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1.1 Exponents of approximation

Fix n > 2 and a non-zero £ € R". Using Euclidean norms, define:

w(&) = supremum of all w for which the conditions
Ix[[<Q and |x-§ <@
have a non-zero solution x € Z" for arbitrarily large Q's.

(¢) = same but for each large enough Q.
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w(&) = supremum of all w for which the conditions
Ix[[<Q and |x-§ <@
have a non-zero solution x € Z" for arbitrarily large Q's.

= same but for each large enough Q.

>
o

A(€) = supremum of all A for which the conditions
x| <Q and [xAng]<Q?

have a non-zero solution x € Z" for arbitrarily large Q'’s.

(&) = same but for each large enough Q.

Here: [ x-&[ = [[x[[[ §1[ cos(0) and [|x A&[| = || x]l[| &1l sin(6)
where 6 € [0,7/2] is the angle between the lines spanned by x and &.



1.2 Some transference inequalities

Suppose that £ € R” has linearly independent coordinates over Q.

1
n—1

o Dirichlet (1844): < NE) < ME) and n—1 < &(€) < w(€)
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1.2 Some transference inequalities

Suppose that £ € R” has linearly independent coordinates over Q.

e Dirichlet (1844): - i 1 < X(ﬁ) < A(&)and n—1<®(&) <w(§)
e Khintchine (1926-28): = 2):’((55))+ — <€) < W

Together with n — 1 < w(&) < oo, describes the spectrum of (A, w).

1 1
e Jarnik (1938): For n =3, we have | — — 1= ———
A(€) w(€) —1

Together with 2 < &(&) < oo, describes the spectrum of (X@))
e German (2012): Spectrum of (X,@) for any n.
o Marnat-Moshchevitin (2020): Spectra of the pairs (X, A) and (@, w).



2.1 Absolute Weil height

K = a fixed number field,

d = [K: Q) its degree,

K, = completion of K at a place v,
d, = [K,: Q] its local degree,

= a fixed place of K.

=

Each | |, is normalized to extend one of the usual absolute values on Q.

Then the product formula H |a|s” = 1| holds for each non-zero a € K.
v
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K = a fixed number field,

d = [K: Q) its degree,

K, = completion of K at a place v,
d, = [K,: Q] its local degree,

= a fixed place of K.

=

Each | |, is normalized to extend one of the usual absolute values on Q.

Then the product formula H |a|s” = 1| holds for each non-zero a € K.
v

The (absolute) Weil height of a non-zero point x = (x1,...,x,) € K" is

e
H(x) = TTIIx [/ where HXHV:{(ZWV) if v | oo,

max |x;, else.

H(x) > 1 depends only on the class of x in the projective space P(K").



2.2 Exponents of approximation over K

Fix n > 2 and a non-zero £ € K. Define:

w(&, K,w) = supremum of all w for which the conditions

H(x) < Q@ and Dg(x):=|x- £|$‘“/d H I x||g"/d < QY

vEW
have a non-zero solution x € K" for arbitrarily large Q's.

wW(&, K,w) = same but for each large enough Q.




2.2 Exponents of approximation over K

Fix n > 2 and a non-zero £ € K. Define:

w(&, K,w) = supremum of all w for which the conditions

H(x) < Q@ and Dg(x):=|x- £|$‘”/d H I x||g"'/d <

VEW
have a non-zero solution x € K" for arbitrarily large Q's.

w(&, K,w) = same but for each large enough Q.

A(&, K,w) = supremum of all A\ for which the conditions
Hx)<Q and Di(x) =l xngle/@ T Ix5 < @

VEW
have a non-zero solution x € K" for arbitrarily large Q's.

A&, K,w) = same but for each large enough Q.

o Dg(x) and Dg(x) depend only on the class of x in P(K").
@ When & € R", we get the usual exponents w(&, Q, 00) = w(§), etc.



2.3 A general result of Pierre Bel

Theorem (P. Bel, 2013)

The supremum of all numbers
M(1.6,€3), K,w)

with § € K, having [K(§) : K] > 2 (possibly transcendental over K) is
1/ ~0.618 > 1/2

where v = (1 + /5)/2 denotes the golden ratio.

Previous cases known:

o K =Q and w = oo : Davenport & Schmidt 1969 and R. 2003.
@ K=0Q and w = p : Teulié 2002, Zelo 2008 and Bugeaud 2010.



3.1 A parametric family of minima

Fix again a non-zero £ € K.

For each j =1,...,n and each g > 0, define

Le j(q) = smallest t > 0 for which the conditions
H(x) < e’ and Dg(x) <e'™9

admit j solutions x € K" that are linearly independent over K.

