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General framework (dimension 3)
Let A= (a;;) € GL3(R) and let q = (g1, g2, g3) € R3. Consider the
parallelepiped
la11x1 + a1ox2 + a1 3x3| < e ®
Ca(q) : |a21x1 + apoxo + ax3x3| < e ®
|a31x0 + a3 X2 + a33x3| < 67 B
For each i = 1,2, 3, the logarithm of its i-th minimum with respect to Z3
is the smallest t € R, denoted L, ;(q) such that
la1,1x1 + a10x2 + a1 3x3| < ef R
e'Ca(q) : < |azix1 + a22x0 + az3x3| < el ®
|as1x1 + a3 oxo + az3x3| < !B
contains at least /i linearly independent points x in Z3. We form the map
Ly : R — R3
q — (Lai(a),La2(a),Las(a))
? Determine L4 up to bounded error on R3.

? Characterize the set of all maps L4 modulo bounded functions on R3.




Since logvol(Ca(q)) = —(q1 + g2 + g3) + Oa(1), Minkowski's convex
body theorem gives

Lai(a) + La2(q) + Laz(a) = g1 + g2 + g3 + Oa(1).

Since La1(q) < La2(q) < Laz(q), we deduce that

Lai(a) < (g1 + g2+ g3)/3 + O0a(1).

Example

Let K be a totally real cubic number field and let A = (o(wj)) where
o (w1,w2,ws3) is a basis of the ring of integers of K,
o (01,02,03): K — R3 is the canonical embedding of K.

Then

sup max [Lai(q) — (g1 + g2 + g3)/3] < 0.
qeR? 1<i<3




Specific framework

1 0 0
@ Werestrict to A= [ & —1 0 | where £ = (1,£1,6) € RS,
& 0 -1

o Since eCe(q1, g2, 93) = Ce(q1 — t, g2 — t, g3 — t), we may fix g1 = 0.
(The standard normalization is g1 + g2 + g3 = 0.)

|X0‘ S 1
@ Thus, we work with C¢(q1, ¢2) : |x0&1 — x1| < e %
[X0&2 — x| < 7%
o L¢i(q1,q2) = smallest t € R for which the conditions

Ixo| < ety |xoér —xa| < et |x& — xp| < el

admit at least i linearly independent solutions x = (xp, x1, x2) € Z3.



The trajectory of a non-zero point x = (xg, x1, X2) € Z3 is the map
Ly: R? — R given by

Lx(q1, g2) = the smallest t such that x € e'C¢(q1, g2)
= max{log |xo0|, g1 + log|x0&1 — x1|, g2 + log |x0&2 — x2|}.

qz
g2 + log [x0&2 — xa|

T

—log |§&2 — x2/x0

(if xo # 0)
. —
log |xo| | g1+ log|xo&1 — x|

—log|&1 — x1/xo| a
I



Basic tool

We denote by
®: R = {(to, t1,0) €R3; to < t; < B}

the map that puts the coordinates of a point in non-decreasing order.

Let q = (q1, g2) € R? and let x1,x2,x3 € Z3 be linearly independent.
We have  L¢(q) < ©(Ly(a), Lx,(a), Lxs(a))  coordinate-wise,

Z Lei(a)

= [|(La (@), Lia(a), Lis (@) — Le(@)]], <

ﬁMw
hN
~

Lx.(a) — (g1 + g2) + O¢(1).

|
.Mw

i=1

Goal: Find x1, X5, x3 € Z3 such that the last expression is O¢(1)




Example

Let e; = (1,0,0), ex = (0,1,0), e3 = (0,0,1) denote the elements of the
canonical basis of Z3. We find

Le,(q) = max{0, g1 + log|&1], g2 + log|&2}s
Le,(q) = max{—00, q1, g2 — 00} = q1,
Le,(q) = max{—00, g1 — 00, g2} = q>.

If g1 <0and g2 <0, then Le,(q) = Og(1), so

3

D Le(a) = a1 + g2+ Og(1).
i=1

Thus:

If g1 <0and g2 <0, then Lg(q) = (g1, q2,0) + Og(1).




