An example in multi-parametric geometry of numbers

Damien Roy

University of Ottawa

Diophantine approximation and related fields

York University

June 9–13, 2025

Dedicated to Bertrand Russell for his commitment to peace

General framework (dimension 3)

Let $A=(a_{i,j})\in \mathrm{GL}_3(\mathbb{R})$ and let $\mathbf{q}=(q_1,q_2,q_3)\in \mathbb{R}^3$. Consider the parallelepiped

$$\mathcal{C}_{A}(\mathbf{q}): \left\{ egin{array}{l} |a_{1,1}x_{1}+a_{1,2}x_{2}+a_{1,3}x_{3}| \leq e^{-q_{1}} \ |a_{2,1}x_{1}+a_{2,2}x_{2}+a_{2,3}x_{3}| \leq e^{-q_{2}} \ |a_{3,1}x_{1}+a_{3,2}x_{2}+a_{3,3}x_{3}| \leq e^{-q_{3}} \end{array}
ight.$$

For each i=1,2,3, the logarithm of its i-th minimum with respect to \mathbb{Z}^3 is the smallest $t \in \mathbb{R}$, denoted $L_{A,i}(\mathbf{q})$ such that

$$e^{t}\mathcal{C}_{A}(\mathbf{q}): \left\{ \begin{array}{l} |a_{1,1}x_{1}+a_{1,2}x_{2}+a_{1,3}x_{3}| \leq e^{t-q_{1}} \\ |a_{2,1}x_{1}+a_{2,2}x_{2}+a_{2,3}x_{3}| \leq e^{t-q_{2}} \\ |a_{3,1}x_{1}+a_{3,2}x_{2}+a_{3,3}x_{3}| \leq e^{t-q_{3}} \end{array} \right.$$

contains at least i linearly independent points \mathbf{x} in \mathbb{Z}^3 . We form the map

$$\mathbf{L}_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\mathbf{q} \longmapsto (L_{A,1}(\mathbf{q}), L_{A,2}(\mathbf{q}), L_{A,3}(\mathbf{q}))$$

- ? Determine L_A up to bounded error on \mathbb{R}^3 .
- ? Characterize the set of all maps L_A modulo bounded functions on \mathbb{R}^3 .

Since $\log \operatorname{vol}(\mathcal{C}_A(\mathbf{q})) = -(q_1 + q_2 + q_3) + \mathcal{O}_A(1)$, Minkowski's convex body theorem gives

$$L_{A,1}(\mathbf{q}) + L_{A,2}(\mathbf{q}) + L_{A,3}(\mathbf{q}) = q_1 + q_2 + q_3 + \mathcal{O}_A(1).$$

Since $L_{A,1}(\mathbf{q}) \leq L_{A,2}(\mathbf{q}) \leq L_{A,3}(\mathbf{q})$, we deduce that

$$L_{A,1}(\mathbf{q}) \leq (q_1 + q_2 + q_3)/3 + \mathcal{O}_A(1).$$

Example

Let K be a totally real cubic number field and let $A = (\sigma_i(\omega_j))$ where

- $(\omega_1, \omega_2, \omega_3)$ is a basis of the ring of integers of K,
- $(\sigma_1, \sigma_2, \sigma_3)$: $K \to \mathbb{R}^3$ is the canonical embedding of K.

Then

$$\sup_{\mathbf{q}\in\mathbb{R}^3}\max_{1\leq i\leq 3}|L_{A,i}(\mathbf{q})-(q_1+q_2+q_3)/3|<\infty.$$

Specific framework

- We restrict to $A=\begin{pmatrix}1&0&0\\\xi_1&-1&0\\\xi_2&0&-1\end{pmatrix}$ where $\boldsymbol{\xi}=(1,\xi_1,\xi_2)\in\mathbb{R}^3$.
- Since $e^t \mathcal{C}_{\xi}(q_1, q_2, q_3) = \mathcal{C}_{\xi}(q_1 t, q_2 t, q_3 t)$, we may fix $q_1 = 0$. (The standard normalization is $q_1 + q_2 + q_3 = 0$.)
- $\bullet \ \, \text{Thus, we work with} \,\, \mathcal{C}_{\xi}(q_1,q_2) \,:\, \left\{ \begin{array}{l} |x_0| \leq 1 \\ |x_0\xi_1-x_1| \leq e^{-q_1} \\ |x_0\xi_2-x_2| \leq e^{-q_2} \end{array} \right.$
- $L_{\xi,i}(q_1,q_2)=$ smallest $t\in\mathbb{R}$ for which the conditions

$$|x_0| \le e^t$$
, $|x_0\xi_1 - x_1| \le e^{t-q_1}$, $|x_0\xi_2 - x_2| \le e^{t-q_2}$

admit at least *i* linearly independent solutions $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$.

