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Abstract

Research in ecology often requires robust assessment of animal behaviour, but classifying

behavioural patterns in free-ranging animals and in natural environments can be especially

challenging. New miniaturised bio-logging devices such as accelerometers are increasingly

available to record animal behaviour remotely, and thereby address the gap in knowledge

related to behaviour of free-ranging animals. However, validation of these data is rarely con-

ducted and classification model transferability across closely-related species is often not

tested. Here, we validated accelerometer and water sensor data to classify activity states in

two free-ranging freshwater turtle species (Blanding’s turtle, Emydoidea blandingii, and

Painted turtle, Chrysemys picta). First, using only accelerometer data, we developed a deci-

sion tree to separate motion from motionless states, and second, we included water sensor

data to classify the animal as being motionless or in-motion on land or in water. We found

that accelerometers separated in-motion from motionless behaviour with > 83% accuracy,

whereas models also including water sensor data predicted states in terrestrial and aquatic

locations with > 77% accuracy. Despite differences in values separating activity states

between the two species, we found high model transferability allowing cross-species appli-

cation of classification models. Note that reducing sampling frequency did not affect predic-

tive accuracy of our models up to a sampling frequency of 0.0625 Hz. We conclude that the

use of accelerometers in animal research is promising, but requires prior data validation and

development of robust classification models, and whenever possible cross-species assess-

ment should be conducted to establish model generalisability.

Introduction

Advances in behavioural ecology often depend on effectively quantifying activity and behav-

iours in free-ranging animals [1, 2]. For example, closely-related species with overlapping

ranges may co-exist through a variety of mechanisms including resource partitioning through

differing activity patterns or space use [3, 4]. Behavioural syndromes (e.g., bold/shy classifica-

tion) can help explain factors such as individual behavioural responses to anthropogenic or
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environmental stressors, and often require quantification of behavioural response intensity

across a stress gradient (e.g. [5]). Likewise, knowledge of behavioural responses of individuals

can guide management decisions for species-at-risk such as design of dispersal corridors (e.g.

[6])or establishment of captive breeding programs (e.g. [7]). Accordingly, collecting robust,

fine-scale activity and behavioural data should be a high priority in ecology and conservation

biology.

Traditionally, activity and behavioural data are collected via direct observation of captive

(e.g. [8]) and wild (e.g. [9]) animals, or via a variety of remote-monitoring technologies such

as radio or acoustic telemetry [10, 11]. These traditional methods, however, can be imprecise

and possibly biased due to coarse or inaccurate data [12, 13]. For elusive species, traditional

measurements may also yield fragmented data and thus be of limited use for quantifying

sources of variation in behaviour. However, new miniaturized bio-logging tools may be partic-

ularly useful for monitoring activity and behaviour of cryptic species or those living in inacces-

sible habitats if they can characterize activity and behaviours at a scale and level of precision

that is commensurate with contemporary research questions. In particular, modern bio-log-

gers record information about animal location, body position, or physiology continuously and

at a very fine scale (e.g. [14–16]). Global positioning system (GPS) devices and accelerometers

are now commonly deployed on wild animals and are often coupled with different environ-

mental sensors such as thermometers or magnetometers [17, 18]. In the last two decades,

accelerometry has become increasingly popular for studying animal activity, behaviour, and

energy expenditure [19] by recording high-resolution body acceleration in up to three dimen-

sions (see S1 Fig) and thereby providing information about animal posture and proxies for

activity levels [20, 21]. Accelerometer-derived movement and posture data, in turn, can inform

about animal behaviour and activity states [22, 23]. Thus, acceleration data, alone or in combi-

nation with data from other sensors, can assign or classify behaviours, including across a vari-

ety of animals and settings [24, 25]. Several methods have been used to translate acceleration

data into behaviour, including unsupervised machine learning approaches which use complex

algorithms to find patterns in unlabeled datasets from which behaviour can be subjectively

inferred [24, 26], and computer models that are objectively trained to classify behaviour using

labelled data and acceleration thresholds (e.g. classification models or decision trees) [27–29].

Despite the frequent use of accelerometry, many studies use subjective assessment of accel-

erometry data to infer behaviour without proper validation. It is understood that validating

accelerometer measurements can be onerous given that data need to be matched to known

behaviours [26, 29], and obtaining representative behavioural data from free-ranging animals

can be especially challenging. Captive animals in unnatural settings often are more readily

available for behavioural trials, but the extent that data collected under these conditions are

relatable to behaviours of free-ranging animals is questionable [30, 31]. Nevertheless, studies

using accelerometers are compelled to develop plans for data validation and classification dur-

ing early phases of a study [31].

