Diophantine equations, Diophantine approximation, and geometry of numbers

Damien Roy

University of Ottawa

Ottawa Mathematics Conference May 17-18, 2013

Pythagoras (-570BC to -495BC)

Pythagoras (-570BC to -495BC)

Pythagorean theorem:

$$a^2 + b^2 = c^2$$

1. The triangle
$$\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$$
 has $c = \sqrt{2} \notin \mathbb{Q}$.

How to handle such numbers?

1. The triangle
$$\begin{array}{c} 1 \\ \hline 1 \\ 1 \end{array}$$
 has $c = \sqrt{2} \notin \mathbb{Q}.$

How to handle such numbers?

2. Find integer right-angle triangles.

1. The triangle
$$\begin{array}{c} 1 \\ \hline 1 \\ 1 \end{array}$$
 has $c = \sqrt{2} \notin \mathbb{Q}$.

How to handle such numbers?

2. Find integer right-angle triangles.

Example: $3^2 + 4^2 = 5^2$: 3

1. The triangle
$$\begin{array}{c} 1 \\ \hline 1 \\ 1 \end{array}$$
 has $c = \sqrt{2} \notin \mathbb{Q}.$

How to handle such numbers?

2. Find integer right-angle triangles.

Example:
$$3^2 + 4^2 = 5^2$$
: $3 = 5$

$$5^2 + 12^2 = 13^2$$
, ...

= an equation to be solved in integers

= an equation to be solved in integers

1.
$$\begin{vmatrix} a^2 + b^2 = c^2 \end{vmatrix}$$
 $a, b, c \in \mathbb{Z}$

= an equation to be solved in integers

1.
$$\begin{vmatrix} a^2+b^2=c^2 \end{vmatrix}$$
 $a,b,c\in\mathbb{Z}$

 $\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$ with $d, u, v \in \mathbb{Z}$, gcd(u, v) = 1, $u \neq v \mod 2$.

= an equation to be solved in integers

1.
$$\begin{vmatrix} a^2 + b^2 = c^2 \end{vmatrix}$$
 $a, b, c \in \mathbb{Z}$

 $\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$ with $d, u, v \in \mathbb{Z}$, gcd(u, v) = 1, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

= an equation to be solved in integers

1.
$$\begin{vmatrix} a^2 + b^2 = c^2 \end{vmatrix}$$
 $a, b, c \in \mathbb{Z}$

$$\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$$

with $d, u, v \in \mathbb{Z}$, $gcd(u, v) = 1$, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2.
$$a^n + b^n = c^n$$
 $a, b, c \ge 1, n \ge 3$ (Fermat, 1601-1665)

= an equation to be solved in integers

1.
$$a^2 + b^2 = c^2$$
 $a, b, c \in \mathbb{Z}$

$$\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$$

with $d, u, v \in \mathbb{Z}$, $gcd(u, v) = 1$, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2.
$$a^n + b^n = c^n$$
 $a, b, c \ge 1, n \ge 3$ (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

= an equation to be solved in integers

1.
$$a^2 + b^2 = c^2$$
 $a, b, c \in \mathbb{Z}$

$$\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$$

with $d, u, v \in \mathbb{Z}$, $gcd(u, v) = 1$, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2.
$$a^n + b^n = c^n$$
 $a, b, c \ge 1, n \ge 3$ (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3.
$$a^m = b^n + 1$$
 $a, b, m, n \ge 2$ (Catalan, 1844)

= an equation to be solved in integers

1.
$$a^2 + b^2 = c^2$$
 $a, b, c \in \mathbb{Z}$

$$\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$$

with $d, u, v \in \mathbb{Z}$, $gcd(u, v) = 1$, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2.
$$a^n + b^n = c^n$$
 $a, b, c \ge 1, n \ge 3$ (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3.
$$\begin{vmatrix} a^m = b^n + 1 \end{vmatrix}$$
 a, b, m, $n \ge 2$ (Catalan, 1844)

only solution: $3^2 = 2^3 + 1$: Mihăilescu 2002

= an equation to be solved in integers

1.
$$a^2 + b^2 = c^2$$
 $a, b, c \in \mathbb{Z}$

 $\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$ with $d, u, v \in \mathbb{Z}$, gcd(u, v) = 1, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2.
$$a^n + b^n = c^n$$
 $a, b, c \ge 1, n \ge 3$ (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3.
$$a^m = b^n + 1$$
 $a, b, m, n \ge 2$ (Catalan, 1844)
only solution: $3^2 = 2^3 + 1$: Mihăilescu 2002

