Simultaneous rational approximation and the Markoff spectrum

Damien Roy

Université d'Ottawa, Département de mathématiques

September 3, 2008

Definition

For each $\xi \in \mathbb{R}$, define

$$u(\xi) := \liminf_{\mathbb{N}^*
i q \to \infty} q \|q\xi\|$$

where $\| \| =$ distance to a nearest integer.

A B > A B >

A D

3

Definition

For each $\xi \in \mathbb{R}$, define

$$u(\xi) := \liminf_{\mathbb{N}^*
i g q o \infty} q \|q\xi\|$$

where $\| \| =$ distance to a nearest integer.

Examples:
$$u\left((\sqrt{5}-1)/2\right) = 1/\sqrt{5}, \ \nu\left(\sqrt{2}-1\right) = 1/\sqrt{8}, \dots$$

A B > A B >

A D

3

Definition

For each $\xi \in \mathbb{R}$, define

$$u(\xi) := \liminf_{\mathbb{N}^* \ni q o \infty} q \|q\xi\|$$

where $\| \| =$ distance to a nearest integer.

Examples:
$$u\left((\sqrt{5}-1)/2\right) = 1/\sqrt{5}, \ \nu\left(\sqrt{2}-1\right) = 1/\sqrt{8}, \ldots$$

Definition

 $\mathcal{L}:=\{
u(\xi)\,;\,\xi\in\mathbb{R}\}$ is called the Lagrange spectrum

同 ト イ ヨ ト イ ヨ ト

Definition

For each $\xi \in \mathbb{R}$, define

$$u(\xi) := \liminf_{\mathbb{N}^*
i q \to \infty} q \|q\xi\|$$

where $\| \| =$ distance to a nearest integer.

Examples:
$$u\left((\sqrt{5}-1)/2\right) = 1/\sqrt{5}, \ \nu\left(\sqrt{2}-1\right) = 1/\sqrt{8}, \ldots$$

Definition

 $\mathcal{L}:=\{
u(\xi)\,;\,\xi\in\mathbb{R}\}$ is called the Lagrange spectrum

$$\text{Property: } \nu\left(\frac{a\xi+b}{c\xi+d}\right) = \nu(\xi) \quad \text{for all} \quad \begin{pmatrix} \mathsf{a} & b \\ c & d \end{pmatrix} \in \mathsf{GL}_2(\mathbb{Z}).$$

同 ト イ ヨ ト イ ヨ ト

Assume that $\xi \notin \mathbb{Q}$ (otherwise $\nu(\xi) = 0$). Write $\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}} = [a_0, a_1, a_2, \dots]$

글 🖌 🖌 글 🕨

3

Assume that $\xi \notin \mathbb{Q}$ (otherwise $\nu(\xi) = 0$).

Write
$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}} = [a_0, a_1, a_2, \dots]$$

$$\Rightarrow \quad \nu(\xi) = \liminf_{k \to \infty} \frac{1}{[a_{k+1}, a_{k+2}, \dots] + [0, a_k, \dots, a_1]}$$

白 ト ・ ヨ ト ・ ヨ ト

3

Assume that
$$\xi \notin \mathbb{Q}$$
 (otherwise $u(\xi) = 0$).

Write
$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}} = [a_0, a_1, a_2, \dots]$$

$$\Rightarrow \quad \nu(\xi) = \liminf_{k \to \infty} \frac{1}{[a_{k+1}, a_{k+2}, \dots] + [0, a_k, \dots, a_1]}$$

Corollary

$$u(\xi) > 0 \iff (a_k)_{k \ge 0}$$
 is a bounded sequence.

글 🕨 🖌 글

э

Assume that
$$\xi \notin \mathbb{Q}$$
 (otherwise $\nu(\xi) = 0$).
Write $\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}} = [a_0, a_1, a_2, \dots]$
 $\Rightarrow \quad \nu(\xi) = \liminf_{k \to \infty} \frac{1}{[a_{k+1}, a_{k+2}, \dots] + [0, a_k, \dots, a_1]}$

Corollary

 $u(\xi) > 0 \iff (a_k)_{k \ge 0} \text{ is a bounded sequence.}$

• This is a tool for investigating the Lagrange spectrum \mathcal{L} .

