites]), subpopulation size, number of microsatellite 
loci, and allele frequencies per locus. Finally, we inferred 
the number of distinct genetic populations (K) free of 
a priori assumptions using STRUCTURE (Pritchard 
et al.  2000; Falush et al.  2003). We ran seven indepen-
dent runs for each value of K = 1–8, each run for 100,000 
replicates (10,000 burn-in replicates) using an admix-
ture ancestry model and a correlated allele frequencies 
model (Pritchard et al. 2000; Falush et al. 2003). Using 
STRUCTURE HARVESTER (Earl and VonHoldt  2012), 
we compared the probability of K = 1–8, identifying the 
most supported value with the highest natural logarithm 
of the probability of K [ln Pr(x|K)] as the number of ge-
netic populations. We then plotted results for K = 2 and 
K = 3 using STRUCTURE PLOT (Ramasamy et al. 2014).

RESULTS

We collected 162 Channel Catfish: 100 individuals from 
five sites on the Ottawa River (~20 individuals per site), 40 
individuals from the Mississippi River, and 22 individuals 
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from the Madawaska River (Table 1). We were unable to 
collect any Channel Catfish from the Bonnechere River, 
possibly because it is too narrow and shallow between its 
mouth and the Bonnechere Falls. Total body length ranged 
from 232 to 594 mm; sampled individuals comprised small 
(<280 mm, n = 12), intermediate (~280–380 mm, n = 96), 
and large (>380 mm, n = 54) Channel Catfish as defined 
in previous migratory studies of the species (Dames and 
Coon 1989; Pellett et al. 1998; Table S2).

Within the corrected allele dataset, the total number 
of alleles per locus ranged from 5 to 29 (Table S3), aver-
aging between 7.4 and 9.0 per sampling site over all loci 
(Table  1). Mean allelic richness of all loci per sampling 
site ranged from 5.7 to 6.1, mean expected heterozygosity 
ranged from 0.76 to 0.79, mean observed heterozygosity 
ranged from 0.72 to 0.77, and mean inbreeding coeffi-
cient ranged from 0.001 to 0.058 (Table  1). We detected 
null alleles at two loci (IpCG08 and BM1-33), but we did 
not detect large allele dropout. Our sampled population 
was at Hardy–Weinberg equilibrium: only 4 of 112 tests 
(per locus per sampling site) significantly deviated from 
Hardy–Weinberg equilibrium after Bonferroni correction. 
In each of the four cases, observed heterozygosity was 
significantly lower than expected heterozygosity for locus 
IpCG08 at the Mississippi River, Madawaska River, and 
two Ottawa River sites. We also found evidence of linkage 
disequilibrium between some loci (Table S4).

Pairwise differentiation tests revealed that Channel 
Catfish from most sites were not significantly differenti-
ated (Table  2). We detected minor, however statistically 
significant, differentiation between Channel Catfish 

from (1) Ottawa River site 1 and Ottawa River site 5 
(FST = 0.042, p = 0.03) and (2) Ottawa River site 1 and Mis-
sissippi River (FST = 0.033, p = 0.02; Table  2). When we 
grouped Channel Catfish from our five Ottawa River sites 
and repeated the analysis, the fish from the Ottawa and 
Madawaska rivers showed no significant differentiation 
(FST = 0.000, p = 0.50) nor did the fish from the Ottawa 
and Mississippi rivers display significant differentiation 
(FST = 0.012, p = 0.06). When comparing the tributaries, 
we did not detect any significant differentiation between 
the subpopulations (FST = 0.004, p = 0.22). Finally, when 
we grouped all Ottawa River sites as the lacustrine-like 
subpopulation and the Madawaska and Mississippi sites 
as the fluvial subpopulation, we did not detect significant 
differentiation (FST = 0.006, p = 0.10). The statistical power 
calculated for each of these comparisons is as follows: (1) 
lacustrine-like versus fluvial, χ2 = 0.802, Fisher = 0.795; 
(2) three rivers, χ2 = 0.678, Fisher = 0.642; and (3) each 
sample site, χ2 = 0.610, Fisher = 0.585, indicating that we 
had adequate statistical power to detect possible genetic 
differences between the proposed subpopulations. The 
hierarchical AMOVA revealed that 99.3% of the variance 
was attributed to differences within individuals, whereas 
only 0.7% of the variance was due to differences between 
subpopulations collected from different rivers (Table  3). 
Finally, our a priori STRUCTURE analysis identified 
K = 1 as the best-supported K-value, indicating the 162 
sampled Channel Catfish form one panmictic population 
(Figure S1 available in the Supplement in the online ver-
sion of this article). Bar plots for K = 2 and K = 3 provide 
visual depiction of population clustering (Figure S2).