The trajectory of a non-zero point $\mathbf{x}=(x_0,x_1,x_2)\in\mathbb{Z}^3$ is the map $L_{\mathbf{x}}\colon\mathbb{R}^2\to\mathbb{R}$ given by

$$L_{\mathbf{x}}(q_1, q_2) = ext{the smallest } t ext{ such that } \mathbf{x} \in e^t \mathcal{C}_{\mathbf{\xi}}(q_1, q_2)$$

$$= \max \{ \log |x_0|, q_1 + \log |x_0 \xi_1 - x_1|, q_2 + \log |x_0 \xi_2 - x_2| \}.$$

Basic tool

We denote by

$$\Phi \colon \mathbb{R}^3 \to \{(t_0, t_1, t_2) \in \mathbb{R}^3 ; t_0 \le t_1 \le t_2\}$$

the map that puts the coordinates of a point in non-decreasing order.

Let $\mathbf{q}=(q_1,q_2)\in\mathbb{R}^2$ and let $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\in\mathbb{Z}^3$ be linearly independent.

We have $\mathbf{L}_{\xi}(\mathbf{q}) \leq \Phi(L_{\mathbf{x}_1}(\mathbf{q}), L_{\mathbf{x}_2}(\mathbf{q}), L_{\mathbf{x}_3}(\mathbf{q}))$ coordinate-wise,

$$\Rightarrow \|\Phi(L_{\mathbf{x}_1}(\mathbf{q}), L_{\mathbf{x}_2}(\mathbf{q}), L_{\mathbf{x}_3}(\mathbf{q})) - \mathbf{L}_{\boldsymbol{\xi}}(\mathbf{q})\|_{\infty} \leq \sum_{i=1}^{3} L_{\mathbf{x}_i}(\mathbf{q}) - \sum_{i=1}^{3} L_{\boldsymbol{\xi}, i}(\mathbf{q})$$

$$= \sum_{i=1}^{3} L_{\mathbf{x}_{i}}(\mathbf{q}) - (q_{1} + q_{2}) + \mathcal{O}_{\xi}(1).$$

Goal: Find $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{Z}^3$ such that the last expression is $\mathcal{O}_{\mathcal{E}}(1)$

Example

Let $\mathbf{e}_1=(1,0,0),\ \mathbf{e}_2=(0,1,0),\ \mathbf{e}_3=(0,0,1)$ denote the elements of the canonical basis of \mathbb{Z}^3 . We find

$$\begin{split} & L_{\mathbf{e}_1}(\mathbf{q}) = \max\{0, q_1 + \log|\xi_1|, q_2 + \log|\xi_2|\}, \\ & L_{\mathbf{e}_2}(\mathbf{q}) = \max\{-\infty, q_1, q_2 - \infty\} = q_1, \\ & L_{\mathbf{e}_3}(\mathbf{q}) = \max\{-\infty, q_1 - \infty, q_2\} = q_2. \end{split}$$

If $q_1 \leq 0$ and $q_2 \leq 0$, then $L_{\mathbf{e}_1}(\mathbf{q}) = \mathcal{O}_{\boldsymbol{\xi}}(1)$, so

$$\sum_{i=1}^{3} L_{\mathbf{e}_i}(\mathbf{q}) = q_1 + q_2 + \mathcal{O}_{\boldsymbol{\xi}}(1).$$

Thus:

If $q_1 \leq 0$ and $q_2 \leq 0$, then $\mathbf{L}_{\boldsymbol{\xi}}(\mathbf{q}) = \Phi(q_1,q_2,0) + \mathcal{O}_{\boldsymbol{\xi}}(1)$.

Suppose that ξ_1 is badly approximable

i.e.
$$\nu(\xi_1) := \liminf_{n \to \infty} n \|n\xi_1\| > 0$$
,

then, for $\mathbf{q}=(q_1,q_2)$ with $q_1\geq 0$ and $q_2\leq q_1/2$, we have

$$\mathbf{L}_{\xi}(\mathbf{q}) = (q_2, q_1/2, q_1/2) + \mathcal{O}_{\xi}(1).$$

Proof. Take $\mathbf{x}_1 = (n, m, [n\xi_2])$, $\mathbf{x}_2 = (n', m', [n'\xi_2])$ and $\mathbf{x}_3 = (0, 0, 1)$ where m/n and m'/n' are consecutive convergents of ξ_1 with $\log n = q_1/2 + \mathcal{O}_{\xi_1}(1)$.