Accelerometer signatures can vary according to body size, shape and movement patterns,

meaning that species may differ in their acceleration signature when performing similar

behaviours. Accordingly, use of behavioural classification models developed for one species on

another may not be appropriate, especially without prior validation [22]. However, in theory,

closely-related species may yield similar accelerometer readings when performing similar

behaviours, and therefore cross-species validation may be relevant in some cases. It follows

that using a single classification model for similar species could improve and streamline classi-

fication and accelerate broad adoption of accelerometers in behaviour research. Thus, under-

standing behaviour classification model transferability across similar species should be

prioritized ([29], but see [32]). Another approach to improve efficiencies in accelerometer
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studies is to reduce sampling frequency [27, 33]. As a framework for collecting reliable activity

and behavioural data from accelerometers, it is important to use device programming sched-

ules in accordance with the body size and ecology of target species [30, 34], with slower mov-

ing animals or those with simpler behavioural repertoires potentially receiving accelerometers

programmed with a lower sampling frequency [24, 35, 36].

In this study, we used accelerometers and water sensors to develop a behaviour classifica-

tion model for two free-ranging sympatric freshwater turtles: Blanding’s turtles (Emydoidea
blandingii) and Painted turtles (Chrysemys picta). These turtles have similar life history and

habitat requirements, and co-occur in shallow ponds and marshes across eastern North Amer-

ica [37, 38]. Both species spend considerable time basking or under water, and use terrestrial

habitat to varying degrees when travelling between wetlands and for nesting [39]. First, we

demonstrate the process of developing and validating a robust classification model for turtle

activity states, visualised as a decision tree (Fig 1), and compared the performance of classifica-

tion models for each species, based on acceleration signatures. Second, we assessed the trans-

ferability of our species-specific classification models via cross-species comparison. We also

explored the optimisation of accelerometer programming by assessing the role of sampling fre-

quency on classification accuracy. Finally, we illustrate the application of our behaviour classi-

fication by reporting daily activity-budgets of free-ranging Blanding’s and Painted turtles.

Materials and methods

We manually developed and validated a classification model for Blanding’s and Painted turtle

activity states using the following steps: a) matching observed activity states in the wild to

Fig 1. Two-step decision tree for classifying the main activities of freshwater turtles. Acceleration data are first binned according to activity level (Step 1)

based on visual observation and acceleration thresholds, and then further classified according to habitat type based on a water conductivity sensor deployed in

tandem with the accelerometer (Step 2). The same process was used to classify activity in both turtle species, resulting in four categories.

https://doi.org/10.1371/journal.pone.0277491.g001
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recorded acceleration data, b) evaluation of smoothing window to calculate various accelera-

tion metrics, c) determination of the acceleration metric that best separated activity states

using histogram separation, d) determination of thresholds separating activity states using his-

togram separation and performance measures, and e) calculation of overall model perfor-

mance using both accelerometer and water sensor data. We selected a manual approach to

behavioural classification to clearly demonstrate each step necessary to assign behaviours

based on accelerometer data. This approach is often perceived as more comprehensible, mak-

ing it more easily transferable to a variety of research settings [27, 29].

Field methods and data collection

We studied Blanding’s and Painted turtles in the South March Highlands Conservation Forest in

Ottawa, Ontario, Canada (45˚200 N, 75˚56’ W) in the summers 2018–2020. Turtles (Blanding’s

(n = 16); Painted (n = 23)) were captured using baited hoop-nets or by hand and fitted with a

GPS/tri-axial accelerometer data logger (model AxyTrek, Technosmart, Rome, Italy) and VHF

transmitter (model SI-2, Holohil, Carp, Canada) bolted to the carapace margin (9th to 11th

scute), respectively (S2 Fig). Both units comprised< 10% of turtle body mass and position of log-

gers was kept constant to ensure comparability. Data loggers recorded water conductivity and

acceleration at a frequency of 1 Hz (10 bit resolution, ± 2 gforce). For activity classification and vali-

dation, videos of 8 wild Blanding’s and 9 wild Painted turtles were recorded (range: 1 min 57 s to

23 min 38 s) with a Smartphone camera (Motorola Moto G6). Turtles were recorded after being

released at the capture site following a 20–30 min recovery period, and were tracked until they

were out of sight. This mostly occurred when animals disappeared in deeper or densely vegetated

water. During recordings, we remained distant from the animals to avoid disturbing their natural

behaviour and rarely censored observations that were notably influenced by our activities. We

deemed observed behaviours as being natural because they were comparable to those we observed

in other wild turtles that we did not handle. All turtles were re-captured at the end of each sum-

mer to retrieve data loggers. All animals were handled in accordance with guidelines from the

Canadian Council on Animal Care (CCAC) (2005) and procedures were approved by the Trent

University Animal Care Committee (Protocol No. 24729) and by the Ministry of Natural

Resources and Forestry (MNRF, Permit No. KV-C-002-14).