Suppose that &; is badly approximable
ie. v(&) :=liminf n||n&] > 0,
n—oo

then, for q = (g1, g2) with g1 > 0 and g2 < g1/2, we have

Le(a) = (92, 91/2, q1/2) + Og(1).

Proof. Take x; = (n, m, [n&2]), xo = (n', m’, [n'&;]) and x3 = (0,0,1) where m/n
and m’/n’ are consecutive convergents of & with logn = q1/2 + Og, (1).

924 g2 =2q;

g1 = 2q2
77
(91,92/2,92/2) _
if £ and & are

badly appoximable

a1
(g1, q2,0) (92,91/2,91/2)




Littlewood's conjecture

For any &€ = (1,&1,&) € R3 and any b > 0, there exists q = (g1, q2) € R?
with 0 < g1/2 < g» < 24g; such that

Lea(a) < (g1 +q2)/3 — b.

Goal of this talk

Compute L¢(q1, g2) up to bounded error in the region where g; > 0 and
g2 < q1 for € = (1,&,£2) where € is an extremal real number.

The plan is to describe
| the particular extremal numbers &,
[l the approximation function (2-parameter 3-system),
[11 the triple of points which approximate the three minima.



Part |. The numbers.
[.1. Notation.

@ The norm ||A|| of a matrix A with real coefficients is the maximum of
the absolute values of its entries.

e We identify each x = (xo, x1, x2) € Z3 with the symmetric matrix

X = (XO X1> € Matzxz(Z).

X1 Xp
Then, for £ € R, we have
H(fa —1)XH = max{|x0§ - Xl‘v ’Xlg - X2‘}7

and
X062 — xo| = [x1€ — x2| + O(|x0€ — xa]).



|.2. Fibonacci sequences

Definition. A Fibonacci sequence in a monoid M is a sequence (w;)j>1 in
M such that wj;o = wj1w; for each i > 1.

Example 1. The set N={0,1,2,3,...} is a monoid under addition.

We denote by (Fj)i>1 = (1,2,3,5,8,...) the usual Fibonacci sequence in

Nwith 1 =1, F, =2 and Fjyp = Fi41 + F; for each i > 1.

Example 2. Let E* = monoid of words on an alphabet E.

The Fibonacci sequence in {a, b}* starting with w; = a and wy = ab has
w3 = aba, wy = abaab, ws = abaababa, ...

It converges to the Fibonacci word on a, b,
fab = Weo := lim w; = abaababaabaab. ..

1—00

The map | |: {a, b}* — N sending a word w to its length |w| is a
morphism of monoids. We have |w;| = F; for each i > 1.




[.3. Extremal numbers
Set |y=(1+V5)/2~1618] = 1/y=~—1~0.618

Theorem (Davenport and Schmidt, 1969)

Let £ € R such that 1,¢, €2 are linearly independent over Q. There exists
c1 = a1(§) > 0 such that, for arbitrarily large values of X, the conditions

o] <X, %€ —xi| < aX VY, |x€2 — x| < X1/

have no non-zero solution x = (xg,x1,x2) in Z3.

Corollary (Davenport and Schmidt, 1969)
For £ € R as above, there exists c = (&) > 0 such that
€ —al < cH(e)7 7

for infinitely many algebraic integers o of degree at most 3 over Q.

Here, H(a) = maximum of the absolute values of the coefficients of the
irreducible polynomial of o over Z.




Definition. We say that a real number ¢ is extremal if 1, &, &2 are linearly
independent over Q and if there exists a constant ¢ > 0 such that, for
each large enough X, the conditions

ol <X, [x0f — x| < X7V, |x€? — xp| < X7

admit a non-zero solution x = (xg, x1,x2) in Z3.

Theorem (R. 2003)

The set of extremal real numbers is countably infinite.

