Parametric geometry of numbers over a number field and extension of scalars

> Damien Roy (University of Ottawa) joint with Anthony Poëls (Nihon University)
paper: https://arxiv.org/abs/2202.08642
slides available at: https://mysite.science.uottawa.ca/droy//

Diophantische Approximationen (online presentation)

Mathematisches Forschungsinstitut Oberwolfach, April 18-22, 2022

1.1 Exponents of approximation

Fix $n \geq 2$ and a non-zero $\boldsymbol{\xi} \in \mathbb{R}^{n}$. Using Euclidean norms, define:
$\omega(\boldsymbol{\xi})=$ supremum of all ω for which the conditions

$$
\|\mathbf{x}\| \leq Q \quad \text { and } \quad|\mathbf{x} \cdot \boldsymbol{\xi}| \leq Q^{-\omega}
$$

have a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n}$ for arbitrarily large Q 's.
$\widehat{\omega}(\boldsymbol{\xi})=$ same but for each large enough Q.

1.1 Exponents of approximation

Fix $n \geq 2$ and a non-zero $\boldsymbol{\xi} \in \mathbb{R}^{n}$. Using Euclidean norms, define:
$\omega(\boldsymbol{\xi})=$ supremum of all ω for which the conditions

$$
\|\mathbf{x}\| \leq Q \quad \text { and } \quad|\mathbf{x} \cdot \boldsymbol{\xi}| \leq Q^{-\omega}
$$

have a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n}$ for arbitrarily large Q 's.
$\widehat{\omega}(\boldsymbol{\xi})=$ same but for each large enough Q.
$\lambda(\boldsymbol{\xi})=$ supremum of all λ for which the conditions

$$
\|\mathbf{x}\| \leq Q \quad \text { and } \quad\|\mathbf{x} \wedge \boldsymbol{\xi}\| \leq Q^{-\lambda}
$$

have a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n}$ for arbitrarily large Q 's.
$\widehat{\lambda}(\boldsymbol{\xi})=$ same but for each large enough Q.
Here: $\quad|\mathbf{x} \cdot \boldsymbol{\xi}|=\|\mathbf{x}\|\|\boldsymbol{\xi}\| \cos (\theta)$ and $\|\mathbf{x} \wedge \boldsymbol{\xi}\|=\|\mathbf{x}\|\|\boldsymbol{\xi}\| \sin (\theta)$
where $\theta \in[0, \pi / 2]$ is the angle between the lines spanned by \mathbf{x} and $\boldsymbol{\xi}$.

1.2 Some transference inequalities

Suppose that $\boldsymbol{\xi} \in \mathbb{R}^{n}$ has linearly independent coordinates over \mathbb{Q}.

- Dirichlet (1844): $\frac{1}{n-1} \leq \widehat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi})$ and $n-1 \leq \widehat{\omega}(\boldsymbol{\xi}) \leq \omega(\boldsymbol{\xi})$

1.2 Some transference inequalities

Suppose that $\boldsymbol{\xi} \in \mathbb{R}^{n}$ has linearly independent coordinates over \mathbb{Q}.

- Dirichlet (1844): $\frac{1}{n-1} \leq \widehat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi})$ and $n-1 \leq \widehat{\omega}(\boldsymbol{\xi}) \leq \omega(\boldsymbol{\xi})$
- Khintchine (1926-28): $\frac{\omega(\boldsymbol{\xi})}{(n-2) \omega(\boldsymbol{\xi})+n-1} \leq \lambda(\boldsymbol{\xi}) \leq \frac{\omega(\boldsymbol{\xi})-n+2}{n-1}$

Together with $n-1 \leq \omega(\boldsymbol{\xi}) \leq \infty$, describes the spectrum of (λ, ω).

1.2 Some transference inequalities

Suppose that $\boldsymbol{\xi} \in \mathbb{R}^{n}$ has linearly independent coordinates over \mathbb{Q}.

- Dirichlet (1844): $\frac{1}{n-1} \leq \widehat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi})$ and $n-1 \leq \widehat{\omega}(\boldsymbol{\xi}) \leq \omega(\boldsymbol{\xi})$
- Khintchine (1926-28): $\frac{\omega(\boldsymbol{\xi})}{(n-2) \omega(\boldsymbol{\xi})+n-1} \leq \lambda(\boldsymbol{\xi}) \leq \frac{\omega(\boldsymbol{\xi})-n+2}{n-1}$

Together with $n-1 \leq \omega(\boldsymbol{\xi}) \leq \infty$, describes the spectrum of (λ, ω).

