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The Lagrange spectrum

Definition

For each ξ ∈ R, define

ν(ξ) := lim inf
N∗3q→∞

q‖qξ‖

where ‖ ‖ = distance to a nearest integer.

Examples: ν
(
(
√

5− 1)/2
)

= 1/
√

5, ν
(√

2− 1
)

= 1/
√

8, . . .

Definition

L := {ν(ξ) ; ξ ∈ R} is called the Lagrange spectrum

Property: ν

(
aξ + b

cξ + d

)
= ν(ξ) for all

(
a b
c d

)
∈ GL2(Z).
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Link with continued fractions

Assume that ξ /∈ Q (otherwise ν(ξ) = 0).

Write ξ = a0 +
1

a1 +
1

a2 + · · ·

= [a0, a1, a2, . . . ]

⇒ ν(ξ) = lim inf
k→∞

1

[ak+1, ak+2, . . . ] + [0, ak , . . . , a1]

Corollary

ν(ξ) > 0 ⇐⇒ (ak)k≥0 is a bounded sequence.

This is a tool for investigating the Lagrange spectrum L.
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The Markoff equation

m2 + m2
1 + m2

2 = 3mm1m2

Solutions (m,m1,m2) ∈ (N∗)3 with m ≥ m1, m2 form a tree :

(1, 1, 1)

(2, 1, 1)

(5, 1, 2)

(13, 1, 5) (29, 5, 2)

(34, 1, 13) (194, 13, 5) (433, 5, 29) (169, 29, 2)
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m2 + m2
1 + m2

2 = 3mm1m2

The recurrence is

(m, m1, m2)

(3mm1 −m2, m1, m) (3mm2 −m1, m, m2)︸ ︷︷ ︸ ︸ ︷︷ ︸
(last two coordinates (all coordinates in

are “inverted”) decreasing order)
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m2 + m2
1 + m2

2 = 3mm1m2

Fix (m,m1,m2) in the tree. Then: gcd(m,m1,m2) = 1.

Choose k ∈ Z such that

k ≡ m2

m1
mod m and 0 ≤ k < m.

Then ` :=
k2 + 1

m
∈ Z.

The quadratic form

F : = mx2 + (3m − 2k)xy + (`− 3k)y 2

= m(x − βy)(x − β′y)

has equivalent roots β ∼ β′ (under GL2(Z)) with

ν(β) = ν(β′) =
1√

9− 4m−2
>

1

3
.
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Theorem (Markoff, 1871)

ν(ξ) >
1

3
⇐⇒

ξ is equivalent to the roots of the
quadratic form attached to a Markoff triple
(m,m1,m2)

Corollary

L ∩ (1/3,∞) = {µ1 > µ2 > µ3 > . . . } with limµi = 1/3.

ν(ξ) = µi ⇐⇒ ξ belongs to a finite set of equivalence classes.

(. . . conjecturally just one.)

Theorem (Markoff, 1871)

There are uncountably many ξ ∈ R such that ν(ξ) = 1/3.
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Connections

Work of Harvey Cohn provides link with

1955: fundamental domains of genus one in the upper half plane

1971: geodesics on a perforated torus

1972: primitive words in F2
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Extremal numbers

γ :=
1 +
√

5

2
' 1.618 ,

1

γ
= γ−1 ' 0.618 , γ2 = γ+1 ' 2.618

Definition

We say that ξ ∈ R is extremal if 1, ξ, ξ2 are linearly independent
over Q and there exists a constant c1 > 0 such that

|x0| ≤ X , |x0ξ − x1| ≤ c1X−1/γ , |x0ξ
2 − x2| ≤ c1X−1/γ

has a solution (x0, x1, x2) ∈ Z3 \ {0} for each sufficiently large X .

Davenport and Schmidt, 1969: there exists no such ξ if
c1X−1/γ is replaced by o(X−1/γ).

R., 2004: There are countably many extremal numbers.
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Properties (R., 2004)

Let ξ ∈ R be extremal.

(i)
aξ + b

cξ + d
is extremal for all

(
a b
c d

)
∈ GL2(Q)

(ii) There are infinitely many quadratic numbers α ∈ R such that

|ξ − α| ≤ c2H(α)−2γ2

and any quadratic α has |ξ − α| ≥ c3H(α)−2γ2
.

(iii)

∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c4q−2(1 + log q)−c5 for all
p

q
∈ Q, q ≥ 1.

Definition

P :=

{(
a b
c d

)
∈ Mat2×2(Z) ; ad − bc 6= 0 , gcd(a, b, c , d) = 1

}
is a group under A ∗ B = gcd(AB)−1AB.
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Theorem (R. 2004)

A real number ξ is extremal

⇐⇒ there exists a sequence of symmetric matrices

xi =

(
xi ,0 xi ,1

xi ,1 xi ,2

)
in P and there exists M ∈ P with

tM 6= ±M such that

1) xi+2 = xi+1 ∗Mi+1 ∗ xi where Mi =

{
M if i is even,
tM else,

2) ‖xi+1‖ � ‖xi‖γ and limi→∞ ‖xi‖ =∞,

3) ‖(ξ,−1)xi‖ � ‖xi‖−1,

4) 1 ≤ | det(xi )| � 1.