Littlewood's conjecture

For any $\boldsymbol{\xi}=(1,\xi_1,\xi_2)\in\mathbb{R}^3$ and any b>0, there exists $\mathbf{q}=(q_1,q_2)\in\mathbb{R}^2$ with $0\leq q_1/2\leq q_2\leq 2q_1$ such that

$$L_{\xi,1}(\mathbf{q}) \leq (q_1+q_2)/3-b.$$

Goal of this talk

Compute $\mathbf{L}_{\xi}(q_1, q_2)$ up to bounded error in the region where $q_1 \geq 0$ and $q_2 \leq q_1$ for $\xi = (1, \xi, \xi^2)$ where ξ is an extremal real number.

The plan is to describe

- I the particular extremal numbers ξ ,
- II the approximation function (2-parameter 3-system),
- III the triple of points which approximate the three minima.

Part I. The numbers.

I.1. Notation.

- The norm ||A|| of a matrix A with real coefficients is the maximum of the absolute values of its entries.
- ullet We identify each ${f x}=(x_0,x_1,x_2)\in \mathbb{Z}^3$ with the symmetric matrix

$$\mathbf{x} = egin{pmatrix} x_0 & x_1 \ x_1 & x_2 \end{pmatrix} \in \mathsf{Mat}_{2 imes 2}(\mathbb{Z}).$$

Then, for $\xi \in \mathbb{R}$, we have

$$\|(\xi,-1)\mathbf{x}\| = \max\{|x_0\xi-x_1|, |x_1\xi-x_2|\},\$$

and

$$|x_0\xi^2 - x_2| = |x_1\xi - x_2| + \mathcal{O}(|x_0\xi - x_1|).$$

I.2. Fibonacci sequences

Definition. A Fibonacci sequence in a monoid \mathcal{M} is a sequence $(w_i)_{i\geq 1}$ in \mathcal{M} such that $w_{i+2}=w_{i+1}w_i$ for each $i\geq 1$.

Example 1. The set $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ is a monoid under addition. We denote by $(F_i)_{i \geq 1} = (1, 2, 3, 5, 8, \dots)$ the usual Fibonacci sequence in \mathbb{N} with $F_1 = 1$, $F_2 = 2$ and $F_{i+2} = F_{i+1} + F_i$ for each $i \geq 1$.

Example 2. Let $E^* =$ monoid of words on an alphabet E. The Fibonacci sequence in $\{a,b\}^*$ starting with $w_1 = a$ and $w_2 = ab$ has

$$w_3 = aba, \ w_4 = abaab, \ w_5 = abaababa, \dots$$

It converges to the Fibonacci word on a, b,

$$f_{\mathsf{a},\mathsf{b}} := w_\infty := \lim_{i o \infty} w_i = \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{b} \ldots$$

The map $|\cdot|: \{a,b\}^* \to \mathbb{N}$ sending a word w to its length |w| is a morphism of monoids. We have $|w_i| = F_i$ for each $i \ge 1$.

I.3. Extremal numbers

Set
$$\gamma = (1 + \sqrt{5})/2 \simeq 1.618$$
 \Rightarrow $1/\gamma = \gamma - 1 \simeq 0.618$

Theorem (Davenport and Schmidt, 1969)

Let $\xi \in \mathbb{R}$ such that $1, \xi, \xi^2$ are linearly independent over \mathbb{Q} . There exists $c_1 = c_1(\xi) > 0$ such that, for arbitrarily large values of X, the conditions $|x_0| \leq X$, $|x_0\xi - x_1| \leq c_1 X^{-1/\gamma}$, $|x_0\xi^2 - x_2| \leq c_1 X^{-1/\gamma}$

have no non-zero solution $\mathbf{x} = (x_0, x_1, x_2)$ in \mathbb{Z}^3 .