- Jarník (1938): For $n=3$, we have $\frac{1}{\widehat{\lambda}(\xi)}-1=\frac{1}{\widehat{\omega}(\boldsymbol{\xi})-1}$

Together with $2 \leq \widehat{\omega} \boldsymbol{\xi}) \leq \infty$, describes the spectrum of $(\widehat{\lambda}, \widehat{\omega})$.

1.2 Some transference inequalities

Suppose that $\boldsymbol{\xi} \in \mathbb{R}^{n}$ has linearly independent coordinates over \mathbb{Q}.

- Dirichlet (1844): $\frac{1}{n-1} \leq \widehat{\lambda}(\boldsymbol{\xi}) \leq \lambda(\boldsymbol{\xi})$ and $n-1 \leq \widehat{\omega}(\boldsymbol{\xi}) \leq \omega(\boldsymbol{\xi})$
- Khintchine (1926-28): $\frac{\omega(\boldsymbol{\xi})}{(n-2) \omega(\boldsymbol{\xi})+n-1} \leq \lambda(\boldsymbol{\xi}) \leq \frac{\omega(\boldsymbol{\xi})-n+2}{n-1}$

Together with $n-1 \leq \omega(\boldsymbol{\xi}) \leq \infty$, describes the spectrum of (λ, ω).

- Jarník (1938): For $n=3$, we have $\frac{1}{\widehat{\lambda}(\boldsymbol{\xi})}-1=\frac{1}{\widehat{\omega}(\boldsymbol{\xi})-1}$

Together with $2 \leq \widehat{\omega}(\boldsymbol{\xi}) \leq \infty$, describes the spectrum of $(\widehat{\lambda}, \widehat{\omega})$.

- German (2012): Spectrum of $(\widehat{\lambda}, \widehat{\omega})$ for any n.
- Marnat-Moshchevitin (2020): Spectra of the pairs $(\widehat{\lambda}, \lambda)$ and $(\widehat{\omega}, \omega)$.

2.1 Absolute Weil height

$K=a$ fixed number field,
$d=[K: \mathbb{Q}]$ its degree,
$K_{v}=$ completion of K at a place v,
$d_{v}=\left[K_{v}: \mathbb{Q}_{v}\right]$ its local degree,
$w=$ a fixed place of K.
Each | $\left.\right|_{v}$ is normalized to extend one of the usual absolute values on \mathbb{Q}.
Then the product formula $\prod_{v}|a|_{v}^{d_{v}}=1$ holds for each non-zero $a \in K$.

2.1 Absolute Weil height

$K=a$ fixed number field,
$d=[K: \mathbb{Q}]$ its degree,
$K_{v}=$ completion of K at a place v,
$d_{v}=\left[K_{v}: \mathbb{Q}_{v}\right]$ its local degree,
$w=$ a fixed place of K.
Each | $\left.\right|_{v}$ is normalized to extend one of the usual absolute values on \mathbb{Q}.
Then the product formula $\prod_{v}|a|_{v}^{d_{v}}=1$ holds for each non-zero $a \in K$.
The (absolute) Weil height of a non-zero point $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ is

$$
H(\mathbf{x})=\prod_{v}\|\mathbf{x}\|_{v}^{d_{v} / d} \quad \text { where }\|\mathbf{x}\|_{v}= \begin{cases}\left(\sum\left|x_{i}\right|_{v}\right)^{1 / 2} & \text { if } v \mid \infty, \\ \max \left|x_{i}\right|_{v} & \text { else. }\end{cases}
$$

$H(\mathbf{x}) \geq 1$ depends only on the class of \mathbf{x} in the projective space $\mathbb{P}\left(K^{n}\right)$.