Then Wi := xi ∗Mi is a Fibonacci sequence in P:

Wi+2 = Wi+1 ∗Wi for all i ≥ 1.
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Fibonacci continued fractions

Definition

E ∗ := monoid of words on N \ {0}
Given any non-commuting words w1, w2 in E ∗ the Fibonacci
sequence (wi )i≥1 defined recursively by wi+1 = wiwi−1 for all
i ≥ 2 converges to an infinite ultimately non-periodic word
w∞ called a generalized Fibonacci word on N \ {0}.

Example

w1 = 3, w2 = (1, 2) =⇒ w3 = (1, 2, 3), w4 = (1, 2, 3, 1, 2), . . .
converges to w∞ = (1, 2, 3, 1, 2, 1, 2, 3, . . . ).

Theorem (R. 2008)

A real number ξ is extremal with associated sequence (Wi )i≥1 in
GL2(Z) ⇐⇒ the continued fraction expansion of ξ coincides with a
generalized Fibonacci word on N \ {0}, up to its first terms.
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A special class of extremal numbers

Definition

For each a = 1, 2, 3, . . . , let Ea (resp. E+
a ) denote the set of

extremal numbers

with associated sequence (xi )i≥1 in GL2(Z) (resp. in SL2(Z))

and associated matrix M =

(
a 1
−1 0

)
.

Theorem (R., 2003)

Let ξ ∈ Ea for some a ≥ 1. Then

|ξ − α| ≥ c6H(α)−γ
2

for any cubic algebraic integer α.

=⇒ Davenport and Schmidt 1969 general result of approximation
to real numbers by cubic algebraic integers is optimal.
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Link with Markoff’s equation

Fix ξ ∈ E+
a for some integer a ≥ 1.

Let

(
xi ,0 xi ,1

xi ,1 xi ,2

)
(i ≥ 1) be the associated sequence of

symmetric matrices in SL2(Z).

Then, for each i ≥ 1, we have

1) x2
i+2,0 + x2

i+1,0 + x2
i,0 = axi+2,0xi+1,0xi,0

2) xi+3,0 = axi+2,0xi+1,0 − xi,0,

3) xi+2,1 ≡ (−1)i xi,0

xi+1,0
mod xi+2,0.

Relation 1) comes from Fricke’s identity (ref. [Cohn, 1957]).

1) is impossible unless a = 1 or a = 3 (Hurwitz, 1907)

Case a = 1 also leads to a contradiction.

Thus a = 3 and (xi+2,0, xi+1,0, xi ,0) is a solution of Markoff’s
equation for each i ≥ 1.
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2) xi+3,0 = axi+2,0xi+1,0 − xi,0,

3) xi+2,1 ≡ (−1)i xi,0

xi+1,0
mod xi+2,0.

Relation 1) comes from Fricke’s identity (ref. [Cohn, 1957]).

1) is impossible unless a = 1 or a = 3 (Hurwitz, 1907)

Case a = 1 also leads to a contradiction.

Thus a = 3 and (xi+2,0, xi+1,0, xi ,0) is a solution of Markoff’s
equation for each i ≥ 1.
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Link with Markoff’s equation

Fix ξ ∈ E+
a for some integer a ≥ 1.

Let

(
xi ,0 xi ,1
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(i ≥ 1) be the associated sequence of

symmetric matrices in SL2(Z).

Then, for each i ≥ 1, we have

1) x2
i+2,0 + x2

i+1,0 + x2
i,0 = axi+2,0xi+1,0xi,0

2) xi+3,0 = axi+2,0xi+1,0 − xi,0,

3) xi+2,1 ≡ (−1)i xi,0

xi+1,0
mod xi+2,0.

Relation 1) comes from Fricke’s identity (ref. [Cohn, 1957]).

1) is impossible unless a = 1 or a = 3 (Hurwitz, 1907)

Case a = 1 also leads to a contradiction.

Thus a = 3 and (xi+2,0, xi+1,0, xi ,0) is a solution of Markoff’s
equation for each i ≥ 1.
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Main result

Theorem

There is a bijection between the positive solutions of the Markoff
equation except (1, 1, 1) and the extremal numbers of E+

3 in the
interval (0, 1/2). It is given by

ξ 7−→ initial triple (x3,0 > x2,0 > x1,0) from a zig-zag path

Starting from (2, 1, 1)

(2,1,1)

(5,1,2)

(29,5,2)

(433,5,29)

(37666,433,29)

...

Starting from (5, 1, 2)

(5,1,2)

(13,1,5)

(194,13,5)

(7553,13,194)

...
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Work in progress

All extremal numbers ξ in E+
3 have ν(ξ) = 1/3.

Good hopes to show that they are the only extremal numbers
with ν(ξ) = 1/3.

Connections with the works of Bugeaud-Laurent and Fischler.

Damien Roy Simultaneous approximation and Markoff spectrum



Associated tree of symmetric matrices

1 0
0 1


2 1

1 1


5 2

2 1


13 5

5 2

 29 12
12 5


34 13

13 5

 194 75
75 29

 433 179
179 74

 169 70
70 29
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Associated tree of palindromes:

[]

[1, 1]

[2, 2]

[2, 1, 1, 2] [2, 2, 2, 2]

[2, 1, 1, 1, 1, 2] [2, 1, 1, 2, 2, 1, 1, 2] [2, 2, 2, 1, 1, 2, 2, 2] [2, 2, 2, 2, 2, 2]
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