Activity annotation and time synchronisation

Using video footage recorded in the field, we categorized turtle activity per second. We

observed the following behaviours: locomotion (walking and swimming, hereafter referred to

as “terrestrial in-motion” or “aquatic in-motion”, respectively), defined as forward movement

lasting longer than 2 s, and motionless activity (turtles immobile out of water, hereafter

referred to as “terrestrial-motionless”, and sitting or floating in water, hereafter referred to as

“aquatic-motionless”). Annotating acceleration data with activity using video and external

time devices introduces potential time synchronisation errors [27]. We synchronised start and

end time of videos with accelerometer time (received from satellite systems) and time noted

on an Android GPS app (GPS test, Chartcross Limited). Additionally, we compared time-spe-

cific repetitive motion signatures on accelerometers recorded before deployment to the GPS

time app. These signatures consisted of 30 s shaking and 30 s lying still on the ground and are

visualised by plotting acceleration data. Finally, to confirm that activity annotation based on

videos aligned with accelerometer time, we investigated abrupt transition in observed activity

states (e.g., motionless to in-motion) in each individual and corrected time, if necessary [27].

To avoid time synchronisation uncertainty, we excluded the first and last second of each activ-

ity bout from analysis, and also censored bouts < 2 s.
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Smoothing window sensitivity analysis

Various metrics of total acceleration (dynamic body acceleration, DBA, see below) can be cal-

culated from raw tri-axial acceleration data. DBA represents average raw acceleration in each

body axis over time, resulting in static acceleration, which is subtracted from raw acceleration,

yielding the dynamic portion caused by movement [19]. The averaging window is dependent

on stroke duration and DBA sensitivity should be assessed relative to duration of the smooth-

ing window [35]. The first step in the development of behavioural classification models, is to

determine the suitable smoothing window to calculate DBA metrics. Thus, we investigated

overall dynamic body acceleration (ODBA, see below) variation derived from running median

durations ranging from 3 to 131 s using data from video-recorded trials for each activity mode

and species separately [35]. We visually inspected ODBA plots and selected the smoothing

window with lowest ODBA variability [35]. We then calculated the greatest mean ODBA value

within 95% of the maximum and chose the corresponding smoothing window. A two-tailed

paired t-test [35] served to determine if ODBA values differed between selected windows and

the next longest window.

Calculation of acceleration metrics

We calculated six DBA metrics known to be relevant to activity and behavioural classification

(e.g. [27, 33, 40]):

1. Total overall dynamic body acceleration (ODBA), as:

TODBA ¼
Xt

i¼1

jXd;i þ Yd;i þ Zd;ij

2. Total vectorial dynamic body acceleration (VeDBA), as:

TVeDBA ¼
Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX2
d;i þ Y2

d;i þ Z2
d;iÞ

q

3. Delta ODBA, as:

DODBA ¼
Xt

i¼1

jðXd;iþ1 � Xd;iÞ þ ðYd;iþ1 � Yd;iÞ þ ðZd;iþ1� Zd;iÞj

4. Delta VeDBA, as:

DVeDBA ¼
Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXd;iþ1 � Xd;iÞ
2
þ ðYd;iþ1 � Yd;iÞ

2
þ ðZd;iþ1� Zd;iÞ

2

q

5. Standard deviation of ODBA, as:

SDODBA ¼ sðjXd;i þ Yd;i þ Zd;ijÞ
t
i¼1
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6. Standard deviation of VeDBA, as:

SVeDBA ¼ sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX2
d;i þ Y2

d;i þ Z2
d;iÞ

q

Þ
t
i¼1;

where Xd,i, Yd,i and Zd,i are dynamic accelerations in each direction at time i, t is the sampling

window and σ is standard deviation. The sampling window of 10 s was based on the shortest

mean duration of each natural activity bout, ensuring sufficient resolution [27].

Metric and threshold value selection

To determine the DBA metric and DBA values that best separate activity states (i.e. thresh-

olds), we used histogram separation. We randomly divided the entire dataset (combined indi-

viduals per species) with annotated behaviours into training (70%) and testing (30%), each

including similar ratios of the four activity states (see [41]), using the dplyr package in R [42].