T A B L E  1   Collection site information and basic genetic diversity indices for 162 Channel Catfish captured from Lac des Chats. Site 
information includes river, site code, GPS coordinates, and the number of individuals collected. Genetic diversity indices presented for 
each collection site are averaged over 16 microsatellite loci. Diversity indices include number of alleles (A), allelic richness (AR), expected 
heterozygosity (HE), observed heterozygosity (HO), and inbreeding coefficient (FIS).

River
Site 
code GPS coordinates

Number of 
individuals A AR HE HO FIS

Ottawa Ot1 N45°27′46.4″
W076°23′13.0″

21 7.44 5.65 0.768 0.736 0.043

Ottawa Ot2 N45°30′47.6″
W076°30′17.2″

19 7.44 5.71 0.764 0.760 0.006

Ottawa Ot3 N45°29′48.0″
W076°26′47.0″

20 7.88 5.95 0.763 0.720 0.058

Ottawa Ot4 N45°31′08.0″
W076°32′22.0″

20 7.50 5.65 0.766 0.750 0.022

Ottawa Ot5 N45°26′51.0″
W076°19′04.2″

20 7.69 5.80 0.761 0.760 0.001

Mississippi Mis N45°25′47.0″
W076°15′40.0″

40 9.00 5.87 0.773 0.763 0.013

Madawaska Mad N45°26′32.92″
W076°20′54.9″

22 8.63 6.12 0.791 0.770 0.027
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DISCUSSION

Genetic structure of Channel Catfish 
subpopulations

Using Channel Catfish collected from the Ottawa River 
and its major tributaries at Lac des Chats, our goal was 
to determine whether habitat segregation potentially fa-
cilitated by breeding philopatry was linked with genetic 
differentiation within a population. We show that habi-
tat type (large river and tributaries) is not associated with 
distinct demes within the sampled population. There-
fore, we reject our hypothesis that spatial segregation of 
main river channel (lacustrine-like) and smaller tribu-
tary (fluvial) breeding subpopulations has contributed to  
genetic differentiation within the population. Our pair-
wise differentiation tests with microsatellite data revealed 
that Channel Catfish from the Ottawa River subpopula-
tion were not significantly different from Channel Catfish 
from either the Madawaska River or the Mississippi River 
subpopulations. Fish from the Ottawa River subpopula-
tion, however, showed minor yet significant differentia-
tion from fish from the Mississippi River subpopulation. 
When observing differences between sampling sites, it 
appears that significant differentiation occurred between 
Channel Catfish from both the Ottawa River site 1 and 
Ottawa River site 5 and Channel Catfish from the Ottawa 
River site 1 and the Mississippi River. Channel Catfish 

from the Mississippi River subpopulation, however, were 
not significantly differentiated from Channel Catfish from 
other Ottawa River collection sites further upriver, indi-
cating that differentiation is not strictly associated with 
each river subpopulation. Furthermore, our hierarchical 
AMOVA indicated that almost all genetic variation within 
the sampled population occurred within individuals, 
whereas little variation occurred between river subpopu-
lations. Finally, our STRUCTURE analysis indicated that 
panmictic population was the most supported scenario 
within the Ottawa, Mississippi, and Madawaska rivers.