A B > A B >

The Markoff equation

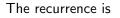
$$m^2 + m_1^2 + m_2^2 = 3mm_1m_2$$

The Markoff equation

$$m^2 + m_1^2 + m_2^2 = 3mm_1m_2$$

Solutions $(m, m_1, m_2) \in (\mathbb{N}^*)^3$ with $m \ge m_1, m_2$ form a tree : (1, 1, 1)(2, 1, 1)(5, 1, 2)(13, 1, 5)(29, 5, 2)(169, 29, 2)(34, 1, 13)(194, 13, 5)(433, 5, 29)

Damien Roy Simultaneous approximation and Markoff spectrum



$$(m, m_1, m_2)$$

$$(3mm_1 - m_2, m_1, m)$$

$$(all coordinates in decreasing order)$$

- 4 回 > - 4 回 > - 4 回 >

æ

$m^2 + m_1^2 + m_2^2 = 3mm_1m_2$

• Fix (m, m_1, m_2) in the tree. Then: $gcd(m, m_1, m_2) = 1$.

$m^2 + m_1^2 + m_2^2 = 3mm_1m_2$

- Fix (m, m_1, m_2) in the tree. Then: $gcd(m, m_1, m_2) = 1$.
- Choose $k \in \mathbb{Z}$ such that

$$k \equiv rac{m_2}{m_1} \mod m$$
 and $0 \le k < m.$

Then
$$\ell:=rac{k^2+1}{m}\,\in\,\mathbb{Z}.$$

B b d B b

3

$m^2 + m_1^2 + m_2^2 = 3mm_1m_2$

- Fix (m, m_1, m_2) in the tree. Then: $gcd(m, m_1, m_2) = 1$.
- Choose $k \in \mathbb{Z}$ such that

$$k \equiv rac{m_2}{m_1} \mod m$$
 and $0 \leq k < m.$

Then
$$\ell := \frac{k^2 + 1}{m} \in \mathbb{Z}$$
.
• The quadratic form

$$F := mx^{2} + (3m - 2k)xy + (\ell - 3k)y^{2}$$

= m(x - \beta y)(x - \beta'y)

has equivalent roots $\beta \sim \beta'$ (under $\mathsf{GL}_2(\mathbb{Z})$) with

$$u(\beta) = \nu(\beta') = \frac{1}{\sqrt{9 - 4m^{-2}}} > \frac{1}{3}$$

Theorem (Markoff, 1871)

$$u(\xi) > rac{1}{3} \quad \Longleftrightarrow$$

 ξ is equivalent to the roots of the quadratic form attached to a Markoff triple (m, m_1, m_2)

向下 イヨト イヨト 三日

Theorem (Markoff, 1871)

$$u(\xi) > rac{1}{3} \iff egin{array}{ccc} \xi & is & eq. \ quadratic \ (m, m_1, m_2) \end{array}$$

 ξ is equivalent to the roots of the quadratic form attached to a Markoff triple (m, m_1, m_2)

Corollary

$$\mathcal{L} \cap (1/3,\infty) = \{\mu_1 > \mu_2 > \mu_3 > \dots\}$$
 with $\lim \mu_i = 1/3$.

 $\nu(\xi) = \mu_i \iff \xi$ belongs to a finite set of equivalence classes.

(... conjecturally just one.)

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Theorem (Markoff, 1871)

$$u(\xi) > rac{1}{3} \iff egin{array}{c} \xi & is \\ quad \\ (m, n) \end{array}$$

 ξ is equivalent to the roots of the quadratic form attached to a Markoff triple (m, m_1, m_2)

Corollary

$$\mathcal{L} \cap (1/3,\infty) = \{\mu_1 > \mu_2 > \mu_3 > \dots\}$$
 with $\lim \mu_i = 1/3$.

 $\nu(\xi) = \mu_i \iff \xi$ belongs to a finite set of equivalence classes.

