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1.1 Exponents of approximation

Fix n ≥ 2 and a non-zero ξ ∈ Rn. Using Euclidean norms, define:

ω(ξ) = supremum of all ω for which the conditions

‖ x‖ ≤ Q and | x · ξ | ≤ Q−ω

have a non-zero solution x ∈ Zn for arbitrarily large Q’s.

ω̂(ξ) = same but for each large enough Q.

λ(ξ) = supremum of all λ for which the conditions

‖ x‖ ≤ Q and ‖ x ∧ ξ‖ ≤ Q−λ

have a non-zero solution x ∈ Zn for arbitrarily large Q’s.

λ̂(ξ) = same but for each large enough Q.

Here: | x · ξ | = ‖ x‖‖ ξ‖ cos(θ) and ‖ x ∧ ξ‖ = ‖ x‖‖ ξ‖ sin(θ)

where θ ∈ [0, π/2] is the angle between the lines spanned by x and ξ.
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1.2 Some transference inequalities

Suppose that ξ ∈ Rn has linearly independent coordinates over Q.

Dirichlet (1844):
1

n − 1
≤ λ̂(ξ) ≤ λ(ξ) and n − 1 ≤ ω̂(ξ) ≤ ω(ξ)

Khintchine (1926-28):
ω(ξ)

(n − 2)ω(ξ) + n − 1
≤ λ(ξ) ≤ ω(ξ)− n + 2

n − 1

Together with n − 1 ≤ ω(ξ) ≤ ∞, describes the spectrum of (λ, ω).

Jarńık (1938): For n = 3, we have
1

λ̂(ξ)
− 1 =

1

ω̂(ξ)− 1

Together with 2 ≤ ω̂(ξ) ≤ ∞, describes the spectrum of (λ̂, ω̂).

German (2012): Spectrum of (λ̂, ω̂) for any n.

Marnat-Moshchevitin (2020): Spectra of the pairs (λ̂, λ) and (ω̂, ω).
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2.1 Absolute Weil height

K = a fixed number field,
d = [K : Q] its degree,
Kv = completion of K at a place v,
dv = [Kv : Qv] its local degree,
w = a fixed place of K .

Each | |v is normalized to extend one of the usual absolute values on Q.

Then the product formula
∏

v

|a|dv
v = 1 holds for each non-zero a ∈ K .

The (absolute) Weil height of a non-zero point x = (x1, . . . , xn) ∈ Kn is

H(x) =
∏

v

‖ x‖dv/dv where ‖ x‖v =

{(∑
|xi |2v

)1/2
if v | ∞,

max |xi |v else.

H(x) ≥ 1 depends only on the class of x in the projective space P(Kn).
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2.2 Exponents of approximation over K

Fix n ≥ 2 and a non-zero ξ ∈ Kn
w . Define:

ω(ξ,K ,w) = supremum of all ω for which the conditions

H(x) ≤ Q and Dξ(x) := | x · ξ |dw/d
w

∏
v 6=w

‖ x‖dv/d
v ≤ Q−ω

have a non-zero solution x ∈ Kn for arbitrarily large Q’s.

ω̂(ξ,K ,w) = same but for each large enough Q.

λ(ξ,K ,w) = supremum of all λ for which the conditions

H(x) ≤ Q and D∗ξ(x) := ‖ x ∧ ξ‖dw/d
w

∏
v 6=w

‖ x‖dv/d
v ≤ Q−λ

have a non-zero solution x ∈ Kn for arbitrarily large Q’s.

λ̂(ξ,K ,w) = same but for each large enough Q.

Dξ(x) and D∗ξ(x) depend only on the class of x in P(Kn).