Our study is one of few to investigate how habitat 
preference affects the genetic structure of a population of 
Channel Catfish. Sotola et al. (2017) determined whether 
isolation by distance facilitated by long-distance migra-
tion and breeding site preference and philopatry was asso-
ciated with genetic differentiation within a population of 
Channel Catfish from the Ohio and Wabash rivers. They 
sampled Channel Catfish from five sites across ~380 km 
of uninterrupted river, as well as from two sites separated 
by dams, and found evidence for isolation by distance. We 
did not find evidence of differentiation between Channel 
Catfish from our easternmost and westernmost collec-
tion sites, separated by ~25 km. The minimum distance 
between collection sites in Sotola et al. (2017) was 53 km, 
more than double the distance in our study. The relatively 
short distance encompassing all our sampling sites may 
account for the lack of differentiation between Channel 

T A B L E  2   Pairwise differentiation tests (sum of squared differences) between Channel Catfish collection sites along the Ottawa, 
Mississippi, and Madawaska rivers using data from nine microsatellites after excluding linked loci and loci with null alleles. The FST values 
calculated between each collection site are presented above the diagonal and p-values presented below. Significant differences are indicated 
with an asterisk. Collection sites are labeled as follows: Ottawa River = Ot1–Ot5, Mississippi River = Mis, and Madawaska River = Mad.

Collection site Ot1 Ot2 Ot3 Ot4 Ot5 Mis Mad

Ot1 0.0000 0.0000 0.0000 0.0418* 0.0330* 0.0000

Ot2 0.6985 0.0000 0.0000 0.0151 0.0191 0.0000

Ot3 0.3248 0.6091 0.0000 0.0069 0.0066 0.0000

Ot4 0.4167 0.5661 0.6578 0.0331 0.0303 0.0026

Ot5 0.0316* 0.2007 0.1882 0.1180 0.0000 0.0077

Mis 0.0154* 0.0984 0.1371 0.0547 0.8446 0.0040

Mad 0.4425 0.5765 0.4293 0.3446 0.2254 0.2165

T A B L E  3   Analysis of molecular variance (AMOVA) results using sum of squared differences in Arlequin version 3.5.2.2 between three 
subpopulations of Channel Catfish (n = 162) collected from the Ottawa, Mississippi, and Madawaska rivers.

Source of variation Sum of squares Variance components Percentage variation (%)

Among rivers 3363.17 7.31 0.68

Among individuals within rivers 165,844.53 0.00 0.00

Within individuals 179,058.00 1105.30 99.32

Total 348,265.70 1112.61 100.00
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Catfish from our furthest collection sites. Our results also 
differ from those of Carvajal-Vallejos et al. (2014) on the 
genetic structure of the Dorado, a migratory catfish from 
the Amazon River basin. Within catfish collected from the 
western Amazon River and upper Madeira River, ~300 km 
in distance, Carvajal-Vallejos et al. (2014) found three ge-
netic clusters. They proposed that the co-occurrence of 
these distinct demes may be due to spatial segregation of 
breeding populations associated with breeding site fidelity 
or temporal segregation of breeding populations.

One possible explanation for the observed panmixia 
within our sampled population is that habitat selection 
changes over a Channel Catfish's lifespan. As a Channel 
Catfish becomes larger with age, it may be better able to 
establish and defend a high-quality summer territory (Pel-
lett et al. 1998). This suggests that fish of intermediate and 
larger sizes have similar habitat preferences for summer 
breeding sites; differences in the competitive capability for 
these sites may explain why each size category of Channel 
Catfish appears to select different habitats. We could test 
this hypothesis by conducting a multiyear telemetry study, 
tagging individuals of various sizes to characterize their 
seasonal movements, and determine whether these move-
ments and habitat preferences change as the Channel Cat-
fish grow. Ontogenetic shifts in habitat preference have 
been observed in several animals, such as Bluegill Lepomis 
macrochirus (Werner and Hall 1988), loggerhead sea tur-
tles Caretta caretta (Turner Tomaszewicz et al. 2017), red 
and blue damsels Xanthagrion erythroneurum (Khan and 
Herberstein 2020), and common chameleons Chamaeleo 
chamaeleon (Keren-Rotem et al. 2006). Changes in habi-
tat preference over an animal's lifespan can occur due to 
reduced intraspecific competition, predator avoidance, 
food availability, dispersal capability, etc. (Dahlgren and 
Eggleston 2000; Keren-Rotem et al. 2006; Nakazawa 2015).