(... conjecturally just one.)

Theorem (Markoff, 1871)

There are uncountably many $\xi \in \mathbb{R}$ such that $\nu(\xi) = 1/3$.

- 4 同 6 4 日 6 4 日 6

Work of Harvey Cohn provides link with

1955: fundamental domains of genus one in the upper half plane

1971: geodesics on a perforated torus

1972: primitive words in F_2

Extremal numbers

$$\gamma := rac{1+\sqrt{5}}{2} \simeq 1.618\,, \quad rac{1}{\gamma} = \gamma - 1 \simeq 0.618\,, \quad \gamma^2 = \gamma + 1 \simeq 2.618$$

æ

∃ → < ∃</p>

$$\gamma := rac{1+\sqrt{5}}{2} \simeq 1.618\,, \quad rac{1}{\gamma} = \gamma - 1 \simeq 0.618\,, \quad \gamma^2 = \gamma + 1 \simeq 2.618$$

Definition

We say that $\xi \in \mathbb{R}$ is *extremal* if 1, ξ , ξ^2 are linearly independent over \mathbb{Q} and there exists a constant $c_1 > 0$ such that

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq c_1 X^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq c_1 X^{-1/\gamma}$$

has a solution $(x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$ for each sufficiently large X.

$$\gamma := rac{1+\sqrt{5}}{2} \simeq 1.618\,, \quad rac{1}{\gamma} = \gamma - 1 \simeq 0.618\,, \quad \gamma^2 = \gamma + 1 \simeq 2.618$$

Definition

We say that $\xi \in \mathbb{R}$ is *extremal* if 1, ξ , ξ^2 are linearly independent over \mathbb{Q} and there exists a constant $c_1 > 0$ such that

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq c_1 X^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq c_1 X^{-1/\gamma}$$

has a solution $(x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$ for each sufficiently large X.

• Davenport and Schmidt, 1969: there exists no such ξ if $c_1 X^{-1/\gamma}$ is replaced by $o(X^{-1/\gamma})$.

$$\gamma := rac{1+\sqrt{5}}{2} \simeq 1.618\,, \quad rac{1}{\gamma} = \gamma - 1 \simeq 0.618\,, \quad \gamma^2 = \gamma + 1 \simeq 2.618$$

Definition

We say that $\xi \in \mathbb{R}$ is *extremal* if 1, ξ , ξ^2 are linearly independent over \mathbb{Q} and there exists a constant $c_1 > 0$ such that

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq c_1 X^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq c_1 X^{-1/\gamma}$$

has a solution $(x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$ for each sufficiently large X.

- Davenport and Schmidt, 1969: there exists no such ξ if $c_1 X^{-1/\gamma}$ is replaced by $o(X^{-1/\gamma})$.
- R., 2004: There are countably many extremal numbers.

Let $\xi \in \mathbb{R}$ be extremal.

(i)
$$\frac{a\xi+b}{c\xi+d}$$
 is extremal for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Q})$

Let $\xi \in \mathbb{R}$ be extremal.

(i)
$$\frac{a\xi+b}{c\xi+d}$$
 is extremal for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Q})$

(ii) There are infinitely many quadratic numbers $\alpha \in \mathbb{R}$ such that

$$|\xi - \alpha| \le c_2 H(\alpha)^{-2\gamma^2}$$

and any quadratic α has $|\xi - \alpha| \ge c_3 H(\alpha)^{-2\gamma^2}$.

3 N 4 3 N

Let $\xi \in \mathbb{R}$ be extremal.

(i)
$$\frac{a\xi+b}{c\xi+d}$$
 is extremal for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Q})$

(ii) There are infinitely many quadratic numbers $\alpha \in \mathbb{R}$ such that

$$|\xi - \alpha| \leq c_2 H(\alpha)^{-2\gamma^2}$$

and any quadratic α has $|\xi - \alpha| \ge c_3 H(\alpha)^{-2\gamma^2}$.