@ These numbers are transcendental over Q.

o If & is extremal and A = (i Z) € GL2(Q), then A =

extremal.

a+b .
c§+dls

@ Open problem: Are all extremal real numbers badly approximable?



|.4. Extremal numbers of SLy(Z)-type [R. 2008]
o Let M € SLy(Z) with ™M # £M.

. S o
o Foreachi>1, letx; = (0 7t
Xi1 X2

> € SL2(Z) be symmetric.
Suppose that, for each / > 1,
M if i is even
o X; = X M,‘ X = X,'M,'X,‘ where M,' = ,
2 A = { M if i is odd,
o |Ixit2l =< [[xiall [|xi]| —= oo.
Then we have |xj+1]| =< ||xi||” and there is an extremal ¢ € R, said of
SL2(Z)-type, such that

18, =il = fIxill = =< [lxia | 747

@ The products W; = x;M; form a Fibonacci sequence in SLy(Z), i.e.
Wito = Wi 1 W, for each i > 1.
@ The number £ is badly approximable.



|.5. Trajectory of x;

It can be shown that, for each / > 1,

xi.0& — xi1] < [xi,06% — xi 0| < |xi0| 7L,

= | Lx; (91, 92) = max{log |xi o, g1 — log|xiol, g2 — log|xi o

}+0(1)-

az

2 |Og ‘X,'p‘

g2 — log |xi o

T

log |xi o]

—
q1 — log |xi o

2 |0g||X,'70’

01




|.6. Choice of &

Objective

We want to estimate L¢ for points & = (1, &, £?) where £ is an extremal
real number of SLy(Z)-type with associated matrix

M:<_31 3)

Some properties of such &

@ There exists ¢ = c(&) > 0 such that [§ — a| > cH(a)™7~! for each
algebraic integer o of degree < 3 [R. 2003].

@ Similar results for approximation by algebraic integers of degree < 4
and trace 0, etc [R.-Zelo 2011].

o liminf n||né|| = 1/3 is largest possible for a non-quadratic irrational
nnL:noger [R. 2011].




A specific example

For M as above, the sequence (x;);>1 in SLy(Z) starting with

(21 (5 3 (29 17 _ (433 254
7\ 1)027 3 2/ 7 a7 10)0 7 (254 149)
produces an extremal £ € R such that

= -1 = -
16, =1xill = il = i |77

Setting 1 = (1,1) and 2 = (2, 2), its continued fraction expansion is
£€=100,1,1,2,2,1,1,2,2,2,2,1,1,2,2,...] = [0,1, f 1]

where f, 1 is the Fibonacci word on 2 and 1.



Part Il. The function.
I1.1. The maps ¢ and «.

Definition. Set
F=A{0,F,FFs3,...} ={0,1,2,3,5,8,13,21,... }.

We define a map ¢: N — N by

X if x € F,

ux) = )

x —2Fk_o if Fx < x < Fyyq for some k > 3.

We also define o: N — F by
a(x) = limg 00 t¥(x)

where (¥ denotes the k-th iterate of «.

x |01 23456789 10 11 12 13
(x) |0 1 23252383 4 5 6 13
a(x){01 23252383 2 5 2 13




11.2. The sets N,

Definition. For each integer £ > 1, we set
Ny ={x eN; a(x) > F}.

Set Fp = 1. For £ > 2, we find
Ne=A{Fe, Foy1, Foyr+Fe1, Foyo, Foro+ Fro, Foo+ Fo, Foys, ..o}
Theorem
Let £ >3 and write Ny ={x1 <xp <x3<...}
@ Then x; = Fy and the sequence of differences
(x2—x1, x3—x2, xa—x3,...) = (Fg—1, Fo—1, Fo—2, Fo2, Fo—1, Fo—1,...)
is the infinite Fibonacci word on (Fy—1, Fy—1) and (Fy—2, Fi—2).

@ For each i >1, we have a(x;) = Fy ifand only ifi =1 or i > 1 and
(Xi—1, Xi, Xi+1) is not an arithmetic progression.