When ξ ∈ Rn, we get the usual exponents ω(ξ,Q,∞) = ω(ξ), etc.
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2.3 A general result of Pierre Bel

Theorem (P. Bel, 2013)

The supremum of all numbers

λ̂
(

(1, ξ, ξ2),K ,w
)

with ξ ∈ Kw having [K (ξ) : K ] > 2 (possibly transcendental over K ) is

1/γ ' 0.618 > 1/2

where γ = (1 +
√

5)/2 denotes the golden ratio.

Previous cases known:

K = Q and w =∞ : Davenport & Schmidt 1969 and R. 2003.

K = Q and w = p : Teulié 2002, Zelo 2008 and Bugeaud 2010.



3.1 A parametric family of minima

Fix again a non-zero ξ ∈ Kn
w .

For each j = 1, . . . , n and each q ≥ 0, define

Lξ,j(q) = smallest t ≥ 0 for which the conditions

H(x) ≤ et and Dξ(x) ≤ et−q

admit j solutions x ∈ Kn that are linearly independent over K .

Then, form the map

Lξ : [0,∞) −→ Rn

q 7−→ (Lξ,1(q), . . . , Lξ,n(q))



3.2 Relationship with exponents of approximation

Lemma

Write ω̂(ξ) for ω̂(ξ,K ,w) and similarly for the three other exponents.
Then, we have

lim inf
q→∞

Lξ,1(q)

q
=

1

ω(ξ) + 1
, lim sup

q→∞

Lξ,1(q)

q
=

1

ω̂(ξ) + 1
,

lim inf
q→∞

Lξ,n(q)

q
=

λ(ξ)

λ(ξ) + 1
, lim sup

q→∞

Lξ,n(q)

q
=

λ̂(ξ)

λ̂(ξ) + 1
.

This follows from the definitions as observed by Schmidt and Summerer in
2013 for the case K = Q and Kw = R.

Corollary

Knowing Lξ : [0,∞)→ Rn up to bounded error is enough to compute the
four exponents.



3.3 Proper n-systems

A proper n-system on [0,∞) is a continous map

P : [0,∞) −→ Rn

q 7−→ (P1(q), . . . ,Pn(q))

with the following properties:

(S1) 0 ≤ P1(q) ≤ · · · ≤ Pn(q) and P1(q) + · · ·+Pn(q) = q for each q ≥ 0;

(S2) there is an unbounded sequence 0 = q0 < q1 < q2 < · · · in [0,∞)
such that, over each subinterval [qi−1, qi ] with i ≥ 1, the union of the
graphs of P1, . . . ,Pn decomposes into full horizontal line segments
and one full line segment Γi of slope 1;

(S3) for each i ≥ 1, the line segment Γi ends strictly above the point
where Γi+1 starts (on the vertical line q = qi );

(S4) P1 is unbounded.
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Illustration for n = 6

qi−1 =
∑
j

Pj(qi−1) qi =
∑
j

Pj(qi )

P1

P2

P3

P4

P5

P6

Γi−1

Γi

Γi+1
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3.4 First main result

Theorem A

There is a constant c = c(K ,w, n) > 0 with the following property. For
each point ξ ∈ Kn

w with linearly independent coordinates over K , there is a
proper n-system P : [0,∞)→ Rn such that

sup
q≥0
‖Lξ(q)− P(q)‖ ≤ c ,

and conversely.

In other words, the set of maps Lξ attached to points ξ ∈ Kn
w with linearly

independent coordinates over K coincides with the set of proper n-systems
modulo the additive group of bounded functions from [0,∞) to Rn.

When K = Q and Kw = R, this is due to Schmidt and Summerer (2013)
and R. (2015).



Corollary

The set of quadruples (λ̂(ξ,K ,w), λ(ξ,K ,w), ω̂(ξ,K ,w), ω(ξ,K ,w))
attached to points ξ ∈ Kn

w with K -linearly independent coordinates is the
same for any choice of K and w

Proof.