Corollary (Davenport and Schmidt, 1969)

For $\xi \in \mathbb{R}$ as above, there exists $c_2 = c_2(\xi) > 0$ such that

$$|\xi - \alpha| \le c_2 H(\alpha)^{-\gamma - 1}$$

for infinitely many algebraic integers α of degree at most 3 over $\mathbb Q.$

Here, $H(\alpha) = \text{maximum of the absolute values of the coefficients of the irreducible polynomial of } \alpha \text{ over } \mathbb{Z}.$

Definition. We say that a real number ξ is **extremal** if $1, \xi, \xi^2$ are linearly independent over $\mathbb Q$ and if there exists a constant c>0 such that, **for** each large enough X, the conditions

$$|x_0| \le X$$
, $|x_0\xi - x_1| \le cX^{-1/\gamma}$, $|x_0\xi^2 - x_2| \le cX^{-1/\gamma}$

admit a non-zero solution $\mathbf{x} = (x_0, x_1, x_2)$ in \mathbb{Z}^3 .

Theorem (R. 2003)

The set of extremal real numbers is countably infinite.

- ullet These numbers are transcendental over $\mathbb Q.$
- If ξ is extremal and $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{GL}_2(\mathbb{Q})$, then $A.\xi:=\frac{a\xi+b}{c\xi+d}$ is extremal.
- Open problem: Are all extremal real numbers badly approximable?

I.4. Extremal numbers of $SL_2(\mathbb{Z})$ -type [R. 2008]

- Let $M \in SL_2(\mathbb{Z})$ with ${}^tM \neq \pm M$.
- For each $i \ge 1$, let $\mathbf{x}_i = \begin{pmatrix} x_{i,0} & x_{i,1} \\ x_{i,1} & x_{i,2} \end{pmatrix} \in \mathsf{SL}_2(\mathbb{Z})$ be symmetric.

Suppose that, for each $i \geq 1$,

- $\bullet \ \mathbf{x}_{i+2} = \mathbf{x}_{i+1} M_{i+1} \mathbf{x}_i = \mathbf{x}_i M_i \mathbf{x}_{i+1} \text{ where } M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^t M & \text{if } i \text{ is odd,} \end{cases}$
- $\bullet \|\mathbf{x}_{i+2}\| \asymp \|\mathbf{x}_{i+1}\| \|\mathbf{x}_i\| \to \infty.$

Then we have $\|\mathbf{x}_{i+1}\| \simeq \|\mathbf{x}_i\|^{\gamma}$ and there is an extremal $\xi \in \mathbb{R}$, said of $\mathrm{SL}_2(\mathbb{Z})$ -type, such that

$$\|(\xi,-1)\mathbf{x}_i\| \asymp \|\mathbf{x}_i\|^{-1} \asymp \|\mathbf{x}_{i+1}\|^{-1/\gamma}.$$

• The products $W_i = \mathbf{x}_i M_i$ form a Fibonacci sequence in $SL_2(\mathbb{Z})$, i.e.

$$W_{i+2} = W_{i+1}W_i$$
 for each $i \ge 1$.

• The number ξ is badly approximable.

I.5. Trajectory of \mathbf{x}_i

It can be shown that, for each $i \ge 1$,

$$|x_{i,0}\xi - x_{i,1}| \simeq |x_{i,0}\xi^2 - x_{i,2}| \simeq |x_{i,0}|^{-1}$$

$$\Rightarrow L_{\mathbf{x}_i}(q_1, q_2) = \max\{\log |x_{i,0}|, q_1 - \log |x_{i,0}|, q_2 - \log |x_{i,0}|\} + \mathcal{O}_{\xi}(1).$$

I.6. Choice of ξ

Objective

We want to estimate \mathbf{L}_{ξ} for points $\boldsymbol{\xi}=(1,\xi,\xi^2)$ where ξ is an extremal real number of $\mathrm{SL}_2(\mathbb{Z})$ -type with associated matrix

$$M = \begin{pmatrix} 3 & 1 \\ -1 & 0 \end{pmatrix}.$$

Some properties of such ξ

- There exists $c = c(\xi) > 0$ such that $|\xi \alpha| \ge cH(\alpha)^{-\gamma 1}$ for each algebraic integer α of degree ≤ 3 [R. 2003].
- \bullet Similar results for approximation by algebraic integers of degree ≤ 4 and trace 0, etc [R.-Zelo 2011].
- $\liminf_{n\to\infty} n\|n\xi\|=1/3$ is largest possible for a non-quadratic irrational number [R. 2011].