2.2 Exponents of approximation over K

Fix $n \geq 2$ and a non-zero $\boldsymbol{\xi} \in K_{w}^{n}$. Define:
$\omega(\boldsymbol{\xi}, K, w)=$ supremum of all ω for which the conditions

$$
H(\mathbf{x}) \leq Q \quad \text { and } \quad D_{\xi}(\mathbf{x}):=|\mathbf{x} \cdot \boldsymbol{\xi}|_{w}^{d_{w} / d} \prod\|\mathbf{x}\|_{v}^{d_{v} / d} \leq Q^{-\omega}
$$

$$
v \neq w
$$

have a non-zero solution $\mathbf{x} \in K^{n}$ for arbitrarily large Q 's.
$\widehat{\omega}(\boldsymbol{\xi}, K, w)=$ same but for each large enough Q.

2.2 Exponents of approximation over K

Fix $n \geq 2$ and a non-zero $\boldsymbol{\xi} \in K_{w}^{n}$. Define:
$\omega(\boldsymbol{\xi}, K, w)=$ supremum of all ω for which the conditions

$$
H(\mathbf{x}) \leq Q \quad \text { and } \quad D_{\xi}(\mathbf{x}):=|\mathbf{x} \cdot \boldsymbol{\xi}|_{w}^{d_{w} / d} \prod_{v \neq w}\|\mathbf{x}\|_{v}^{d_{v} / d} \leq Q^{-\omega}
$$

have a non-zero solution $\mathbf{x} \in K^{n}$ for arbitrarily large Q 's.
$\widehat{\omega}(\xi, K, w)=$ same but for each large enough Q.
$\lambda(\boldsymbol{\xi}, K, w)=$ supremum of all λ for which the conditions

$$
H(\mathbf{x}) \leq Q \quad \text { and } \quad D_{\xi}^{*}(\mathbf{x}):=\|\mathbf{x} \wedge \boldsymbol{\xi}\|_{w}^{d_{w} / d} \prod_{v \neq w}\|\mathbf{x}\|_{v}^{d_{v} / d} \leq Q^{-\lambda}
$$

have a non-zero solution $\mathbf{x} \in K^{n}$ for arbitrarily large Q 's.
$\widehat{\lambda}(\boldsymbol{\xi}, K, w)=$ same but for each large enough Q.

- $D_{\xi}(\mathbf{x})$ and $D_{\xi}^{*}(\mathbf{x})$ depend only on the class of \mathbf{x} in $\mathbb{P}\left(K^{n}\right)$.
- When $\boldsymbol{\xi} \in \mathbb{R}^{n}$, we get the usual exponents $\omega(\boldsymbol{\xi}, \mathbb{Q}, \infty)=\omega(\boldsymbol{\xi})$, etc.

2.3 A general result of Pierre Bel

Theorem (P. Bel, 2013)

The supremum of all numbers

$$
\widehat{\lambda}\left(\left(1, \xi, \xi^{2}\right), K, w\right)
$$

with $\xi \in K_{w}$ having $[K(\xi): K]>2$ (possibly transcendental over K) is

$$
1 / \gamma \simeq 0.618>1 / 2
$$

where $\gamma=(1+\sqrt{5}) / 2$ denotes the golden ratio.

Previous cases known:

- $K=\mathbb{Q}$ and $w=\infty$: Davenport \& Schmidt 1969 and R. 2003.
- $K=\mathbb{Q}$ and $w=p$: Teulié 2002, Zelo 2008 and Bugeaud 2010.

3.1 A parametric family of minima

Fix again a non-zero $\boldsymbol{\xi} \in K_{w}^{n}$.

For each $j=1, \ldots, n$ and each $q \geq 0$, define
$L_{\xi, j}(q)=$ smallest $t \geq 0$ for which the conditions

$$
H(\mathbf{x}) \leq e^{t} \quad \text { and } \quad D_{\xi}(\mathbf{x}) \leq e^{t-q}
$$

admit j solutions $\mathbf{x} \in K^{n}$ that are linearly independent over K.
Then, form the map

$$
\begin{aligned}
\mathrm{L}_{\xi}:[0, \infty) & \longrightarrow \mathbb{R}^{n} \\
q & \longmapsto\left(L_{\xi, 1}(q), \ldots, L_{\xi, n}(q)\right)
\end{aligned}
$$