In the training dataset, all six DBA metrics were calculated per individual using the selected

smoothing window. For each species, these DBA metrics were used to separate in-motion

from motionless states in known habitats (i.e. separately for aquatic and terrestrial) (Fig 1). We

plotted histograms of each DBA metric for each pair of states (terrestrial in-motion vs. motion-

less; aquatic in-motion vs. motionless) and calculated percent overlap between states [29]. The

appropriate metric was chosen based on how clearly they separated target states. Based on his-

tograms of the chosen metric, we calculated the following classification performance metrics

for each potential threshold within the overlapping ranges, in 0.1 increments [29], using the R

package caret [43]: sensitivity, as the proportion of instances when a certain activity state was

correctly classified as having occurred out of all instances of when this activity truly occurred

(TP / (TP + FN)); specificity, as the proportion of instances when an activity state did not

occur and was correctly classified as not occurring (TN / (TN + FP)); and accuracy, as the

instances of correct classification of activity states out of all classifications ((TP + TN) / (TP

+ TN + FN + FP); where TP = true positive, TN = true negative, FP = false positive, and

FN = false negative [43–45]. The point where all three performance metrics were highest was

chosen as the appropriate threshold value, i.e. the DBA value that best separated pairs of activ-

ity states (in-motion vs. motionless). Next, we assessed a two-step decision tree using the DBA

thresholds determined in the first step and also included water sensor data to determine if

activity occurred in terrestrial (water sensor� 500 V) or aquatic habitat (> 500 V). The 500 V

threshold was determined by separate trials involving leaving transmitters in and out of water

(A. Auge, unpubl.). Finally, from a decision tree that combined the two steps (Fig 1), we calcu-

lated confusion matrices to evaluate classification performance and calculated sensitivity, spec-

ificity, and accuracy of state assignments to the test dataset based on threshold DBA values and

water sensor data (Fig 1) [23]. The classification model was developed manually in R version

4.0.2 [46]; confusion matrices and measures of accuracy were calculated using the R package

caret [43].

Species comparison

We assessed the transferability of our classification system by testing classification perfor-

mance using parameters from the Blanding’s turtle classification model on Painted turtle data,

and vice versa: We used the smoothing window from one species to calculate acceleration met-

rics and find optimal threshold values for the other species, and used threshold values deter-

mined from the training dataset of one species to determine accuracy, sensitivity and

specificity in classifying activity for the test dataset of the other species.
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Effect of sampling frequency

We assessed how recording frequency affects the classification model by rarefying the original

acceleration dataset and selecting every 2nd, 4th, 8th and 16th data point to simulate a sampling

frequency of 0.5, 0.25, 0.125 and 0.0625 Hz, respectively (see e.g. [33, 47, 48]). We then

repeated the steps described previously for 1 Hz: selecting the appropriate smoothing window,

determining the best DBA metric and thresholds via histogram separation, and calculating

accuracy measurements.

Fig 2. Mean overall dynamic body acceleration (ODBA) as a function of the duration of the smoothing window for Blanding’s and Painted turtle

terrestrial and aquatic motion, using accelerometer data sampled at 1 Hz. Maximum ODBA value (solid line) and 95% of the maximum ODBA value

(dashed) are indicated.

https://doi.org/10.1371/journal.pone.0277491.g002
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Activity-budgets

To illustrate the application and type of inference possible from accelerometer-based activity

classification for free-ranging freshwater turtles, we used the thresholds determined by the

classification models to calculate average daily activity-budgets for each monitored turtle dur-

ing 2018–2020 as the mean proportion of a day spent expressing each activity. Because we

expected differences in the behaviour between the two species due to their morphological and

ecological differences [37, 38], we compared activity-budgets between species. For this com-

parison we used a Dirichlet regression, which accounts for the compositional characteristics of

the activity-budgets [49] using the DirichletReg package [42] in R, where proportion of time

spent in each state and species were the response and predictor variables, respectively. Note

that we also performed this analysis using a non-parametric PERMANOVA, which yielded

qualitatively similar results; herein we report exclusively the parametric results. All analyses

were performed using R version 4.0.2 (R Development Core Team, Vienna, Austria, 2020).

Results

Turtle video observations

After censoring accelerometer data, we had 47 min 8 s (range: 57 s– 19 min 18 s per individual)

and 73 min 3 s (range: 54 s – 16 min 52 s per individual) of activity data from Blanding’s and

Painted turtles, respectively. All four pre-defined activity categories were recorded during the

video trials, with Blanding’s turtle terrestrial in-motion and terrestrial-motionless being

observed most frequently (55.3% and 28.5% of video minutes, respectively), followed by

aquatic-motionless (9.8%) and aquatic in-motion (6.4%). In Painted turtles, terrestrial-

motionless was observed most frequently (85.1%), followed by aquatic-motionless (7.1%), ter-

restrial in-motion (4.4%), and aquatic in-motion (3.4%) (S3 Fig). We note that, despite our

best efforts, we did not observe more complex behaviours (e.g. nesting, mating, foraging) in

our free-ranging study animals.