A specific example

For M as above, the sequence $(\mathbf{x}_i)_{i\geq 1}$ in $\mathsf{SL}_2(\mathbb{Z})$ starting with

$$\textbf{x}_1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \ \textbf{x}_2 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}, \ \textbf{x}_3 = \begin{pmatrix} 29 & 17 \\ 17 & 10 \end{pmatrix}, \ \textbf{x}_4 = \begin{pmatrix} 433 & 254 \\ 254 & 149 \end{pmatrix}, \ \ldots$$

produces an extremal $\xi \in \mathbb{R}$ such that

$$\|(\xi,-1)\mathbf{x}_i\| \asymp \|\mathbf{x}_i\|^{-1} \asymp \|\mathbf{x}_{i+1}\|^{-1/\gamma}.$$

Setting $\mathbf{1}=(1,1)$ and $\mathbf{2}=(2,2)$, its continued fraction expansion is

$$\xi = [0, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, \ldots] = [0, 1, f_{2,1}]$$

where $f_{2,1}$ is the Fibonacci word on **2** and **1**.

Part II. The function.

II.1. The maps ι and α .

Definition. Set

$$\mathcal{F} = \{0, F_1, F_2, F_3, \dots\} = \{0, 1, 2, 3, 5, 8, 13, 21, \dots\}.$$

We define a map $\iota \colon \mathbb{N} \to \mathbb{N}$ by

$$\iota(x) = \begin{cases} x & \text{if } x \in \mathcal{F}, \\ x - 2F_{k-2} & \text{if } F_k < x < F_{k+1} \text{ for some } k \ge 3. \end{cases}$$

We also define $\alpha \colon \mathbb{N} \to \mathcal{F}$ by

$$\alpha(x) = \lim_{k \to \infty} \iota^k(x)$$

where ι^k denotes the k-th iterate of ι .

_	X	0	1	2	3	4	5	6	7	8	9	10	11	12	13
	$\iota(x)$														
	$\alpha(x)$	0	1	2	3	2	5	2	3	8	3	2	5	2	13

II.2. The sets \mathcal{N}_{ℓ}

Definition. For each integer $\ell \geq 1$, we set

$$\mathcal{N}_{\ell} = \{ x \in \mathbb{N} ; \alpha(x) \geq F_{\ell} \}.$$

Set $F_0 = 1$. For $\ell \ge 2$, we find

$$\mathcal{N}_{\ell} = \{ F_{\ell}, \ F_{\ell+1}, \ F_{\ell+1} + F_{\ell-1}, \ F_{\ell+2}, \ F_{\ell+2} + F_{\ell-2}, \ F_{\ell+2} + F_{\ell}, \ F_{\ell+3}, \dots \}$$

Theorem

Let $\ell \geq 3$ and write $\mathcal{N}_{\ell} = \{x_1 < x_2 < x_3 < \dots\}$.

- Then $x_1 = F_\ell$ and the sequence of differences
- $(x_2-x_1, x_3-x_2, x_4-x_3,...) = (F_{\ell-1}, F_{\ell-1}, F_{\ell-2}, F_{\ell-2}, F_{\ell-1}, F_{\ell-1},...)$ is the infinite Fibonacci word on $(F_{\ell-1}, F_{\ell-1})$ and $(F_{\ell-2}, F_{\ell-2})$.
 - For each $i \ge 1$, we have $\alpha(x_i) = F_\ell$ if and only if i = 1 or i > 1 and (x_{i-1}, x_i, x_{i+1}) is not an arithmetic progression.

II.3. Illustration

We find

$x \in \mathcal{N}_3$	3	5	7	8	9	11	13	15	17	18	19	21	23	24	26
diff.		2	2	1	1	2	2	2	2	1	1	2	2	1	1
$x \in \mathcal{N}_4$		5		8		11	13	15		18		21		24	
diff.				3		3	2	2		3		3		3	
$x \in \mathcal{N}_5$				8			13			18		21		24	

II.4. The ideal trajectories P_x

For each $x \in \mathbb{N}$, we define $P_x \colon \mathbb{R}^2 o \mathbb{R}^3$ by

$$P_x(q_1, q_2) = \Phi(q_1 - x, q_2 - \alpha(x), x)$$

We set

$$\bullet \ \mathcal{B}(x) = \{\mathbf{q} \in \mathbb{R}^2 : P_x(\mathbf{q}) = q_2 - \alpha(x)\},\$$

$$\mathcal{C}(x) = \{ \mathbf{q} \in \mathbb{R}^2 \, ; \, P_x(\mathbf{q}) = x \}.$$