3.2 Relationship with exponents of approximation

Lemma

Write $\widehat{\omega}(\boldsymbol{\xi})$ for $\widehat{\omega}(\boldsymbol{\xi}, K, w)$ and similarly for the three other exponents.
Then, we have

$$
\begin{array}{ll}
\liminf _{q \rightarrow \infty} \frac{L_{\xi, 1}(q)}{q}=\frac{1}{\omega(\xi)+1}, & \underset{q \rightarrow \infty}{ } \frac{\limsup \frac{L_{\xi, 1}(q)}{q}=\frac{1}{\widehat{\omega}(\xi)+1},}{\liminf _{q \rightarrow \infty} \frac{L_{\xi, n}(q)}{q}=\frac{\lambda(\xi)}{\lambda(\xi)+1},} \quad \\
\limsup _{q \rightarrow \infty} \frac{L_{\xi, n}(q)}{q}=\frac{\widehat{\lambda}(\xi)}{\widehat{\lambda}(\xi)+1} .
\end{array}
$$

This follows from the definitions as observed by Schmidt and Summerer in 2013 for the case $K=\mathbb{Q}$ and $K_{w}=\mathbb{R}$.

Corollary

Knowing $\mathbf{L}_{\xi}:[0, \infty) \rightarrow \mathbb{R}^{n}$ up to bounded error is enough to compute the four exponents.

3.3 Proper n-systems

A proper n-system on $[0, \infty)$ is a continous map

$$
\begin{aligned}
\mathbf{P :}[0, \infty) & \longrightarrow \mathbb{R}^{n} \\
q & \longmapsto\left(P_{1}(q), \ldots, P_{n}(q)\right)
\end{aligned}
$$

with the following properties:
(S1) $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq 0$;

3.3 Proper n-systems

A proper n-system on $[0, \infty)$ is a continous map

$$
\begin{aligned}
\mathbf{P :}[0, \infty) & \longrightarrow \mathbb{R}^{n} \\
q & \longmapsto\left(P_{1}(q), \ldots, P_{n}(q)\right)
\end{aligned}
$$

with the following properties:
(S1) $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq 0$;
(S2) there is an unbounded sequence $0=q_{0}<q_{1}<q_{2}<\cdots$ in $[0, \infty)$ such that, over each subinterval $\left[q_{i-1}, q_{i}\right]$ with $i \geq 1$, the union of the graphs of P_{1}, \ldots, P_{n} decomposes into full horizontal line segments and one full line segment Γ_{i} of slope 1 ;

3.3 Proper n-systems

A proper n-system on $[0, \infty)$ is a continous map

$$
\begin{aligned}
\mathbf{P}:[0, \infty) & \longrightarrow \mathbb{R}^{n} \\
q & \longmapsto\left(P_{1}(q), \ldots, P_{n}(q)\right)
\end{aligned}
$$

with the following properties:
(S1) $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq 0$;
(S2) there is an unbounded sequence $0=q_{0}<q_{1}<q_{2}<\cdots$ in $[0, \infty)$ such that, over each subinterval $\left[q_{i-1}, q_{i}\right]$ with $i \geq 1$, the union of the graphs of P_{1}, \ldots, P_{n} decomposes into full horizontal line segments and one full line segment Γ_{i} of slope 1 ;
(S3) for each $i \geq 1$, the line segment Γ_{i} ends strictly above the point where Γ_{i+1} starts (on the vertical line $q=q_{i}$);

3.3 Proper n-systems

A proper n-system on $[0, \infty)$ is a continous map

$$
\begin{aligned}
\mathbf{P}:[0, \infty) & \longrightarrow \mathbb{R}^{n} \\
q & \longmapsto\left(P_{1}(q), \ldots, P_{n}(q)\right)
\end{aligned}
$$

with the following properties:
(S1) $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq 0$;
(S2) there is an unbounded sequence $0=q_{0}<q_{1}<q_{2}<\cdots$ in $[0, \infty)$ such that, over each subinterval $\left[q_{i-1}, q_{i}\right]$ with $i \geq 1$, the union of the graphs of P_{1}, \ldots, P_{n} decomposes into full horizontal line segments and one full line segment Γ_{i} of slope 1 ;
(S3) for each $i \geq 1$, the line segment Γ_{i} ends strictly above the point where Γ_{i+1} starts (on the vertical line $q=q_{i}$);
(S4) P_{1} is unbounded.

Illustration for $n=6$

3.4 First main result

Theorem A

There is a constant $c=c(K, w, n)>0$ with the following property. For each point $\boldsymbol{\xi} \in K_{w}^{n}$ with linearly independent coordinates over K, there is a proper n-system $\mathbf{P}:[0, \infty) \rightarrow \mathbb{R}^{n}$ such that

$$
\sup _{q \geq 0}\left\|\mathbf{L}_{\boldsymbol{\xi}}(q)-\mathbf{P}(q)\right\| \leq c
$$

and conversely.