Smoothing window

For Blanding’s turtles, the threshold at which ODBA stabilised for terrestrial and aquatic in-

motion was 91 s, whereas for Painted turtles, ODBA stabilised at 91 s and 51 s for terrestrial

and aquatic in-motion, respectively (Fig 2). After selecting the appropriate ODBA value

(within 95% of the maximum value which was comparable to the next longest running mean

duration), we found that for Blanding’s turtles 91 s was the best smoothing duration for both

terrestrial and aquatic in-motion. For Painted turtles, the best smoothing windows were 71 s

and 31 s for terrestrial and aquatic in-motion, respectively (Fig 2), of which we selected 71 s to

smooth acceleration data in Painted turtles.

Acceleration metrics and threshold values

Original dataset. The six acceleration metrics were all highly correlated (mean Pearson’s cor-

relation coefficient r = 0.83, range = 0.63–1.00, S2 Table). Histogram separation of terrestrial

and aquatic states indicated that generally ΔODBA and ΔVeDBA most clearly separated states

in both species. Notably, ΔODBA was the DBA metric that separated aquatic states with the

least overlap in both species (S1 Table, S4 Fig), which justified selection of this metric over all

others. Within overlapping regions of the histograms, we tested performance of ΔODBA in

assigning known activity and found that 0.6 was the best threshold separating terrestrial in-

motion from motionless in Blanding’s turtles (accuracy, sensitivity, specificity: all> 98%, see

Fig 3). In Blanding’s turtles, a 1.3 threshold separated aquatic in-motion from motionless
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(accuracy, sensitivity, specificity: all> 98%). For Painted turtles, a 0.3 threshold separated ter-

restrial activity (accuracy, sensitivity, specificity: > 93%, see Fig 3). We found that threshold

values of 1.4 and 1.5 were comparable in separating aquatic activity for Painted turtles (accu-

racy, sensitivity, specificity: all 100%). We chose the more conservative threshold (1.4) because

of its higher overall accuracy, sensitivity, and specificity (Fig 3).

Cross-species comparison. Using a smoothing window of 71 s and 91 s for Blanding’s

and Painted turtles, respectively, and assessing histogram separation, ΔODBA was chosen to

separate terrestrial in-motion from motionless and aquatic in-motion from motionless. In

Blanding’s turtles, ΔODBA and ΔVeDBA best separated terrestrial activity, while aquatic activ-

ity was separated using ΔODBA. In Painted turtles, ΔODBA, ΔVeDBA and SDVeDBA all sep-

arated terrestrial activity comparably, with ΔODBA separating aquatic activity with the least

overlap (S1 Table). Threshold values with the highest accuracy were identical to those calcu-

lated with the original smoothing windows: in Blanding’s turtles, threshold 0.6 separated ter-

restrial activity (all metrics > 98%) and 1.3 separated aquatic activity (all metrics> 98%, see

S5 Fig). In Painted turtles, threshold 0.3 was selected to separate terrestrial activity (all

metrics> 93%) and threshold 1.4 best separated aquatic activity, albeit comparably to the 1.5

threshold (all metrics > 99%, see S5 Fig).

Fig 3. Qualitative selection of the most suitable threshold value (vertical line) relative to accuracy, sensitivity and specificity for Blanding’s turtles

and Painted turtles, using accelerometer data sampled at 1 Hz.

https://doi.org/10.1371/journal.pone.0277491.g003
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Performance of threshold values

Original dataset. Using our selected threshold values, terrestrial and aquatic activity were

separated in Blanding’s turtles with 99% and 84% accuracy, respectively, and in Painted turtles

with 97% and 92% accuracy (Table 1). The main sources of error were misclassifying aquatic-

motionless as aquatic in-motion in Blanding’s turtles and Painted turtles (22/83 and 11/100

events, respectively), and terrestrial-motionless as terrestrial in-motion in Painted turtles (42/

1136 events). Accuracy was slightly reduced with the inclusion of water sensor data (Blanding’s

turtles: 92%; Painted turtles: 77%). Errors in assigning Blanding’s turtle state mainly arose

from misclassifying aquatic-motionless as either terrestrial-motionless (18/83 events), aquatic

in-motion (22/83 events) or terrestrial in-motion (10/83 events). Aquatic in-motion was falsely

classified as terrestrial in-motion in a few instances (13/54 events) (Table 2). Errors in assign-

ing Painted turtle state mainly arose from misclassifying terrestrial-motionless as aquatic-

motionless (233/1136 events) or terrestrial in-motion (42/1136 events), as well as classifying

terrestrial in-motion as aquatic in-motion (19/61 events) and aquatic-motionless as aquatic in-

motion (11/100 events) (Table 2).

Cross-species comparison. Cross-species comparison of activity classification revealed

high transferability between the two species. Painted turtle thresholds classified Blanding’s tur-

tle terrestrial and aquatic activity with 99% and 85% accuracy, respectively. Blanding’s turtle

thresholds separated Painted turtle terrestrial and aquatic activity with 98% and 91% accuracy,

Table 1. Overall classification performance for the testing data used to classify Blanding’s turtle and Painted turtle activity based on only accelerometry data, sam-

pled at 1 Hz.