For example, if $x \in \mathcal{F} = \{0, 1, 2, 3, 5, 8, \dots\}$, then $\alpha(x) = x$, so

$$P_{x}(q_{1},q_{2}) = \Phi(q_{1}-x,q_{2}-x,x)$$

We find

In particular,

$$\mathcal{A}(0) = \{(q_1, q_2) \in \mathbb{R}^2 \, ; \, q_1 \geq \mathsf{max}\{0, q_2\}\}.$$

II.5. The map $\mathbf{P} \colon \mathcal{A}(0) \to \mathbb{R}^3$

• Let $y \in \mathbb{N} \setminus \mathcal{F}$. Write $\alpha(y) = F_{\ell}$. Then, $\ell \geq 2$ and there are unique $x, z \in \mathcal{N}_{\ell}$ such that x < y < z are consecutive in \mathcal{N}_{ℓ} . The set

$$Cell(y) := A(x) \cap B(y) \cap C(z)$$

is a compact polygon with 4 or 5 sides. For each $\mathbf{q}=(q_1,q_2)\in \mathsf{Cell}(y)$, we define

$$\mathbf{P}(\mathbf{q}) = \Phi(P_x(\mathbf{q}), P_y(\mathbf{q}), P_z(\mathbf{q})) = \Phi(q_1 - x, q_2 - \alpha(y), z).$$

• Let $x \in \mathbb{N}$. Then

$$\mathsf{Trap}(x) := \mathcal{A}(x) \cap \mathcal{C}(x+1)$$

is a trapeze unbound with two unbounded vertical sides. For each $\mathbf{q} = (q_1, q_2) \in \text{Trap}(x)$, we define

$$P(q) = \Phi(P_x(q), q_2 - 1, P_{x+1}(q)) = \Phi(q_1 - x, q_2 - 1, x + 1).$$

• These polygons have no interior point in common and cover $\mathcal{A}(0)$. The definition of **P** match at common boundary points yielding a continous map $\mathbf{P} \colon \mathcal{A}(0) \to \mathbb{R}^3$.

Typical cell : Cell $(y) = A(x) \cap B(y) \cap C(z)$

II.7. Graph of P_1 inside $Cell(y) = \mathcal{A}(x) \cap \mathcal{B}(y) \cap \mathcal{C}(z)$

Graph of P_1 blue: gradient (1,0), green: gradient (0,1), red: gradient (0,0).

II.8. Properties

Theorem

• For each integer $k \ge 3$, each $(q_1, q_2) \in \mathcal{A}(0) \cap \mathcal{C}(F_{k-1} + F_{k-3})$, and each j = 1, 2, 3, we have

$$P_j(q_1+4F_{k-2},q_2+2F_{k-2})=P_j(q_1,q_2)+2F_{k-2}.$$

• For each $\mathbf{q} \in \mathcal{A}(0)$, we have

$$\mathbf{P}(\gamma\mathbf{q}) = \gamma\mathbf{P}(\mathbf{q}) + \mathcal{O}(1).$$

II.9. Main result

Theorem

Let ξ be the particular extremal real number defined in Part I. There exists $\rho > 0$ such that the point $\xi = (1, \xi, \xi^2)$ satisfies

$$\mathbf{L}_{\boldsymbol{\xi}}(\mathbf{q}) = \rho \mathbf{P}(\rho^{-1}\mathbf{q}) + \mathcal{O}(1)$$

for each $\mathbf{q}=(q_1,q_2)\in\mathcal{A}(0)$.

Part III. The points

III.1. The Fibonacci sequence in $\mathsf{SL}_2(\mathbb{Z})$ attached to ξ

Recall that the sequence of symmetric matrices $(\mathbf{x}_i)_{i\geq 1}$ in $\mathsf{SL}_2(\mathbb{Z})$ attached to ξ is given by

$$\mathbf{x}_1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}, \ \mathbf{x}_{i+2} = \mathbf{x}_{i+1} M_{i+1} \mathbf{x}_i \quad (i \ge 1)$$

where

$$M_i = \begin{pmatrix} 3 & (-1)^i \\ (-1)^{i+1} & 0 \end{pmatrix} \quad (i \ge 1).$$

Set $W_i = x_i M_i$ for each $i \ge 1$. We find

$$W_1 = \begin{pmatrix} 7 & -2 \\ 4 & -1 \end{pmatrix}, \ W_2 = \begin{pmatrix} 12 & 5 \\ 7 & 3 \end{pmatrix}, \ W_{i+2} = W_{i+1}W_i \quad (i \ge 1).$$