4.
$$a^2 = db^2 + 1$$
 d not a square ("Pell's equation")

= an equation to be solved in integers

1.
$$a^2 + b^2 = c^2$$
 $a, b, c \in \mathbb{Z}$

 $\iff (a, b, c) \text{ or } (b, a, c) = d(u^2 - v^2, 2uv, u^2 + v^2)$ with $d, u, v \in \mathbb{Z}$, gcd(u, v) = 1, $u \neq v \mod 2$.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2.
$$a^n + b^n = c^n$$
 $a, b, c \ge 1, n \ge 3$ (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3.
$$\begin{bmatrix} a^m = b^n + 1 \end{bmatrix}$$
 a, b, m, $n \ge 2$ (Catalan, 1844)

only solution: $3^2 = 2^3 + 1$: Mihăilescu 2002

4.
$$a^2 = db^2 + 1$$
 d not a square ("Pell's equation")
has infinitely many solutions for each d: Lagrange (1768)

Solutions: $(a, b) = (3, 2), (17, 12), \dots$

Solutions: $(a, b) = (3, 2), (17, 12), \dots$

 $a^2 = 2b^2 + 1$

Solutions: $(a, b) = (3, 2), (17, 12), \dots$

 $a^{2} = 2b^{2} + 1$ $\Leftrightarrow a^{2} - 2b^{2} = 1$

Solutions: $(a, b) = (3, 2), (17, 12), \dots$

 $a^2 = 2b^2 + 1$ $\Leftrightarrow a^2 - 2b^2 = 1$ $\Leftrightarrow (a - b\sqrt{2})(a + b\sqrt{2}) = 1$

Solutions: $(a, b) = (3, 2), (17, 12), \dots$ $a^2 = 2b^2 + 1$ $\Leftrightarrow a^2 - 2b^2 = 1$ $\Leftrightarrow (a - b\sqrt{2})(a + b\sqrt{2}) = 1$ $\Rightarrow 0 \le a - b\sqrt{2} = \frac{1}{a + b\sqrt{2}} \le \frac{1}{2b\sqrt{2}}$ (since $a \ge b\sqrt{2}$)

Solutions:
$$(a, b) = (3, 2), (17, 12), \dots$$

 $a^2 = 2b^2 + 1$
 $\Leftrightarrow a^2 - 2b^2 = 1$
 $\Leftrightarrow (a - b\sqrt{2})(a + b\sqrt{2}) = 1$
 $\Rightarrow 0 \le a - b\sqrt{2} = \frac{1}{a + b\sqrt{2}} \le \frac{1}{2b\sqrt{2}}$ (since $a \ge b\sqrt{2}$)
 $\Rightarrow \left|\frac{a}{b} - \sqrt{2}\right| \le \frac{1}{2b^2\sqrt{2}} \le \frac{1}{2b^2}$

Solutions: $(a, b) = (3, 2), (17, 12), \ldots$ $a^2 = 2b^2 + 1$ $\Leftrightarrow a^2 - 2b^2 = 1$ $\Leftrightarrow (a - b\sqrt{2})(a + b\sqrt{2}) = 1$ $\Rightarrow 0 \le a - b\sqrt{2} = \frac{1}{a + b\sqrt{2}} \le \frac{1}{2b\sqrt{2}} \quad \text{(since } a \ge b\sqrt{2}\text{)}$ $\Rightarrow \left|\frac{a}{b} - \sqrt{2}\right| \le \frac{1}{2b^2 \sqrt{2}} \le \frac{1}{2b^2}$

i.e. $\frac{a}{b}$ is a very good rational approximation to $\sqrt{2}$.

 $\frac{31}{22}$

$$\frac{31}{22} = 1 + \frac{9}{22}$$

$$\frac{\frac{31}{22}}{\frac{31}{22}} = 1 + \frac{9}{\frac{22}{22}} = 1 + \frac{1}{\frac{22}{9}}$$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}}$$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}}$$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} +$$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{4}}}}$$
$$= (1, 2, 2, 4)$$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}$$

 $\sqrt{2}$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}$$

 $\sqrt{2} = 1 + (\sqrt{2} - 1)$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{4}}}}$$
$$= (1, 2, 2, 4)$$

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\sqrt{2} + 1}$$

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2 + \frac{1}{4}}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2 + \frac{1}{4}}}} = (1, 2, 2, 4)$$