In other words, the set of maps $\mathbf{L}_{\boldsymbol{\xi}}$ attached to points $\boldsymbol{\xi} \in K_{w}^{n}$ with linearly independent coordinates over K coincides with the set of proper n-systems modulo the additive group of bounded functions from $[0, \infty)$ to \mathbb{R}^{n}.

When $K=\mathbb{Q}$ and $K_{w}=\mathbb{R}$, this is due to Schmidt and Summerer (2013) and R. (2015).

Corollary

The set of quadruples $(\widehat{\lambda}(\boldsymbol{\xi}, K, w), \lambda(\boldsymbol{\xi}, K, w), \widehat{\omega}(\boldsymbol{\xi}, K, w), \omega(\boldsymbol{\xi}, K, w))$ attached to points $\boldsymbol{\xi} \in K_{w}^{n}$ with K-linearly independent coordinates is the same for any choice of K and w

Proof.

This is the set of points

$$
\left(\frac{\underline{\varphi}_{n}(\mathbf{P})}{1-\underline{\varphi}_{n}(\mathbf{P})}, \frac{\bar{\varphi}_{n}(\mathbf{P})}{1-\bar{\varphi}_{n}(\mathbf{P})}, \frac{1}{\bar{\varphi}_{1}(\mathbf{P})}-1, \frac{1}{\underline{\varphi}_{1}(\mathbf{P})}-1\right)
$$

where $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ runs through all proper n-systems, using Schmidt and Summerer's notation

$$
\underline{\varphi}_{j}(\mathbf{P})=\liminf _{q \rightarrow \infty} \frac{P_{j}(q)}{q} \quad \text { and } \quad \bar{\varphi}_{j}(\mathbf{P})=\underset{q \rightarrow \infty}{\limsup } \frac{P_{j}(q)}{q} \quad(1 \leq j \leq n) . \square
$$

3.5 Example

For any $\boldsymbol{\xi} \in K_{w}^{3}$ with K-linearly independent coordinates, we have Jarník's identity

$$
\frac{1}{\widehat{\lambda}(\boldsymbol{\xi}, K, w)}-1=\frac{1}{\widehat{\omega}(\boldsymbol{\xi}, K, w)-1} .
$$

Applying this to the result of Bel, we deduce:

Corollary

The supremum of all numbers

$$
\widehat{\omega}\left(\left(1, \xi, \xi^{2}\right), K, w\right)
$$

with $\xi \in K_{w}$ having $[K(\xi): K]>2$ (possibly transcendental over K) is

$$
\gamma^{2} \simeq 2.618>2
$$

where $\gamma=(1+\sqrt{5}) / 2$ denotes the golden ratio.

4.1 Second main result

Suppose that the place w of K has relative degree one over \mathbb{Q}, namely that $K_{w}=\mathbb{Q}_{\ell}$ for the place ℓ of \mathbb{Q} induced by w.

Choose a basis $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ of K over \mathbb{Q} and a point $\boldsymbol{\xi} \in K_{w}^{n}$ with linearly independent coordinates over K. Define

$$
\equiv=\boldsymbol{\alpha} \otimes \boldsymbol{\xi}=\left(\alpha_{1} \boldsymbol{\xi}, \ldots, \alpha_{d} \boldsymbol{\xi}\right) \in K_{w}^{n d}=\mathbb{Q}_{\ell}^{n d}
$$

4.1 Second main result

Suppose that the place w of K has relative degree one over \mathbb{Q}, namely that $K_{w}=\mathbb{Q}_{\ell}$ for the place ℓ of \mathbb{Q} induced by w.

Choose a basis $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ of K over \mathbb{Q} and a point $\boldsymbol{\xi} \in K_{w}^{n}$ with linearly independent coordinates over K. Define

$$
\equiv=\boldsymbol{\alpha} \otimes \boldsymbol{\xi}=\left(\alpha_{1} \boldsymbol{\xi}, \ldots, \alpha_{d} \boldsymbol{\xi}\right) \in K_{w}^{n d}=\mathbb{Q}_{\ell}^{n d}
$$

Then \equiv has linearly independent coordinates over \mathbb{Q} and the maps $\mathbf{L}_{\boldsymbol{\xi}}$ and \mathbf{L}_{\equiv} are linked as follows.