(iii)
$$\left|\xi-\frac{p}{q}\right|\geq c_4q^{-2}(1+\log q)^{-c_5} \text{ for all } \frac{p}{q}\in\mathbb{Q}, \ q\geq 1.$$

Let $\xi \in \mathbb{R}$ be extremal.

(i)
$$\frac{a\xi+b}{c\xi+d}$$
 is extremal for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Q})$

(ii) There are infinitely many quadratic numbers $\alpha \in \mathbb{R}$ such that

$$|\xi - \alpha| \le c_2 H(\alpha)^{-2\gamma^2}$$

and any quadratic α has $|\xi - \alpha| \ge c_3 H(\alpha)^{-2\gamma^2}$. (iii) $\left|\xi - \frac{p}{q}\right| \ge c_4 q^{-2} (1 + \log q)^{-c_5}$ for all $\frac{p}{q} \in \mathbb{Q}, q \ge 1$.

Definition

$$\mathcal{P} := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{Mat}_{2 \times 2}(\mathbb{Z}) \, ; \, ad - bc \neq 0 \, , \, \mathsf{gcd}(a, b, c, d) = 1 \right\}$$

is a group under $A * B = \mathsf{gcd}(AB)^{-1}AB$.

ヘロマ ヘゼマ ヘリア

38 B

A real number ξ is extremal

 $\iff \text{ there exists a sequence of symmetric matrices} \\ \mathbf{x}_{i} = \begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix} \text{ in } \mathcal{P} \text{ and there exists } M \in \mathcal{P} \text{ with} \\ {}^{t}M \neq \pm M \text{ such that} \end{cases}$

A real number ξ is extremal

 $\iff \text{ there exists a sequence of symmetric matrices} \\ \mathbf{x}_{i} = \begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix} \text{ in } \mathcal{P} \text{ and there exists } M \in \mathcal{P} \text{ with} \\ {}^{t}M \neq \pm M \text{ such that} \end{cases}$

1)
$$\mathbf{x}_{i+2} = \mathbf{x}_{i+1} * M_{i+1} * \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^tM & \text{else,} \end{cases}$

A real number ξ is extremal

 $\iff \text{ there exists a sequence of symmetric matrices} \\ \mathbf{x}_{i} = \begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix} \text{ in } \mathcal{P} \text{ and there exists } M \in \mathcal{P} \text{ with} \\ {}^{t}M \neq \pm M \text{ such that} \end{cases}$

1)
$$\mathbf{x}_{i+2} = \mathbf{x}_{i+1} * M_{i+1} * \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^tM & \text{else,} \end{cases}$
2) $\|\mathbf{x}_{i+1}\| \asymp \|\mathbf{x}_i\|^{\gamma}$ and $\lim_{i \to \infty} \|\mathbf{x}_i\| = \infty$,
3) $\|(\xi, -1)\mathbf{x}_i\| \asymp \|\mathbf{x}_i\|^{-1}$,

A real number ξ is extremal \iff there exists a sequence of symmetric matrices

 $\mathbf{x}_{i} = \begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix} \text{ in } \mathcal{P} \text{ and there exists } M \in \mathcal{P} \text{ with } \\ {}^{t}M \neq \pm M \text{ such that }$

1)
$$\mathbf{x}_{i+2} = \mathbf{x}_{i+1} * M_{i+1} * \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if i is even,} \\ {}^tM & \text{else,} \end{cases}$
2) $\|\mathbf{x}_{i+1}\| \asymp \|\mathbf{x}_i\|^{\gamma}$ and $\lim_{i \to \infty} \|\mathbf{x}_i\| = \infty$,
3) $\|(\xi, -1)\mathbf{x}_i\| \asymp \|\mathbf{x}_i\|^{-1}$,
4) $1 \le |\det(\mathbf{x}_i)| \ll 1$.