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\sqrt{2} + 1} = 1 + \frac{1}{2 + (\sqrt{2} - 1)}$$
Continued fractions

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2 + \frac{1}{4}}}}$$
$$= (1, 2, 2, 4)$$
$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\sqrt{2} + 1} = 1 + \frac{1}{2 + (\sqrt{2} - 1)}$$
$$= 1 + \frac{1}{\frac{1}{1 + \frac{1}{1 + \frac{$$

 $2 + \frac{1}{\sqrt{2} + 1}$

Continued fractions

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}$$

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\sqrt{2} + 1} = 1 + \frac{1}{2 + (\sqrt{2} - 1)}$$
$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}} = 1 + \frac{1}{2 + \frac$$

Continued fractions

$$\frac{31}{22} = 1 + \frac{9}{22} = 1 + \frac{1}{\frac{22}{9}} = 1 + \frac{1}{2 + \frac{4}{9}} = 1 + \frac{1}{2 + \frac{1}{\frac{9}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2 + \frac{1}{4}}}} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{2 + \frac{1}{4}}}} = (1, 2, 2, 4)$$

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\sqrt{2} + 1} = 1 + \frac{1}{2 + (\sqrt{2} - 1)}$$
$$= 1 + \frac{1}{2 + \frac{1}{\sqrt{2} + 1}} = 1 + \frac{1}{2 + \frac$$

The continued fraction expansion of $\xi \in \mathbb{R}$ is

• finite $\iff \xi \in \mathbb{Q}$

- finite $\iff \xi \in \mathbb{Q}$
- ultimately periodic $\iff \xi$ is quadratic over \mathbb{Q}

- finite $\iff \xi \in \mathbb{Q}$
- ultimately periodic $\iff \xi$ is quadratic over \mathbb{Q}

The convergents of
$$\xi = (a_0, a_1, a_2, \dots) = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}$$

- finite $\iff \xi \in \mathbb{Q}$
- ultimately periodic $\iff \xi$ is quadratic over \mathbb{Q}

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

 $\implies \text{The solutions of a Pell equation } a^2 = db^2 + 1 \text{ come from convergents } \frac{a}{b} \text{ of } \sqrt{d}.$

Example: $a^2 = 2b^2 + 1$

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

 $\implies \text{The solutions of a Pell equation } a^2 = db^2 + 1 \text{ come from convergents } \frac{a}{b} \text{ of } \sqrt{d}.$

Example: $a^2 = 2b^2 + 1 \iff \sqrt{2} = (1, 2, 2, 2, ...)$

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Example:
$$a^2 = 2b^2 + 1 \iff \sqrt{2} = (1, 2, 2, 2, ...$$

• $(1, 2) = 1 + \frac{1}{2} = \frac{3}{2}$ is a convergent of $\sqrt{2}$:

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Example:
$$a^2 = 2b^2 + 1 \implies \sqrt{2} = (1, 2, 2, 2, ...)$$

• $(1, 2) = 1 + \frac{1}{2} = \frac{3}{2}$ is a convergent of $\sqrt{2}$: $3^2 = 2 \times 2^2 + 1$

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Example:
$$a^2 = 2b^2 + 1 \quad \rightsquigarrow \quad \sqrt{2} = (1, 2, 2, 2, ...)$$

• $(1, 2) = 1 + \frac{1}{2} = \frac{3}{2}$ is a convergent of $\sqrt{2}$: $3^2 = 2 \times 2^2 + 1$
• $(1, 2, 2) = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5}$ is a convergent of $\sqrt{2}$:

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Example:
$$a^2 = 2b^2 + 1 \implies \sqrt{2} = (1, 2, 2, 2, ...)$$

• $(1, 2) = 1 + \frac{1}{2} = \frac{3}{2}$ is a convergent of $\sqrt{2}$: $3^2 = 2 \times 2^2 + 1$
• $(1, 2, 2) = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5}$ is a convergent of $\sqrt{2}$: $7^2 = 2 \times 5^2 - 1$

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Example:
$$a^2 = 2b^2 + 1 \quad \rightsquigarrow \quad \sqrt{2} = (1, 2, 2, 2, ...)$$

• $(1, 2) = 1 + \frac{1}{2} = \frac{3}{2}$ is a convergent of $\sqrt{2}$: $3^2 = 2 \times 2^2 + 1$
• $(1, 2, 2) = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5}$ is a convergent of $\sqrt{2}$: $7^2 = 2 \times 5^2 - 1$
• $(1, 2, 2, 2) = \frac{17}{12}$ is a convergent of $\sqrt{2}$:

Theorem (Legendre)

$$\left|\frac{a}{b}-\xi\right|\leq rac{1}{2b^2}\implies rac{a}{b}$$
 is a convergent of ξ

Example:
$$a^2 = 2b^2 + 1 \implies \sqrt{2} = (1, 2, 2, 2, ...)$$

• $(1, 2) = 1 + \frac{1}{2} = \frac{3}{2}$ is a convergent of $\sqrt{2}$: $3^2 = 2 \times 2^2 + 1$
• $(1, 2, 2) = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5}$ is a convergent of $\sqrt{2}$: $7^2 = 2 \times 5^2 - 1$
• $(1, 2, 2, 2) = \frac{17}{12}$ is a convergent of $\sqrt{2}$: $17^2 = 2 \times 12^2 + 1$

Axel Thue (Norway, 1863-1922)

Thue equation

A Thue equation is an equation of the form

$$p(x,y) = m$$

where $p(x, y) \in \mathbb{Z}[x, y]$ is an irreducible homogeneous polynomial of degree ≥ 3 , and where $m \in \mathbb{Z}$.

Axel Thue (Norway, 1863-1922)

Thue equation

Axel Thue (Norway, 1863-1922)

A Thue equation is an equation of the form

$$p(x,y) = m$$

where $p(x, y) \in \mathbb{Z}[x, y]$ is an irreducible homogeneous polynomial of degree ≥ 3 , and where $m \in \mathbb{Z}$.

We search for solutions $(x, y) \in \mathbb{Z}^2$.

$$x^3 - 2y^3 = 1,$$
 $x, y \in \mathbb{Z}$ $(x > y > 0)$

$$x^{3} - 2y^{3} = 1, \qquad x, y \in \mathbb{Z} \quad (x > y > 0)$$
$$\iff \left(x - \sqrt[3]{2}y\right) \left(x^{2} + \sqrt[3]{2}xy + \sqrt[3]{2}^{2}y^{2}\right) = 1$$

$$\begin{aligned} x^{3} - 2y^{3} &= 1, \qquad x, y \in \mathbb{Z} \quad (x > y > 0) \\ \iff & \left(x - \sqrt[3]{2}y\right) \left(x^{2} + \sqrt[3]{2}xy + \sqrt[3]{2}^{2}y^{2}\right) = 1 \\ \implies & \left|x - \sqrt[3]{2}y\right| = \frac{1}{x^{2} + \sqrt[3]{2}xy + \sqrt[3]{2}^{2}y^{2}} \le \frac{1}{3y^{2}} \text{ since } x \ge \sqrt[3]{2}y \ge y \end{aligned}$$

$$x^3 - 2y^3 = 1, \qquad x, y \in \mathbb{Z} \quad (x > y > 0)$$

$$\iff (x - \sqrt[3]{2}y) \left(x^2 + \sqrt[3]{2}xy + \sqrt[3]{2}^2y^2\right) = 1$$

$$\implies \left| x - \sqrt[3]{2}y \right| = \frac{1}{x^2 + \sqrt[3]{2}xy + \sqrt[3]{2}^2y^2} \le \frac{1}{3y^2} \text{ since } x \ge \sqrt[3]{2}y \ge y$$

$$\implies \left| \left| \frac{x}{y} - \sqrt[3]{2} \right| \le \frac{1}{3y^3} \right|$$

$$x^{3} - 2y^{3} = 1, \qquad x, y \in \mathbb{Z} \quad (x > y > 0)$$

$$\iff (x - \sqrt[3]{2}y) \left(x^{2} + \sqrt[3]{2}xy + \sqrt[3]{2}^{2}y^{2}\right) = 1$$

$$\implies \left|x - \sqrt[3]{2}y\right| = \frac{1}{x^{2} + \sqrt[3]{2}xy + \sqrt[3]{2}^{2}y^{2}} \le \frac{1}{3y^{2}} \text{ since } x \ge \sqrt[3]{2}y \ge y$$

$$\implies \left|\left|\frac{x}{y} - \sqrt[3]{2}\right| \le \frac{1}{3y^{3}}\right|$$

Does there exist such good approximations to $\sqrt[3]{2}$? How many are they ?

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

 \implies Any Thue equation has at most finitely many solutions.

Example: $x^3 - 2y^3 = 1$

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

 \implies Any Thue equation has at most finitely many solutions.