Species Separation of in-motion vs. motionless Threshold Accuracy (%) (95% CI) Sensitivity (%) Specificity (%)

Blanding’s Terrestrial 0.6 99.3 (98.4, 99.7) 99.6 99.2

Aquatic 1.3 83.9 (76.7, 89.7) 73.5 100

Painted Terrestrial 0.3 96.5 (95.3, 97.5) 96.3 100

Aquatic 1.4 91.8 (85.8, 95.8) 89.0 100

https://doi.org/10.1371/journal.pone.0277491.t001

Table 2. Overall classification performance for the testing data used to classify Blanding’s turtle and Painted turtle activity based on accelerometry and water sensor

data, sampled at 1 Hz.

Blanding‘s Observed

Predicted Motionless (aquatic) Motionless (terrestrial) In-motion (aquatic) In-motion (terrestrial)

Motionless (aquatic) 33 0 0 0

Motionless (terrestrial) 18 242 0 4

In-motion (aquatic) 22 0 41 0

In-motion (terrestrial) 10 1 13 464

Sensitivity (%) 39.8 99.6 75.9 99.2

Specificity (%) 100 96.4 97.2 93.7

Overall accuracy (%): 92.0 (95% CI: 89.9, 93.7%)

Painted Motionless (aquatic) Motionless (terrestrial) In-motion (aquatic) In-motion (terrestrial)

Predicted Motionless (aquatic) 89 233 0 0

Motionless (terrestrial) 0 861 0 0

In-motion (aquatic) 11 0 34 19

In-motion (terrestrial) 0 42 0 42

Sensitivity (%) 89.0 75.8 100 68.9

Specificity (%) 81.1 100 97.7 96.7

Overall accuracy (%): 77.1 (95% CI: 74.7, 79.3%)

https://doi.org/10.1371/journal.pone.0277491.t002
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respectively (Table 3). When including water sensor data in the model, overall accuracy of

Blanding’s turtle classification using Painted turtle thresholds was 93%, with sources of error

being due to misclassification of aquatic-motionless as either terrestrial-motionless (6/83

events) or aquatic in-motion (20/83). Painted turtle classification model accuracy when using

Blanding’s turtle thresholds was 78%, with main misclassifications being due to assigning

aquatic-motionless to terrestrial-motionless (233/1136), terrestrial in-motion to terrestrial-

motionless (25/1136) and aquatic in-motion to aquatic-motionless (12/100) (S3 Table).

Effect of sampling frequency. Smoothing windows using rarefied datasets were generally

longer compared to the 1 Hz dataset in both species, except for 0.5 Hz Painted turtle data,

which was slightly shorter (see S4 Table). Threshold values separating states using 0.5 and 0.25

Hz datasets were only marginally different from the original dataset, but were 17–75% higher

using 0.125 and 0.0625 Hz datasets (see S4 Table). Similarly to the original dataset, we found

that ΔODBA effectively separated terrestrial and aquatic activity in both species using all rare-

fied datasets. Lastly, we found that accuracy measurements of activity classification did not

decrease with lower sampling frequencies. Accuracy of the two-branch decision tree (including

both accelerometer and water sensor data) ranged from 79.4 to 91.9% (mean = 87.5%), when

using sampling frequencies of 0.5, 0.25, 0.125 and 0.0625 Hz (see S4 Table).

Activity-budgets. Time-activity budgets during 2018–2020 (days monitored: Blanding’s

turtles: mean = 84.3, range: 8–164 per individual; Painted turtles: mean = 74.8, range: 20 – 159

per individual) revealed that species exhibited mostly similar proportions of activity in both

aquatic and terrestrial environments, with only modest differences in time allocation (Fig 4):

Both species spent most of their time motionless, with Blanding’s turtles spending 84.0% (±
SD 5.9%) and Painted turtles 78.1% (± 7.3%) of their day motionless under water (Dirichlet z-

value = 0.647, p = 0.517); whereas Blanding’s turtle spent 9.1% (± 6.0%) and Painted turtles

9.7% (± 4.4%) motionless on land (z-value = 1.528, p = 0.127). In contrast, Blanding’s turtles

spent 6.0% (± 3.5%) and Painted turtles 11.2% (± 5.8%) of the day in-motion under water (z-

value = 2.511, p = 0.012). In-motion on land occurred rarely, with Blanding’s turtles spending

0.8% (± 1.0) and Painted turtles 1.0% (± 0.7) of the time engaging in terrestrial activity (z-

value = 1.294, p = 0.196) (Fig 4).