[1.3. [llustration

We find

xeN3|3 5 7 8 9 11 13 15 17 18 19 21 23 24 26

diff. 22112 2 2 2 1 1 2 2 1 1
x €Ny 5 8 11 13 15 18 21 24
diff. 3 3 2 2 3 3 3

x € Ns 8 13 18 21 24



I1.4. The ideal trajectories P,

For each x € N, we define P,: R? — R3 by
Px(q1, q2) = (g1 — x, g2 — a(x), x)
We set
o A(x) ={q e R?; Px(a) = 1 — x},
o B(x) ={q € R?; Px(q) = 2 — a(x)},
o C(x) = {a € R?; Py(q) = x}.

q2 T & — a(x)
X + a(x) B(x)
C(x) A(x)
. g
X a1 — X
2|x a1




For example, if x € F ={0,1,2,3,5,8,...}, then a(x) = x, so

P«(q1,q2) = ®(q1 — x, g2 — X, Xx)

We find
q2
T q — X
B(x)
—2x
C(x) A(x)
. —_
X gL — X
2|x a1
In particular,

A(0) = {(q1, ¢2) € R?; g1 > max{0, g2}}.



11.5. The map P: A(0) — R3

o Let y € N\ F. Write a(y) = Fy. Then, ¢ > 2 and there are unique
x,z € Ny such that x < y < z are consecutive in NVy. The set

Cell(y) := A(x) N B(y) N C(2)
is a compact polygon with 4 or 5 sides. For each
q = (g1, q2) € Cell(y), we define
P(a) = ®(Px(a), Py(a), P=(a)) = ®(q1 — x, g2 — a(y), 2).
@ Let x € N. Then
Trap(x) :== A(x)NC(x + 1)

is a trapeze unbound with two unbounded vertical sides. For each
q = (g1, q2) € Trap(x), we define

P(a) = ®(Px(a), g2 — 1, Px1(a)) = ®(q1 — x, g2 — L x + 1).

@ These polygons have no interior point in common and cover .4(0).
The definition of P match at common boundary points yielding a
continous map P: A(0) — R3.



Typical cell : Cell(y) = A(x) N B(y) N C(z)

or
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5
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11.7. Graph of P; inside Cell(y) = A(x) N B(y) N C(z)

g —x=2z

qr — X =
1 g2 —aly)

2x x+y 2y 2z



Graph of P;
blue: gradient (1,0), green: gradient (0,1), red: gradient (0, 0).




11.8. Properties

Theorem

o For each integer k > 3, each (q1, q2) € A(0) N C(Fk—1 + Fk—3), and
each j =1,2,3, we have

Pi(q1 + 4Fk—2, g2 + 2Fk—2) = Pj(q1, g2) + 2Fk_2.
@ For each q € A(0), we have

P(yq) =~P(a) + O(1).




[1.9. Main result

Theorem

Let & be the particular extremal real number defined in Part |. There exists
p > 0 such that the point & = (1,&,£2) satisfies

Le(a) = pP(p™'q) + O(1)

for each q = (q1, q2) € A(0).




Part Ill. The points
I1l.1. The Fibonacci sequence in SLy(Z) attached to ¢

Recall that the sequence of symmetric matrices (x;)i>1 in SL2(Z) attached
to £ is given by

2 1 5 3 ;
X1 = (1 1> y X2 = (3 2> s Xip2 = Xip1Mipix; (i > 1)

wher )
T (3 D) eey
ey o) U2

Set W; = x;M; for each i > 1. We find

. 12 5 _

So (W;)i>1 is a Fibonacci sequence in SLy(Z). We extend it to a
Fibonacci sequence (W;)i>o starting with

_ 2 1




[11.2. The morphism associated to &

We denote by ¢: {a, b}* — SL2(Z) the morphism of monoids with

w@=wi=(; 5) e e)=mo- (7 }).

e(w)) =W; (i=1),

where (w;)i>1 = (a, ab, aba, ababa,...).

Then

For each non-empty word v in {a, b}*, we set

M(v) M if v ends in b,
V)=
tM if v ends in a.

For each i > 1, we have M(w;) = M; and so
e(wi)M(w;)™t = WM = x;

is a symmetric matrix.