This is the set of points(
¯
ϕ
n
(P)

1−
¯
ϕ
n
(P)

,
ϕ̄n(P)

1− ϕ̄n(P)
,

1

ϕ̄1(P)
− 1,

1

¯
ϕ

1
(P)
− 1

)

where P = (P1, . . . ,Pn) runs through all proper n-systems, using Schmidt
and Summerer’s notation

¯
ϕ
j
(P) = lim inf

q→∞

Pj(q)

q
and ϕ̄j(P) = lim sup

q→∞

Pj(q)

q
(1 ≤ j ≤ n).



3.5 Example

For any ξ ∈ K 3
w with K -linearly independent coordinates, we have Jarńık’s

identity
1

λ̂(ξ,K ,w)
− 1 =

1

ω̂(ξ,K ,w)− 1
.

Applying this to the result of Bel, we deduce:

Corollary

The supremum of all numbers

ω̂
(

(1, ξ, ξ2),K ,w
)

with ξ ∈ Kw having [K (ξ) : K ] > 2 (possibly transcendental over K ) is

γ2 ' 2.618 > 2

where γ = (1 +
√

5)/2 denotes the golden ratio.



4.1 Second main result

Suppose that the place w of K has relative degree one over Q, namely
that Kw = Q` for the place ` of Q induced by w.

Choose a basis α = (α1, . . . , αd) of K over Q and a point ξ ∈ Kn
w with

linearly independent coordinates over K . Define

Ξ = α⊗ ξ = (α1ξ, . . . , αdξ) ∈ Knd
w = Qnd

` .

Then Ξ has linearly independent coordinates over Q and the maps Lξ and
LΞ are linked as follows.

Theorem B

With the above notation and hypotheses, we have

sup
q≥0
|LΞ,d(i−1)+j(dq)− Lξ,i (q)| <∞,

for any i = 1, . . . , n and j = 1, . . . , d .
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4.2 Exponents of approximation under extension of scalars

We keep the same hypotheses.

Corollary

Writing ω̂(ξ) for ω̂(ξ,K ,w), ω̂(Ξ) for ω̂(Ξ,Q, `), and similarly for the
other exponents, we have

d
(
ω̂(ξ) + 1

)
= ω̂(Ξ) + 1, d

(
ω(ξ) + 1

)
= ω(Ξ) + 1,

d
( 1

λ̂(ξ)
+ 1
)

=
1

λ̂(Ξ)
+ 1, d

( 1

λ(ξ)
+ 1
)

=
1

λ(Ξ)
+ 1.

When n = 3, Jarńık’s identity applies to ξ (over K ), and so we obtain

1

λ̂(Ξ)
− (2d − 1) =

d2

ω̂(Ξ)− (2d − 1)



4.3 Last main result

We combine Theorem B with the result of Bel.

Theorem C

When Kw = Q`, we have

sup
{
λ̂
(
(α, ξα, ξ2α),Q, `

)
; ξ ∈ Q` \Q

}
=

1

dγ2 − 1
>

1

3d − 1
.

Example: K = Q(
√

2) ⊂ R and α = (1,
√

2)

sup
{
λ̂
(
1,
√

2, ξ,
√

2ξ, ξ2,
√

2ξ2
)

; ξ ∈ R \Q
}

=
1

2γ2 − 1
' 0.236 >

1

5
.

A question

What is sup
{
λ̂
(
1,
√

2, ξ, ξ2
)

; ξ ∈ R \Q
}

? Is it > 1/3?

Note that for λ̂(1,
√

2, ξ), it is 1/γ ' 0.618 > 1/2 by (R. 2013).



4.3 Last main result

We combine Theorem B with the result of Bel.

Theorem C

When Kw = Q`, we have

sup
{
λ̂
(
(α, ξα, ξ2α),Q, `

)
; ξ ∈ Q` \Q

}
=

1

dγ2 − 1
>

1

3d − 1
.

Example: K = Q(
√

2) ⊂ R and α = (1,
√

2)

sup
{
λ̂
(
1,
√

2, ξ,
√

2ξ, ξ2,
√

2ξ2
)

; ξ ∈ R \Q
}

=
1

2γ2 − 1
' 0.236 >

1

5
.