A real number ξ is extremal \iff there exists a sequence of symmetric matrices $\mathbf{x}_i = \begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix}$ in \mathcal{P} and there exists $M \in \mathcal{P}$ with ${}^tM \neq \pm M$ such that

1)
$$\mathbf{x}_{i+2} = \mathbf{x}_{i+1} * M_{i+1} * \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^tM & \text{else,} \end{cases}$
2) $\|\mathbf{x}_{i+1}\| \asymp \|\mathbf{x}_i\|^{\gamma}$ and $\lim_{i \to \infty} \|\mathbf{x}_i\| = \infty$,
3) $\|(\xi, -1)\mathbf{x}_i\| \asymp \|\mathbf{x}_i\|^{-1}$,
4) $1 \le |\det(\mathbf{x}_i)| \ll 1$.

Then $W_i := \mathbf{x}_i * M_i$ is a Fibonacci sequence in \mathcal{P} :

$$W_{i+2} = W_{i+1} * W_i$$
 for all $i \ge 1$.

Fibonacci continued fractions

Definition

- E^* := monoid of words on $\mathbb{N} \setminus \{0\}$
- Given any non-commuting words w₁, w₂ in E* the Fibonacci sequence (w_i)_{i≥1} defined recursively by w_{i+1} = w_iw_{i-1} for all i ≥ 2 converges to an infinite ultimately non-periodic word w_∞ called a generalized Fibonacci word on N \ {0}.

Fibonacci continued fractions

Definition

- E^* := monoid of words on $\mathbb{N} \setminus \{0\}$
- Given any non-commuting words w₁, w₂ in E* the Fibonacci sequence (w_i)_{i≥1} defined recursively by w_{i+1} = w_iw_{i-1} for all i ≥ 2 converges to an infinite ultimately non-periodic word w_∞ called a generalized Fibonacci word on N \ {0}.

Example

Fibonacci continued fractions

Definition

- E^* := monoid of words on $\mathbb{N} \setminus \{0\}$
- Given any non-commuting words w₁, w₂ in E* the Fibonacci sequence (w_i)_{i≥1} defined recursively by w_{i+1} = w_iw_{i-1} for all i ≥ 2 converges to an infinite ultimately non-periodic word w_∞ called a *generalized Fibonacci word* on N \ {0}.

Example

Theorem (R. 2008)

A real number ξ is extremal with associated sequence $(W_i)_{i\geq 1}$ in $GL_2(\mathbb{Z}) \iff$ the continued fraction expansion of ξ coincides with a generalized Fibonacci word on $\mathbb{N} \setminus \{0\}$, up to its first terms.

A special class of extremal numbers

Definition

For each $a = 1, 2, 3, \ldots$, let \mathcal{E}_a (resp. \mathcal{E}_a^+) denote the set of extremal numbers

• with associated sequence $(\mathbf{x}_i)_{i\geq 1}$ in $GL_2(\mathbb{Z})$ (resp. in $SL_2(\mathbb{Z})$)

• and associated matrix
$$M = \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix}$$
.

A special class of extremal numbers

Definition

For each $a = 1, 2, 3, \ldots$, let \mathcal{E}_a (resp. \mathcal{E}_a^+) denote the set of extremal numbers

• with associated sequence $(\mathbf{x}_i)_{i\geq 1}$ in $GL_2(\mathbb{Z})$ (resp. in $SL_2(\mathbb{Z})$)

• and associated matrix
$$M = \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix}$$
.

Theorem (R., 2003)

Let $\xi \in \mathcal{E}_a$ for some $a \ge 1$. Then

$$|\xi - \alpha| \ge c_6 H(\alpha)^{-\gamma^2}$$

for any cubic algebraic integer α .

⇒ Davenport and Schmidt 1969 general result of approximation to real numbers by cubic algebraic integers is optimal.

Link with Markoff's equation

Fix
$$\xi \in \mathcal{E}_a^+$$
 for some integer $a \ge 1$.
Let $\begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix}$ $(i \ge 1)$ be the associated sequence of
symmetric matrices in SL₂(\mathbb{Z}).
Then, for each $i \ge 1$, we have
1) $x_{i+2,0}^2 + x_{i+1,0}^2 + x_{i,0}^2 = ax_{i+2,0}x_{i+1,0}x_{i,0}$
2) $x_{i+3,0} = ax_{i+2,0}x_{i+1,0} - x_{i,0}$,
3) $x_{i+2,1} \equiv (-1)^i \frac{x_{i,0}}{x_{i+1,0}} \mod x_{i+2,0}$.
Relation 1) comes from Fricke's identity (ref. [Cohn, 1957]).