I11.3. The points x(v)

For each non-empty prefix v of w,, = abaab..., we denote by

)= (24 74)

x(v) x(v)
the symmetric matrix in Matayx2(Z) which
@ has the same first column as ¢(v)M(v)~! and
e satisfies |x1(v)€ — x(v)| < 1/2.
This specifies x2(v) uniquely as £ ¢ Q.

For the first non-empty prefixes v of w,, = abaababa. .., we find

x(a):x1:<i D x(ab):x2:<§ g)

29 17 179 105
x(aba) = x3 = <17 10> , x(abaa) = <105 62) .



[11.4. Recurrence relations

For each integer £ > 1, we set W, = {v €]e, woo[; |v| € Ny}

For ¢ > 3, we have

Ne=A{Fe, Fosr, Foy1 + Fo—1, Fogo, Frio + Foa, ...
thus

We = {wp, Wi 1, Wer 1We—1, Wego, W o W2, ... }.

Theorem

There exists £y > 4 such that, for any £ > £y and any triple of consecutive
words u < v < w of W, the points x(u), x(v), x(w) are linearly
independent if and only if v ¢ Wy,1. More precisely,

(i) if v € Weqa, then |v| — |u| = |w| — |v| = Fx with k € {¢ — 2, — 1}
and

x(w) = tyx(v) £ x(u) where ty = trace(Wy);

(it) if v ¢ Wyia, then det(x(u),x(v),x(w)) = £2.




I1l.5. The trajectory of x(v)

Proposition
There exists p > 0 such that, for any v €]e, woo[, we have
(i) logxo(v) = plv|+ O(1),
(i) log lxo(v)€ — x(v)] = —plv] +O(1),
(iii) log[xo(v)E? = xa(v)| = —pa(|v]) + O(1),
and so
Ly (@) = pPi(p~'a) + O(1) (q € R?).

Sketch of proof.
@ We first show the existence of p such that (i) holds.

@ Then (ii) follows from the fact that x;(v)/xo(v) is a convergent of £
in reduced form, for each v €]e, wo|.

e Finally, (iii) is proved using the recurrence relations.




Graph of Lx(v)

q2 = plv| + pa(|v]) + O(1)

q2 — pa(|v]) + O(1)

T

plv

—
q1 — plv|+O(1)

a1

q1 = 2p|v| + O(1)



[11.6. Proof of the main result

Theorem
We have L¢(q) = pP(p~tq) + Og(1) for each q € A(0).

Sketch of proof
@ It suffices to show this on pCell(y) for each y € N\ F with a(y) = F; > Fy,.

@ We have Cell(y) = A(x) N B(y) NC(z) with x < y < z consecutive in Ny.

@ Write x = |u|, y = |v| and z = |w| for consecutive words u < v < w in W.
Since v ¢ Wy, the points x(u), x(v) and x(w) are linearly independent.

@ For q = (g1, q2) € pCell(y), we find
Lx(u)(q) + Lx(v)(q) + Lx(w)(Q) =q1+q+ 05(1)7
= Lﬁ(q) = clD(Lx(u)(q)a Lx(v)(Q)7 Lx(w)(q)) + Oﬁ(l) = pp(p71Q) + 05(1)

Thank you !



Example of computation

@ Write A= B when A, B € Mat42(Z) have the same first column.

® Then AM~1 = —AtM™" for each A € Maty,»(Z) (specific to M).

2
We have wyiwp—1 = wewj_q, thus

p(weriwe-1) = We W7,
= Wg(tg_l Wi_1 — I) by Cayley-Hamilton Theorem,
=t Wi — Wi,
= x(Wer1we—1) = p(Werrwe—1) M,

= t€—1W£+1M[+11 - W, t/\/’g_l = ty_1Xp41 +X¢ Symmetric !
and [|(&, —1)(te—1xe41 + x¢)|| < ||x¢]| 72, thus

X(Wg+1 ngl) = ty—1Xp41 + X¢ if £> 1.
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