Then, form the map

Lg 5 [0, OO) — R”
g +— (Lea(q),-- -, Len(q))




3.2 Relationship with exponents of approximation

Lemma

Write (&) for W(&, K,w) and similarly for the three other exponents.
Then, we have

o Lea(q) 1 , Lea(q) 1
Ty Twerr Ty TE@r
. Lea(q) A8 - Lea(q) (&)
Bl R GER h;njolip G R

This follows from the definitions as observed by Schmidt and Summerer in
2013 for the case K = Q and K,, = R.
Corollary

Knowing L¢: [0,00) — R" up to bounded error is enough to compute the
four exponents.




3.3 Proper n-systems

A proper n-system on [0, 00) is a continous map
P:[0,00) — R”
g — (Pi(g),.--, Pn(q))
with the following properties:

(S1) 0 < Pi(q) < -+ < Pn(q) and P1(q)+- -+ Pn(q) = q for each ¢ > 0;
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and one full line segment I'; of slope 1;
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3.3 Proper n-systems

A proper n-system on [0, 00) is a continous map
P:[0,00) — R”
q — (Pu(q),...,Pn(q))
with the following properties:
(S1) 0 < Pi(q) < -+ < Pa(q) and P1(q)+- -+ Py(q) = q for each g > 0;

(S2) there is an unbounded sequence 0 = gp < g1 < g2 < --- in [0, 00)
such that, over each subinterval [gi_1, gj] with i > 1, the union of the
graphs of Py, ..., P, decomposes into full horizontal line segments
and one full line segment I'; of slope 1;

(S3) for each i > 1, the line segment I'; ends strictly above the point
where [';;1 starts (on the vertical line g = g;);

(S4) P is unbounded.
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3.4 First main result]

Theorem A

There is a constant ¢ = c(K,w, n) > 0 with the following property. For
each point § € K] with linearly independent coordinates over K, there is a
proper n-system P: [0,00) — R" such that

sup[[L¢(q) — P(q)[| < c,
q>0

and conversely.

In other words, the set of maps L¢ attached to points £ € K|; with linearly
independent coordinates over K coincides with the set of proper n-systems
modulo the additive group of bounded functions from [0, o) to R".

When K = Q and K,, = R, this is due to Schmidt and Summerer (2013)
and R. (2015).



Corollary

The set of quadruples (X(E, K,w), \(&, K,w),0(& K,w),w(&, K,w))
attached to points & € K with K-linearly independent coordinates is the
same for any choice of K and w

Proof.
This is the set of points

oP)  E®) 11
1—¢,(P)1-3,(P) &1(P) " ¢,(P)

where P = (P4,..., P,) runs through all proper n-systems, using Schmidt
and Summerer’s notation
P; P;
¢.(P) = lim infﬂ and  @;(P) = lim supM 1<j<n). O

= g7 g g—oo g




3.5 Example

For any &€ € K3 with K-linearly independent coordinates, we have Jarnik’s
identity
1 1

}\\(5, K,W) = Q(S,K,W)—l

Applying this to the result of Bel, we deduce:

Corollary

The supremum of all numbers

5((1,6,€2), K, w)
with £ € K,, having [K(§) : K] > 2 (possibly transcendental over K) is
v? ~2.618 > 2

where v = (1 + /5)/2 denotes the golden ratio.




4.1 Second main result]

Suppose that the place w of K has relative degree one over Q, namely

that for the place £ of QQ induced by w.

Choose a basis a = (a1, ..., aq) of K over Q and a point £ € K| with
linearly independent coordinates over K. Define

Z=a®t=(mé, ..., aq€) € KJ¥ = Q.



4.1 Second main result]

Suppose that the place w of K has relative degree one over Q, namely

that for the place £ of QQ induced by w.

Choose a basis a = (a1, ..., aq) of K over Q and a point £ € K| with
linearly independent coordinates over K. Define

Z=a®t=(mé, ..., aq€) € KJ¥ = Q.

Then = has linearly independent coordinates over QQ and the maps L¢ and
L= are linked as follows.

Theorem B

With the above notation and hypotheses, we have

sup | L= q(i—1)+j(dq) — Le,i(q)| < oo,
q>0

foranyi=1,...,nandj=1,...,d.




4.2 Exponents of approximation under extension of scalars

We keep the same hypotheses.

Corollary
Writing (&) for (&, K, w), W(=Z) for (=, Q, ¢), and similarly for the
other exponents, we have

d(@(&)+1) =d(2) + 1, dw(€)+1) =w(Z)+1,
1 1 1 1
d(x(g)Jrl):X(E)—H, d(@+1)=@+1.

When n = 3, Jarnik's identity applies to & (over K), and so we obtain

1 d?
AE) S O




4.3 Last main result]

We combine Theorem B with the result of Bel.