Another possible explanation for the observed pan-
mixia within our sampled population of Channel Catfish is 
that straying individuals may increase gene flow between 
fish from different breeding sites, effectively weakening 
possible genetic reinforcement of habitat preferences (Di-
onne et al. 2008; Chen et al. 2020). Given that a signifi-
cant proportion (~30–40%) of Channel Catfish stray from 
previously occupied summer habitats (Pellett et al. 1998), 
subsequent gene flow may reduce the genetic isolation of 
breeding sites within the main river channel and its trib-
utary rivers (Homola et al. 2010; Chen et al. 2020). It is 
also possible that philopatry might be sex biased as has 
been observed in Blacktip Sharks Carcharhinus limbatus 
(Keeney et al. 2005), lesser kestrels Falco naumanni (Al-
caide et al. 2009), ringed salamanders Ambystoma annu-
latum (Williams et al. 2021), and several other animals. If 
one sex does not display philopatry, sufficient gene flow 
may be maintained between breeding habitats by the 

nonphilopatric sex, genetically homogenizing the pop-
ulation (Blundell et al. 2002; Portnoy et al. 2015). Chan-
nel Catfish may display male-biased philopatry because 
males build nests alone, mate monogamously, and provide 
uniparental care after driving off the female (Tatarenkov 
et al. 2006). These conditions favor dispersal in females, 
potentially reducing breeding site fidelity and habitat seg-
regation (Greenwood  1980; Portnoy et al. 2015). To test 
for sex-biased habitat preferences, we could estimate the 
genetic structure of Channel Catfish populations using 
sex-linked gene markers or observe differences between 
mitochondrial DNA (uniparental inheritance) and nu-
clear DNA (biparental inheritance) (Lawson Handley and 
Perrin 2007; Portnoy et al. 2015).

Although we had strong statistical power when com-
paring lacustrine-like and fluvial subpopulations, in-
creased sampling at each site could increase the statistical 
power when comparing each river and each individual 
site. Future studies should increase the number of fish 
collected at each site and could expand their scope to in-
clude several lakes and rivers throughout the distribution 
of Channel Catfish. Furthermore, we used microsatellites 
to assess fine-scale genetic differences within the sampled 
population. Although microsatellites can detect fine-scale 
intrapopulation genetic differences (Coates et al.  2009; 
Lemopoulos et al. 2019; Sunde et al. 2020), contemporary 
technologies assessing genomewide single nucleotide 
polymorphisms, such as restriction-site-associated DNA 
sequencing (RADseq), can provide added resolution for 
subtle substructuring within a population due to the in-
creased number of loci (Andrews et al. 2016; Lemopoulos 
et al. 2019; Sunde et al. 2020).

Genetic diversity indices

Genetic diversity within a population may be a useful 
predictor of the adaptive potential and survival of a spe-
cies when faced with climate change and habitat frag-
mentation due to anthropogenic activities, such as dam 
construction (Reed and Frankham 2003; Parmesan 2006; 
Exposito-Alonso et al.  2022). As genetic diversity de-
creases within a species, the likelihood of extinction in-
creases in response to changing environmental conditions 
due to the species' reduced adaptive potential (Parme-
san  2006; Exposito-Alonso et al.  2022). By assessing the 
genetic diversity across the distribution of Channel Cat-
fish, biologists can identify areas of lower diversity that 
may indicate a need for conservation efforts (Reed and 
Frankham 2003; DeWoody et al. 2021). We quantified the 
genetic diversity of Channel Catfish at Lac des Chats and 
its tributaries, the northernmost population assessed to 
date. Allelic richness of Channel Catfish from the Ottawa, 
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Mississippi, and Madawaska rivers (5.7–6.1) was higher 
than that from Alabama hatchery populations (2.8–4.1; 
Lamkom et al.  2008) and within the range of American 
Midwestern wild populations (5.4–6.5; Sotola et al. 2017). 
Hatchery populations (10.6–10.9) and wild populations 
(8.2–16.3) from Tamaulipas, Mexico, however, were con-
siderably more diverse than our study population (Parra-
Bracamonte et al.  2011; Lara-Rivera et al.  2019). This is 
unsurprising given that population differentiation and 
speciation rates generally increase towards the equator 
(Mittelbach et al. 2007; Freeman and Pennell 2021).