A question

What is sup
{
λ̂
(
1,
√

2, ξ, ξ2
)

; ξ ∈ R \Q
}

? Is it > 1/3?

Note that for λ̂(1,
√

2, ξ), it is 1/γ ' 0.618 > 1/2 by (R. 2013).



5.1 Highlights of the proof of Theorem A

Fix some j ∈ {1, . . . , n} and some q ≥ 0.

Lξ,j(q) is defined as the smallest t ≥ 0 for which the conditions

H(x) ≤ et and Dξ(x) ≤ et−q

admit j solutions x ∈ Kn that are linearly independent over K .

When K = Q and Kw = R, we may choose x ∈ Zn primitive, and so

Lξ,j(q) is the smallest t ≥ 0 for which the conditions

‖ x‖ ≤ et and |x · ξ| ≤ et−q

admit at least j linearly independent solutions x ∈ Zn.

So, Lξ,j(q) = log λj(q) where λj(q) stands for the j-th minimum of
the convex body

Cξ(q) =
{
x ∈ Rn ; ‖ x‖ ≤ 1 and |x · ξ| ≤ e−q

}
.
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In general, Lξ,j(q) = log λj(q) +O(1) where λj(q) denotes the j-th
minimum of the adelic convex body

Cξ(q) =
{

(xv) ∈ Kn
A ; |xw · ξ|w ≤ e−q and ‖ xv‖v ≤ 1 for all v

}
.

1. From a point ξ ∈ Kn
w to an n-system P:

We follow Schmidt and Summerer (2013) to construct an
(n, γ)-system P̃ which approximates Lξ;

then use R. (2015) to approximate P̃ by an n-system P.

Tools

Case K = Q ⊂ Kw = R General case

minima of Cξ(q) ⊂ Rn w. r. to Zn minima of Cξ(q) ⊂ Kn
A w. r. to Kn
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In general, Lξ,j(q) = log λj(q) +O(1) where λj(q) denotes the j-th
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2. From an n-system P to a point ξ ∈ Kn
w:

We replace Z by the ring of S-integers OS of K where S consists of w
and all archimedean places of K .

As in R. (2015) we construct a sequence of bases x(i) = (x
(i)
1 , . . . , x

(i)
n )

of On
S that will realize up to a bounded factor the successive minima

of Cξ(q) for q ∈ [qi , qi+1] as prescribed by P.

We move from a basis to the next one by changing one point. We ask

(x
(i)
1 , . . . , x̂

(i)
`i
, . . . , x

(i)
n ) = (x

(i−1)
1 , . . . , x̂

(i−1)
ki−1

, . . . , x
(i−1)
n )

with ki−1 ≤ `i , ki < `i and

x
(i)
`i

= εix
(i−1)
ki−1

+

`i−1∑
j=1

ajx
(i)
j

with εi ∈ O∗S and a1, . . . , a`i−1 ∈ OS chosen so that

(x
(i)
1 , . . . , x̂

(i)
ki
, . . . , x

(i)
`i

)

is almost orthogonal at all archimedean places of K .
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5.2 Highlights of the proof of Theorem B

This is inspired by the alternative proof due to Jeff Thunder (2002) of
the adelic version of Minkowski’s theorem due to MacFeat and
Bombieri–Vaaler.

His proof is based on the usual Minkowski’s theorem for the minima
of a convex body in Rn with respect to Zn.

Given ξ ∈ Kn
w = Qn

` and a basis α = (α1, . . . , αd) of K over Q, this
principle of J. Thunder allows us to relate the minima of Cξ(q) with
respect to Kn to those of CΞ(q) with respect to Qdn where

Ξ = α⊗ ξ = (α1ξ, . . . , αdξ) ∈ Qdn
` .



Thank you!