Theorem B

With the above notation and hypotheses, we have

$$
\sup _{q \geq 0}\left|L_{\equiv, d(i-1)+j}(d q)-L_{\xi, i}(q)\right|<\infty,
$$

for any $i=1, \ldots, n$ and $j=1, \ldots, d$.

4.2 Exponents of approximation under extension of scalars

We keep the same hypotheses.

Corollary

Writing $\widehat{\omega}(\boldsymbol{\xi})$ for $\widehat{\omega}(\boldsymbol{\xi}, K, w), \widehat{\omega}(\equiv)$ for $\widehat{\omega}(\Xi, \mathbb{Q}, \ell)$, and similarly for the other exponents, we have

$$
\begin{array}{ll}
d(\widehat{\omega}(\boldsymbol{\xi})+1)=\widehat{\omega}(\equiv)+1, & d(\omega(\boldsymbol{\xi})+1)=\omega(\equiv)+1, \\
d\left(\frac{1}{\hat{\lambda}(\boldsymbol{\xi})}+1\right)=\frac{1}{\widehat{\lambda}(\equiv)}+1, & d\left(\frac{1}{\lambda(\boldsymbol{\xi})}+1\right)=\frac{1}{\lambda(\equiv)}+1 .
\end{array}
$$

When $n=3$, Jarník's identity applies to ξ (over K), and so we obtain

$$
\frac{1}{\hat{\lambda}(\equiv)}-(2 d-1)=\frac{d^{2}}{\hat{\omega}(\equiv)-(2 d-1)}
$$

4.3 Last main result

We combine Theorem B with the result of Bel.
Theorem C
When $K_{w}=\mathbb{Q}_{\ell}$, we have

$$
\sup \left\{\widehat{\lambda}\left(\left(\boldsymbol{\alpha}, \xi \boldsymbol{\alpha}, \xi^{2} \boldsymbol{\alpha}\right), \mathbb{Q}, \ell\right) ; \xi \in \mathbb{Q}_{\ell} \backslash \overline{\mathbb{Q}}\right\}=\frac{1}{d \gamma^{2}-1}>\frac{1}{3 d-1}
$$

Example: $K=\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $\boldsymbol{\alpha}=(1, \sqrt{2})$

$$
\sup \left\{\widehat{\lambda}\left(1, \sqrt{2}, \xi, \sqrt{2} \xi, \xi^{2}, \sqrt{2} \xi^{2}\right) ; \xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}\right\}=\frac{1}{2 \gamma^{2}-1} \simeq 0.236>\frac{1}{5}
$$

4.3 Last main result

We combine Theorem B with the result of Bel.
Theorem C
When $K_{w}=\mathbb{Q}_{\ell}$, we have

$$
\sup \left\{\widehat{\lambda}\left(\left(\boldsymbol{\alpha}, \xi \boldsymbol{\alpha}, \xi^{2} \boldsymbol{\alpha}\right), \mathbb{Q}, \ell\right) ; \xi \in \mathbb{Q}_{\ell} \backslash \overline{\mathbb{Q}}\right\}=\frac{1}{d \gamma^{2}-1}>\frac{1}{3 d-1}
$$

Example: $K=\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $\boldsymbol{\alpha}=(1, \sqrt{2})$

$$
\sup \left\{\widehat{\lambda}\left(1, \sqrt{2}, \xi, \sqrt{2} \xi, \xi^{2}, \sqrt{2} \xi^{2}\right) ; \xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}\right\}=\frac{1}{2 \gamma^{2}-1} \simeq 0.236>\frac{1}{5} .
$$

A question
What is $\sup \left\{\widehat{\lambda}\left(1, \sqrt{2}, \xi, \xi^{2}\right) ; \xi \in \mathbb{R} \backslash \overline{\mathbb{Q}}\right\}$? Is it $>1 / 3$?

Note that for $\widehat{\lambda}(1, \sqrt{2}, \xi)$, it is $1 / \gamma \simeq 0.618>1 / 2$ by (R. 2013).

5.1 Highlights of the proof of Theorem A

Fix some $j \in\{1, \ldots, n\}$ and some $q \geq 0$.