So $(W_i)_{i\geq 1}$ is a Fibonacci sequence in $SL_2(\mathbb{Z})$. We extend it to a Fibonacci sequence $(W_i)_{i\geq 0}$ starting with

$$W_0 = W_2 W_1^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

III.2. The morphism associated to ξ

We denote by $\varphi \colon \{a,b\}^* \to \mathsf{SL}_2(Z)$ the morphism of monoids with

$$\varphi(a) = W_1 = \begin{pmatrix} 7 & -2 \\ 4 & -1 \end{pmatrix} \quad \text{and} \quad \varphi(b) = W_0 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Then

$$\varphi(w_i) = W_i \quad (i \geq 1),$$

where $(w_i)_{i\geq 1}=(a, ab, aba, ababa,...)$.

For each non-empty word v in $\{a, b\}^*$, we set

$$M(v) = \begin{cases} M & \text{if } v \text{ ends in b,} \\ {}^t M & \text{if } v \text{ ends in a.} \end{cases}$$

For each $i \geq 1$, we have $M(w_i) = M_i$ and so

$$\varphi(w_i)M(w_i)^{-1}=W_iM_i^{-1}=\mathbf{x}_i$$

is a symmetric matrix.

III.3. The points $\mathbf{x}(v)$

For each non-empty prefix v of $w_{\infty} = abaab \dots$, we denote by

$$\mathbf{x}(v) = \begin{pmatrix} x_0(v) & x_1(v) \\ x_1(v) & x_2(v) \end{pmatrix}$$

the symmetric matrix in $Mat_{2\times 2}(\mathbb{Z})$ which

- has the same first column as $\varphi(v)M(v)^{-1}$ and
- satisfies $|x_1(v)\xi x_2(v)| < 1/2$.

This specifies $x_2(v)$ uniquely as $\xi \notin \mathbb{Q}$.

For the first non-empty prefixes v of $w_{\infty}=abaababa\ldots$, we find

$$\mathbf{x}(a) = \mathbf{x}_1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{x}(ab) = \mathbf{x}_2 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix},$$

$$\mathbf{x}(aba) = \mathbf{x}_3 = \begin{pmatrix} 29 & 17 \\ 17 & 10 \end{pmatrix}, \quad \mathbf{x}(abaa) = \begin{pmatrix} 179 & 105 \\ 105 & 62 \end{pmatrix}.$$

III.4. Recurrence relations

For each integer $\ell \geq 1$, we set $\mathcal{W}_{\ell} = \{ v \in]\epsilon, w_{\infty}[; |v| \in \mathcal{N}_{\ell} \}.$

For $\ell > 3$, we have

$$\mathcal{N}_{\ell} = \{F_{\ell}, F_{\ell+1}, F_{\ell+1} + F_{\ell-1}, F_{\ell+2}, F_{\ell+2} + F_{\ell-2}, \dots\},$$

thus

$$\mathcal{W}_{\ell} = \{w_{\ell}, w_{\ell+1}, w_{\ell+1}w_{\ell-1}, w_{\ell+2}, w_{\ell+2}w_{\ell-2}, \dots\}.$$

Theorem

There exists $\ell_0 \geq 4$ such that, for any $\ell \geq \ell_0$ and any triple of consecutive words u < v < w of \mathcal{W}_ℓ , the points $\mathbf{x}(u)$, $\mathbf{x}(v)$, $\mathbf{x}(w)$ are linearly independent if and only if $v \notin \mathcal{W}_{\ell+1}$. More precisely,

(i) if
$$v \in W_{\ell+1}$$
, then $|v| - |u| = |w| - |v| = F_k$ with $k \in \{\ell - 2, \ell - 1\}$ and

$$\mathbf{x}(w) = t_k \mathbf{x}(v) \pm \mathbf{x}(u)$$
 where $t_k = \operatorname{trace}(W_k)$;

(ii) if
$$v \notin \mathcal{W}_{\ell+1}$$
, then $det(\mathbf{x}(u), \mathbf{x}(v), \mathbf{x}(w)) = \pm 2$.

III.5. The trajectory of $\mathbf{x}(v)$

Proposition

There exists $\rho > 0$ such that, for any $v \in]\epsilon, w_{\infty}[$, we have

- (i) $\log x_0(v) = \rho |v| + \mathcal{O}(1)$,
- (ii) $\log |x_0(v)\xi x_1(v)| = -\rho |v| + \mathcal{O}(1)$,
- (iii) $\log |x_0(v)\xi^2 x_2(v)| = -\rho\alpha(|v|) + \mathcal{O}(1),$

and so

$$L_{\mathbf{x}(\mathbf{v})}(\mathbf{q}) = \rho P_{|\mathbf{v}|}(\rho^{-1}\mathbf{q}) + \mathcal{O}(1) \quad (\mathbf{q} \in \mathbb{R}^2).$$

Sketch of proof.