The Hardy–Weinberg equilibrium is a useful metric 
when examining population genetics. When a population 
has departed from this equilibrium, it may indicate non-
random mating, inbreeding, or genotyping error (Wittke-
Thompson et al. 2005; Mayo 2008; Chen et al. 2017). In 
our study, expected and observed heterozygosity were sim-
ilar at each sampling site. All four failed tests of Hardy–
Weinberg equilibrium occurred at locus IpCG08. Thus, it 
is possible that these deviations are related to the presence 
of null alleles detected at this locus, indicating genotyp-
ing error rather than assortative mating (Van Oosterhout 
et al. 2006; De Meeûs 2018). The mean observed hetero-
zygosity at each sampling site was also within the range 
of those observed in both American and Mexican popu-
lations (De La Rosa-Reyna et al. 2014; Sotola et al. 2017). 
Our study population, however, had higher observed 
heterozygosity than some Mexican farm populations 
(Perales-Flores et al. 2007; Parra-Bracamonte et al. 2011) 
and both wild and domestic Alabama populations (Mick-
ett et al. 2003; Simmons et al. 2006).

Channel Catfish sampled from Lac des Chats and its 
tributaries displayed low levels of inbreeding as evidenced 
by low FIS values between 0.001 and 0.058, comparable 
to wild Channel Catfish from the Ohio and Wabash riv-
ers (0.008–0.115; Sotola et al.  2017) and rivers through-
out Mexico (0.006–0.065; Lara-Rivera et al. 2019). These 
low inbreeding levels indicate that the installation of 
both dams bordering Lac des Chats have not yet nega-
tively impacted the genetic diversity of this population, 
even though they clearly prevent upriver movement. In 
contrast, higher FIS values have been documented for Al-
abama hatchery populations (−0.012 to 0.370; Lamkom 
et al. 2008) and Tamaulipas hatchery populations (0.140–
0.320; De La Rosa-Reyna et al.  2014). Inbreeding tends 
to increase in domesticated populations due to the few 
available mates constrained over generations by hatch-
ery space limitations (Waters et al. 2020). This inbreeding 
leads to an increase in homozygosity within the popula-
tion, consequently reducing allelic diversity (Busack and 
Currens  1995; Frost et al.  2006). Furthermore, selection 
for specific traits that improve fitness in captivity may also 
homogenize farmed populations (Christie et al. 2014).

CONCLUSIONS

The purpose of our study was to investigate whether 
habitat segregation previously observed in Channel Cat-
fish was associated with genetic differentiation within 
a population. We hypothesized that habitat preferences 
linked to breeding philopatry for the lacustrine-like Lac 
des Chats and its fluvial tributary rivers would result 
in spatial isolation of breeding populations and genetic 
differentiation of each habitat type subpopulation. Mi-
crosatellite genotyping of 162 Channel Catfish from the 
Ottawa, Mississippi, and Madawaska rivers revealed 
a panmictic population, with little differentiation be-
tween river subpopulations. Further study is required 
to determine whether habitat preference changes over 
a fish's lifespan resulting from improved ability to es-
tablish and defend high-quality nesting sites or if sex-
biased philopatry could explain the observed gene flow. 
The logical next steps include estimating population 
structure with sex-specific genetic markers and telem-
etry to observe potential differences between the sexes 
or changes in movements over time, respectively.
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