Theorem C
When K,, = Qy, we have

sup { (@, 60,820, 0,0) ; £ €@\ T} =

11
d?2—1" 3d-1

v

Example: K = Q(v/2) C R and @ = (1,V/2)
sup {X(1,v2,€, V26,6, V262) ; € € R\ Q) =

1
~0.236 > .
272 — 1 5

v




4.3 Last main result]

We combine Theorem B with the result of Bel.

Theorem C
When K,, = Q, we have
= _ 1 1
sup { (@161, 6%01), Q. 0) ; €€ Qe \ T

T -1 3d-1

Example: K = Q(v/2) C R and @ = (1,V/2)
sup {X(1,v2,€, V26,6, V262) ; € € R\ Q) =

1
~0.236 > .
272 — 1 0 5

v

A question

What is sup {X(l, V2,68 ¢ € R\@}? Is it > 1/3?

Note that for A(1,v/2,€), it is 1/7 ~ 0.618 > 1/2 by (R. 2013).



5.1 Highlights of the proof of Theorem A

Fix some j € {1,...,n} and some g > 0.

o L¢ j(q) is defined as the smallest t > 0 for which the conditions
H(x) <e' and Dg(x) <e' 9

admit j solutions x € K" that are linearly independent over K.
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admit at least j linearly independent solutions x € Z".



5.1 Highlights of the proof of Theorem A

Fix some j € {1,...,n} and some g > 0.
o L¢ j(q) is defined as the smallest t > 0 for which the conditions
H(x) <e' and Dg(x) <e' 9

admit j solutions x € K" that are linearly independent over K.
When K = Q and K, = R, we may choose x € Z" primitive, and so

o Lg j(q) is the smallest t > 0 for which the conditions
Ix| <et and |x-g < et
admit at least j linearly independent solutions x € Z".

@ So, L¢j(q) = log A\j(q) where \j(q) stands for the j-th minimum of
the convex body

Cg(q):{xeR”;Hngl and |x-5\ge—q}.



In general, L¢ j(q) = log Aj(g) + O(1) where \;(q) denotes the j-th
minimum of the adelic convex body

Ce(q) = {(xv) € KD [y - €]y < e 9 and | x|y < 1 for all v }



In general, L¢ j(q) = log A\j(q) + O(1) where \;j(q) denotes the j-th

minimum of the adelic convex body

Ce(q) = {(xv) €KL xw-&lw<e Tand [ x|, <1forallv }

1. From a point £ € K] to an n-system P:

@ We follow Schmidt and Summerer (2013) to construct an
(n,)-system P which approximates Lyg;

e then use R. (2015) to approximate P by an n-system P.

Tools
Case K=QCK,=R

General case

minima of C¢(q) C R” w. r. to Z"
Minkowski's 2"9 convex body thm

Mahler’'s compound bodies

minima of C¢(q) C K{ w. r. to K”
MacFeat / Bombieri—Vaaler version

version of E. Burger




2. From an n-system P to a point £ € K

o We replace Z by the ring of S-integers Og of K where S consists of w
and all archimedean places of K.

@ Asin R. (2015) we construct a sequence of bases x() = (x(li), e ,xg,i))
of OZ that will realize up to a bounded factor the successive minima
of C¢(q) for g € [qi, git1] as prescribed by P.



2. From an n-system P to a point £ € K

We replace Z by the ring of S-integers Os of K where S consists of w
and all archimedean places of K.

As in R. (2015) we construct a sequence of bases x() = (x(li), e ,xs,i))
of OZ that will realize up to a bounded factor the successive minima
of C¢(q) for g € [qi, git1] as prescribed by P.

We move from a basis to the next one by changing one point. We ask

IR GRS O NN ) SN N COh

153 Xp seeey Xn S RTINS o
with ki_1 < ¥;, ki < ¥£; and
(')_ kal 11)+Zal
with ¢; € O% and ay, ..., a1 € Os chosen so that
(xgi),...,@,...,xg))

is almost orthogonal at all archimedean places of K.



5.2 Highlights of the proof of Theorem B

e This is inspired by the alternative proof due to Jeff Thunder (2002) of
the adelic version of Minkowski's theorem due to MacFeat and
Bombieri—Vaaler.

@ His proof is based on the usual Minkowski’s theorem for the minima
of a convex body in R” with respect to Z".

e Given £ € K] = Qf and a basis a = (aq, ..., aq) of K over Q, this
principle of J. Thunder allows us to relate the minima of C¢(q) with
respect to K" to those of C=(q) with respect to Q" where

Z—a®t=(a,...,a4€) € Q.



Thank you!