- We first show the existence of ρ such that (i) holds.
- Then (ii) follows from the fact that $x_1(v)/x_0(v)$ is a convergent of ξ in reduced form, for each $v \in]\epsilon, w_{\infty}[$.
- Finally, (iii) is proved using the recurrence relations.

Graph of $L_{\mathbf{x}(v)}$

III.6. Proof of the main result

Theorem

We have $\mathbf{L}_{\boldsymbol{\xi}}(\mathbf{q}) = \rho \mathbf{P}(\rho^{-1}\mathbf{q}) + \mathcal{O}_{\boldsymbol{\xi}}(1)$ for each $\mathbf{q} \in \mathcal{A}(0)$.

Sketch of proof

- It suffices to show this on $\rho \mathsf{Cell}(y)$ for each $y \in \mathbb{N} \setminus \mathcal{F}$ with $\alpha(y) = F_\ell \geq F_{\ell_0}$.
- We have $Cell(y) = \mathcal{A}(x) \cap \mathcal{B}(y) \cap \mathcal{C}(z)$ with x < y < z consecutive in \mathcal{N}_{ℓ} .
- Write x = |u|, y = |v| and z = |w| for consecutive words u < v < w in \mathcal{W}_{ℓ} . Since $v \notin \mathcal{W}_{\ell+1}$, the points $\mathbf{x}(u)$, $\mathbf{x}(v)$ and $\mathbf{x}(w)$ are linearly independent.
- For $\mathbf{q} = (q_1, q_2) \in \rho \mathsf{Cell}(y)$, we find

$$L_{\mathbf{x}(u)}(\mathbf{q}) + L_{\mathbf{x}(v)}(\mathbf{q}) + L_{\mathbf{x}(w)}(\mathbf{q}) = q_1 + q_2 + \mathcal{O}_{\xi}(1),$$

$$\Rightarrow \ \mathbf{L}_{\boldsymbol{\xi}}(\mathbf{q}) = \Phi(L_{\mathbf{x}(u)}(\mathbf{q}), L_{\mathbf{x}(v)}(\mathbf{q}), L_{\mathbf{x}(w)}(\mathbf{q})) + \mathcal{O}_{\boldsymbol{\xi}}(1) = \rho \mathbf{P}(\rho^{-1}\mathbf{q}) + \mathcal{O}_{\boldsymbol{\xi}}(1).$$

Thank you!

Example of computation

- Write $A \equiv B$ when $A, B \in \mathsf{Mat}_{2 \times 2}(\mathbb{Z})$ have the same first column.
- Then $AM^{-1} \equiv -A^tM^{-1}$ for each $A \in Mat_{2\times 2}(\mathbb{Z})$ (specific to M).

We have
$$w_{\ell+1}w_{\ell-1} = w_{\ell}w_{\ell-1}^2$$
, thus
$$\varphi(w_{\ell+1}w_{\ell-1}) = W_{\ell}W_{\ell-1}^2$$

$$= W_{\ell}(t_{\ell-1}W_{\ell-1} - I) \text{ by Cayley-Hamilton Theorem, }$$

$$= t_{\ell-1}W_{\ell+1} - W_{\ell},$$

$$\Rightarrow \mathbf{x}(w_{\ell+1}w_{\ell-1}) \equiv \varphi(w_{\ell+1}w_{\ell-1})M_{\ell-1}^{-1}$$

$$= t_{\ell-1}W_{\ell+1}M_{\ell+1}^{-1} - W_{\ell}{}^tM_{\ell}^{-1} \equiv t_{\ell-1}\mathbf{x}_{\ell+1} + \mathbf{x}_{\ell} \text{ symmetric !}$$
 and $\|(\xi, -1)(t_{\ell-1}\mathbf{x}_{\ell+1} + \mathbf{x}_{\ell})\| \ll \|\mathbf{x}_{\ell}\|^{-1}$, thus

 $\mathbf{x}(w_{\ell+1}w_{\ell-1}) = t_{\ell-1}\mathbf{x}_{\ell+1} + \mathbf{x}_{\ell} \text{ if } \ell \gg 1.$