Link with Markoff's equation

Fix
$$\xi \in \mathcal{E}_a^+$$
 for some integer $a \ge 1$.
Let $\begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix}$ $(i \ge 1)$ be the associated sequence of
symmetric matrices in SL₂(\mathbb{Z}).
Then, for each $i \ge 1$, we have
1) $x_{i+2,0}^2 + x_{i+1,0}^2 + x_{i,0}^2 = ax_{i+2,0}x_{i+1,0}x_{i,0}$
2) $x_{i+3,0} = ax_{i+2,0}x_{i+1,0} - x_{i,0}$,
3) $x_{i+2,1} \equiv (-1)^i \frac{x_{i,0}}{x_{i+1,0}} \mod x_{i+2,0}$.
Relation 1) comes from Fricke's identity (ref. [Cohn, 1957]

- 1) is impossible unless a = 1 or a = 3 (Hurwitz, 1907)
- Case a = 1 also leads to a contradiction.

Link with Markoff's equation

Fix
$$\xi \in \mathcal{E}_a^+$$
 for some integer $a \ge 1$.
Let $\begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix}$ $(i \ge 1)$ be the associated sequence of
symmetric matrices in SL₂(\mathbb{Z}).
Then, for each $i \ge 1$, we have
1) $x_{i+2,0}^2 + x_{i+1,0}^2 + x_{i,0}^2 = ax_{i+2,0}x_{i+1,0}x_{i,0}$
2) $x_{i+3,0} = ax_{i+2,0}x_{i+1,0} - x_{i,0}$,
3) $x_{i+2,1} \equiv (-1)^i \frac{x_{i,0}}{x_{i+1,0}} \mod x_{i+2,0}$.
Relation 1) comes from Fricke's identity (ref. [Cohn, 1957]

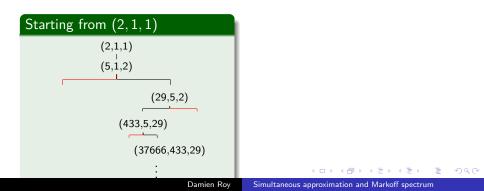
- 1) is impossible unless a = 1 or a = 3 (Hurwitz, 1907)
- Case a = 1 also leads to a contradiction.
- Thus a = 3 and $(x_{i+2,0}, x_{i+1,0}, x_{i,0})$ is a solution of Markoff's equation for each $i \ge 1$.

Main result

Theorem

There is a bijection between the positive solutions of the Markoff equation except (1,1,1) and the extremal numbers of \mathcal{E}_3^+ in the interval (0, 1/2). It is given by

 $\xi \mapsto \text{initial triple } (x_{3,0} > x_{2,0} > x_{1,0}) \text{ from a zig-zag path}$

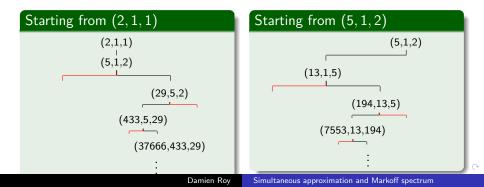


Main result

Theorem

There is a bijection between the positive solutions of the Markoff equation except (1, 1, 1) and the extremal numbers of \mathcal{E}_3^+ in the interval (0, 1/2). It is given by

 $\xi \mapsto$ initial triple (x_{3,0} > x_{2,0} > x_{1,0}) from a zig-zag path



- All extremal numbers ξ in \mathcal{E}_3^+ have $\nu(\xi) = 1/3$.
- Good hopes to show that they are the only extremal numbers with $\nu(\xi) = 1/3$.
- Connections with the works of Bugeaud-Laurent and Fischler.

Associated tree of symmetric matrices