- $L_{\xi, j}(q)$ is defined as the smallest $t \geq 0$ for which the conditions

$$
H(\mathbf{x}) \leq e^{t} \quad \text { and } \quad D_{\xi}(\mathbf{x}) \leq e^{t-q}
$$

admit j solutions $\mathbf{x} \in K^{n}$ that are linearly independent over K.

5.1 Highlights of the proof of Theorem A

Fix some $j \in\{1, \ldots, n\}$ and some $q \geq 0$.

- $L_{\xi, j}(q)$ is defined as the smallest $t \geq 0$ for which the conditions

$$
H(\mathbf{x}) \leq e^{t} \quad \text { and } \quad D_{\xi}(\mathbf{x}) \leq e^{t-q}
$$

admit j solutions $\mathbf{x} \in K^{n}$ that are linearly independent over K.
When $K=\mathbb{Q}$ and $K_{w}=\mathbb{R}$, we may choose $\mathbf{x} \in \mathbb{Z}^{n}$ primitive, and so

- $L_{\xi, j}(q)$ is the smallest $t \geq 0$ for which the conditions

$$
\|\mathbf{x}\| \leq e^{t} \quad \text { and } \quad|\mathbf{x} \cdot \boldsymbol{\xi}| \leq e^{t-q}
$$

admit at least j linearly independent solutions $\mathbf{x} \in \mathbb{Z}^{n}$.

5.1 Highlights of the proof of Theorem A

Fix some $j \in\{1, \ldots, n\}$ and some $q \geq 0$.

- $L_{\xi, j}(q)$ is defined as the smallest $t \geq 0$ for which the conditions

$$
H(\mathbf{x}) \leq e^{t} \quad \text { and } \quad D_{\xi}(\mathbf{x}) \leq e^{t-q}
$$

admit j solutions $\mathbf{x} \in K^{n}$ that are linearly independent over K.
When $K=\mathbb{Q}$ and $K_{w}=\mathbb{R}$, we may choose $\mathbf{x} \in \mathbb{Z}^{n}$ primitive, and so

- $L_{\xi, j}(q)$ is the smallest $t \geq 0$ for which the conditions

$$
\|\mathbf{x}\| \leq e^{t} \quad \text { and } \quad|\mathbf{x} \cdot \boldsymbol{\xi}| \leq e^{t-q}
$$

admit at least j linearly independent solutions $\mathbf{x} \in \mathbb{Z}^{n}$.

- So, $L_{\xi, j}(q)=\log \lambda_{j}(q)$ where $\lambda_{j}(q)$ stands for the j-th minimum of the convex body

$$
\mathcal{C}_{\xi}(q)=\left\{\mathbf{x} \in \mathbb{R}^{n} ;\|\mathbf{x}\| \leq 1 \quad \text { and } \quad|\mathbf{x} \cdot \boldsymbol{\xi}| \leq e^{-q}\right\}
$$

In general, $L_{\xi, j}(q)=\log \lambda_{j}(q)+\mathcal{O}(1)$ where $\lambda_{j}(q)$ denotes the j-th minimum of the adelic convex body

$$
\mathcal{C}_{\xi}(q)=\left\{\left(\mathbf{x}_{v}\right) \in K_{\mathbb{A}}^{n} ;\left|\mathbf{x}_{w} \cdot \boldsymbol{\xi}\right|_{w} \leq e^{-q} \text { and }\left\|\mathbf{x}_{v}\right\|_{v} \leq 1 \text { for all } v\right\} .
$$

In general, $L_{\xi, j}(q)=\log \lambda_{j}(q)+\mathcal{O}(1)$ where $\lambda_{j}(q)$ denotes the j-th minimum of the adelic convex body

$$
\mathcal{C}_{\xi}(q)=\left\{\left(\mathbf{x}_{v}\right) \in K_{\mathbb{A}}^{n} ;\left|\mathbf{x}_{w} \cdot \boldsymbol{\xi}\right|_{w} \leq e^{-q} \text { and }\left\|\mathbf{x}_{v}\right\|_{v} \leq 1 \text { for all } v\right\} .
$$

1. From a point $\boldsymbol{\xi} \in K_{w}^{n}$ to an n-system \mathbf{P} :

- We follow Schmidt and Summerer (2013) to construct an (n, γ)-system $\tilde{\mathbf{P}}$ which approximates \mathbf{L}_{ξ};
- then use R. (2015) to approximate $\tilde{\mathbf{P}}$ by an n-system \mathbf{P}.