Discussion

Using a combination of accelerometers and water sensors, we classified activity of two free-

ranging freshwater turtle species with high accuracy and achieved higher predictive accuracy

when differentiating activity on land or in water separately using only accelerometer data

(> 83%) than when also considering water sensor data (accuracy > 75%). Our model accuracy

was comparable to studies classifying behaviours in other species exhibiting relatively simple

behavioural repertoires (e.g. [50, 51]), and in general threshold values separating terrestrial

and aquatic states were higher in the former environment. Interestingly, minor differences in

classification threshold values between the two species did not impact the transferability of

models between species, allowing us to conclude that accelerometry holds promise for broadly

Table 3. Classification performance for the testing data used to classify Blanding’s turtle and Painted turtle activity based on accelerometry data, using the other

species’ threshold values.

Species Separation of In-motion vs. motionless Threshold Accuracy (%) (95% CI) Sensitivity (%) Specificity (%)

Blanding’s Terrestrial 0.3 99.4 (98.6, 99.9) 99.6 99.4

Aquatic 1.4 85.2 (78.4, 91.0) 75.9 100

Painted Terrestrial 0.6 97.9 (96.9, 98.6) 97.8 100

Aquatic 1.3 91.0 (84.8, 95.3) 89.0 100

https://doi.org/10.1371/journal.pone.0277491.t003
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classifying activity of free-ranging freshwater turtles. Unsurprisingly, our simple behavioural

classification was similarly successful when sampling frequency was reduced by 16-fold. Our

results demonstrate high accuracy in classifying simple activity states as well as cross-species

transferability of classification models among closely-related species in similar environments.

Our research adds to other accelerometer-based behavioural identification studies, such as

those by Marchand et al. [52] and Lagarde et al. [53], which describe fine-scaled behaviour in

European pond turtle (Emys orbicularis) and Greek tortoises (Testudo graeco), respectively.

Our research expands on these studies by characterising activity in two species of free-ranging

turtles in their wild, native environment, which may be more representative of and transferable

to real-life behavioural data collected by many researchers.

A primary objective in calibrating accelerometry data is to determine the appropriate

smoothing window to classify activity states and behaviours. For Blanding’s turtles, the longer

smoothing window can be explained by their larger body size and thus greater stroke length

compared to Painted turtles [54]. This is consistent with the results of Shepard et al. [35] that

show a positive relationship between stroke length and the running mean at which ODBA sta-

bilised. For Painted turtles, we selected the longer plausible smoothing window to avoid

underestimating the dynamic portion of acceleration (see [35]). Generally, our smoothing

windows were longer than others used in mammal or bird behavioural calibrations, which

often ranged from 2–4 s (e.g. [24, 31, 35]); we infer this difference as being the result of slow

Fig 4. Daily activity-budget for Blanding’s (n = 16) and Painted turtles (n = 23) in the South March Highlands, Ottawa. Shown are mean proportion

(± SD) of time spent doing each of the four main states during a 24-hour period.

https://doi.org/10.1371/journal.pone.0277491.g004
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movement and therefore long stroke length of our study animals relative to their body size.

Regardless, despite small differences in optimal smoothing windows between our study spe-

cies, cross-species validation suggests that these differences do not necessarily affect threshold

values separating states or accuracy of activity predictions. While broad activity states in our

study system may be separated based on raw acceleration signatures in each of the 3 body axes

(see S1 Fig), we selected ODBA as the metric to define behaviours. ODBA is the most prevalent

metric in the accelerometer literature, and its correlation with VeDBA has been demonstrated

previously (e.g. [40, 55]). Accordingly, our choice of ODBA was appropriate and it seems that

this metric will be well-suited for a wide range of species that are tracked via accelerometers

[19, 22].

While direct comparisons of accelerometer-derived behavioural signatures between species

are rare in the literature, our findings are consistent with other studies showing minor and

largely negligible influence of body size and device attachment on accelerometer readings [31,

56]. For example, the observation that terrestrial activity in Blanding’s turtles was separated by

greater thresholds than in Painted turtles is likely due to the larger carapace of the former spe-

cies. When accelerometers are attached to the carapace margin of the larger species, even small

body movements might translate to higher acceleration due to a greater distance to the center

of mass. Further, misclassification of in-water vs. out-of-water between species may be

explained by relatively flat carapaces of Painted turtles requiring the water sensor to be

mounted lower on the shell than for Blanding’s turtles, and resulting in Painted turtles being

recorded as using aquatic habitat at shallower depths. Even though in our study system differ-

ences in threshold values between species due to turtle body shapes and sizes did not impact

transferability of classification models between species, our findings highlight the need for

careful placement of sensors, especially where accurate separation between aquatic and terres-

trial activity is a high priority. Arguably, attaching the device on the top of the carapace would

produce more accurate sensor readings [52], and could ultimately improve classification per-

formance. However, this option would likely increase the risk of device loss (A. Auge, unpubl.).

Generally, larger ΔODBA thresholds separating motion from motionless states in aquatic com-

pared to terrestrial environments is comparable to other studies showing that waves and water

currents can lead to variation in measured acceleration due to passive motion [57]. This effect

is stronger in lighter animals, resulting in higher thresholds in aquatic (but not terrestrial) hab-

itat for Painted turtles. Other studies emphasize the need to consider the contribution of water

currents or wind to accelerometer readings [58, 59], and our results confirmed that compara-

ble activity can vary in accelerometer signatures between environments, and thus require sepa-

rate examination and validation across habitats. Nonetheless, despite decreased accuracy of

the more complex classification model, including more than one bio-sensor is usually pre-

ferred as it allows the description of much broader ecological contexts of behaviours [22]. We

note that our manual approach in developing classification models allowed us to investigate

these often subtle differences in acceleration signatures between activity states, which may be

less transparent in other approaches, such as unsupervised machine learning [26, 29].

Cross-species fitting accelerometer-based activity classification models is an important step

to assess the generality of such models. While not commonly tested, some studies have also

found high transferability of behavioural classification models between closely related species

(e.g. [60]), while others have not (e.g. [61]). For example, a case study assessing behavioural

classification performance in wolves (Canis lupus) and domestic dogs (Canis familiaris) found

lower cross-species model accuracy (� 51%) than what we observed for freshwater turtles [32].

This difference could be related to the more restricted suite of behaviours under consideration

and larger distinction in accelerometer readings between states in our study. Regardless, our

findings are important because they show that deriving a single classification tree across
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similar species holds promise for improving model development, by streamlining the classifi-

cation process and potentially applying one model across a variety of species–instead of con-

ducting costly validation on multiple species. However, it should be noted that classification

models are likely only interchangeable when accelerometer devices are identical and device

position is consistent. Indeed, our preliminary trials using different accelerometers from two

manufacturers, and even using different device models from the same manufacturer,

yielded > 10% variation in activity classification (A. Auge, pers. obs., see also [34]. Therefore,

researchers should only consider cross-species application of classification models for compa-

rable devices and species with similar behavioural traits, and only after robust testing and

validation.

It is not especially surprising that lower sampling frequencies up to 0.0625 Hz yields equally

reliable activity information for slow-moving animals like freshwater turtles [35], thereby sup-

porting findings from other studies showing classification success at similarly low sampling

frequencies (e.g. [27]). While few studies have investigated the impacts of a range of sampling

frequencies on classification performance [33, 47], none so far, to our knowledge, have

assessed the effect of very low (< 1Hz) frequencies. Assessing the impact of a range of sam-

pling frequencies on the performance of activity classification is an important step in studying

behaviour of wild animals using accelerometers, as it allows refinement of accelerometer set-

tings before deployment. High classification performance at low frequencies could allow lon-

ger battery life, increased memory capacity, and, thus, longer field deployment duration [33,

62]. In addition, low-frequency accelerometer data require lower computational power for

processing and analysis [56]. It is important to note, however, that species exhibiting behav-

iours with complex and fast kinematics, may require high-frequency accelerometry for reliable

inference and representation [22, 54].

Our study provides a robust framework for rigorously testing the suitability of accelerome-

ters for behavioural research in ecology. We conclude that accelerometers and other bio-log-

ging tools hold much promise for characterising activity levels in free-ranging animals as well

as developing behavioural profiles of cryptic and elusive species [22, 52, 63]. Accordingly, with

proper validation measures such as those outlined herein, we expect accelerometry to become

increasingly valuable as a tool for tracking animal behaviour across a variety of research and

conservation or management contexts [64].
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S1 Table. Correlation matrix showing Pearson’s correlation coefficients between different
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pace margin (note that sizes are not to scale).
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S2 Fig. Accelerometer (left) and VHF transmitter (right) bolted onto the rear carapace margin

of a Painted turtle.

(PDF)

S3 Fig. Boxplot of length of recorded states (top panel), and number of occasions each state

was observed (bottom panel) across Blanding’s (blue) and Painted turtles (orange).
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S4 Fig. Sample histogram separating activity modes in Blanding’s turtles: Terrestrial in-

motion from motionless and aquatic in-motion from motionless. The red vertical line indi-

cates the threshold value determined after testing the accuracy of ΔODBA values within the

overlapping regions. These histograms are based on data sampled at 1 Hz.

(PDF)

S5 Fig. Optimizing the threshold value (vertical lines) relative to data accuracy, sensitivity

and specificity, for Blanding’s turtles and Painted turtles, using acceleration data calcu-
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