Tools

Case $K=\mathbb{Q} \subset K_{w}=\mathbb{R}$

General case

minima of $\mathcal{C}_{\xi}(q) \subset K_{\mathbb{A}}^{n} w$. r. to K^{n}
MacFeat / Bombieri-Vaaler version version of E . Burger
2. From an n-system \mathbf{P} to a point $\xi \in K_{w}^{n}$:

- We replace \mathbb{Z} by the ring of S-integers \mathcal{O}_{S} of K where S consists of w and all archimedean places of K.
- As in R. (2015) we construct a sequence of bases $\mathbf{x}^{(i)}=\left(\mathbf{x}_{1}^{(i)}, \ldots, \mathbf{x}_{n}^{(i)}\right)$ of \mathcal{O}_{S}^{n} that will realize up to a bounded factor the successive minima of $\mathcal{C}_{\xi}(q)$ for $q \in\left[q_{i}, q_{i+1}\right]$ as prescribed by \mathbf{P}.

2. From an n-system \mathbf{P} to a point $\xi \in K_{w}^{n}$:

- We replace \mathbb{Z} by the ring of S-integers \mathcal{O}_{S} of K where S consists of w and all archimedean places of K.
- As in R. (2015) we construct a sequence of bases $\mathbf{x}^{(i)}=\left(\mathbf{x}_{1}^{(i)}, \ldots, \mathbf{x}_{n}^{(i)}\right)$ of \mathcal{O}_{S}^{n} that will realize up to a bounded factor the successive minima of $\mathcal{C}_{\xi}(q)$ for $q \in\left[q_{i}, q_{i+1}\right]$ as prescribed by \mathbf{P}.
- We move from a basis to the next one by changing one point. We ask

$$
\left(\mathbf{x}_{1}^{(i)}, \ldots, \widehat{\mathbf{x}_{\ell_{i}}^{(i)}}, \ldots, \mathbf{x}_{n}^{(i)}\right)=\left(\mathbf{x}_{1}^{(i-1)}, \ldots, \widehat{\mathbf{x}_{k_{i-1}}^{(i-1)}}, \ldots, \mathbf{x}_{n}^{(i-1)}\right)
$$

with $k_{i-1} \leq \ell_{i}, k_{i}<\ell_{i}$ and

$$
\mathbf{x}_{\ell_{i}}^{(i)}=\epsilon_{i} \mathbf{x}_{k_{i-1}}^{(i-1)}+\sum_{j=1}^{\ell_{i}-1} a_{j} \mathbf{x}_{j}^{(i)}
$$

with $\epsilon_{i} \in \mathcal{O}_{S}^{*}$ and $a_{1}, \ldots, a_{\ell_{i}-1} \in \mathcal{O}_{S}$ chosen so that

$$
\left(\mathbf{x}_{1}^{(i)}, \ldots, \widehat{\mathbf{x}_{k_{i}}^{(i)}}, \ldots, \mathbf{x}_{\ell_{i}}^{(i)}\right)
$$

is almost orthogonal at all archimedean places of K.

5.2 Highlights of the proof of Theorem B

- This is inspired by the alternative proof due to Jeff Thunder (2002) of the adelic version of Minkowski's theorem due to MacFeat and Bombieri-Vaaler.
- His proof is based on the usual Minkowski's theorem for the minima of a convex body in \mathbb{R}^{n} with respect to \mathbb{Z}^{n}.
- Given $\boldsymbol{\xi} \in K_{w}^{n}=\mathbb{Q}_{\ell}^{n}$ and a basis $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ of K over \mathbb{Q}, this principle of J . Thunder allows us to relate the minima of $\mathcal{C}_{\xi}(q)$ with respect to K^{n} to those of $\mathcal{C}_{\equiv}(q)$ with respect to $\mathbb{Q}^{d n}$ where

$$
\equiv=\boldsymbol{\alpha} \otimes \boldsymbol{\xi}=\left(\alpha_{1} \boldsymbol{\xi}, \ldots, \alpha_{d} \boldsymbol{\xi}\right) \in \mathbb{Q}_{\ell}^{d n} .
$$

Thank you!