Example: $x^3 - 2y^3 = 1 \iff d = 3$

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Example:
$$x^3 - 2y^3 = 1 \iff d = 3 \iff \text{take } \mu = \frac{8}{3} > \frac{5}{2} = 1 + \frac{d}{2}$$

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Example:
$$x^3 - 2y^3 = 1 \quad \rightsquigarrow \quad d = 3 \quad \rightsquigarrow \quad \text{take } \mu = \frac{8}{3} > \frac{5}{2} = 1 + \frac{d}{2}$$
$$\implies \frac{1}{3y^3} \ge \left| \frac{x}{y} - \sqrt[3]{2} \right|$$

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Example:
$$x^3 - 2y^3 = 1 \quad \rightsquigarrow \quad d = 3 \quad \rightsquigarrow \quad \text{take } \mu = \frac{8}{3} > \frac{5}{2} = 1 + \frac{d}{2}$$
$$\implies \frac{1}{3y^3} \ge \left|\frac{x}{y} - \sqrt[3]{2}\right| \ge \frac{C}{y^{8/3}}$$

Let α be an algebraic number of degree $d \ge 3$. For each $\mu > 1 + \frac{d}{2}$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{\mu}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Example:
$$x^3 - 2y^3 = 1 \implies d = 3 \implies \text{take } \mu = \frac{8}{3} > \frac{5}{2} = 1 + \frac{d}{2}$$

$$\implies \frac{1}{3y^3} \ge \left| \frac{x}{y} - \sqrt[3]{2} \right| \ge \frac{C}{y^{8/3}} \implies y \le \left(\frac{1}{3C}\right)^3$$

Geometry of numbers (Minkowski, 1889)

A (Minkowski) convex body in \mathbb{R}^n is a subset of \mathbb{R}^n which is
A (Minkowski) convex body in ℝⁿ is a subset of ℝⁿ which is
compact,

A (*Minkowski*) convex body in \mathbb{R}^n is a subset of \mathbb{R}^n which is

- compact,
- convex,

A (*Minkowski*) convex body in \mathbb{R}^n is a subset of \mathbb{R}^n which is

- compact,
- convex,

- A (*Minkowski*) convex body in \mathbb{R}^n is a subset of \mathbb{R}^n which is
 - compact,
 - convex,
 - symmetric with respect to 0,

- A (*Minkowski*) convex body in \mathbb{R}^n is a subset of \mathbb{R}^n which is
 - compact,
 - convex,
 - symmetric with respect to 0,

- A (Minkowski) convex body in \mathbb{R}^n is a subset of \mathbb{R}^n which is
 - compact,
 - convex,
 - symmetric with respect to 0,
 - and has non-empty interior.

 $\operatorname{vol}(\mathcal{T}(\mathcal{C})) = |\det(\mathcal{T})| \operatorname{vol}(\mathcal{C}).$

$$\operatorname{vol}(\mathcal{T}(\mathcal{C})) = |\det(\mathcal{T})|\operatorname{vol}(\mathcal{C}).$$

Example: Let $X \ge 1$. The rectangle

$$\mathcal{C} \colon \begin{cases} |x| \le X^{-1} \\ |y| \le X \end{cases}$$

is a convex body ${\mathcal C}$ of ${\mathbb R}^2$ of volume (area) 4.

$$\operatorname{vol}(\mathcal{T}(\mathcal{C})) = |\det(\mathcal{T})|\operatorname{vol}(\mathcal{C}).$$

Example: Let $X \ge 1$. The rectangle

$$\mathcal{C} \colon \begin{cases} |x| \le X^{-1} \\ |y| \le X \end{cases}$$

is a convex body C of \mathbb{R}^2 of volume (area) 4. Given $\xi \in \mathbb{R}$, the inverse image of C under the linear map $T(x, y) = (x - \xi y, y)$ is the parallelogram

$$\mathcal{T}^{-1}(\mathcal{C})$$
: $\begin{cases} |x-\xi y| \leq X^{-1} \\ |y| \leq X \end{cases}$

$$\operatorname{vol}(\mathcal{T}(\mathcal{C})) = |\det(\mathcal{T})|\operatorname{vol}(\mathcal{C}).$$

Example: Let $X \ge 1$. The rectangle

$$\mathcal{C} \colon \begin{cases} |x| \le X^- \\ |y| \le X \end{cases}$$

is a convex body C of \mathbb{R}^2 of volume (area) 4. Given $\xi \in \mathbb{R}$, the inverse image of C under the linear map $T(x, y) = (x - \xi y, y)$ is the parallelogram

$$\mathcal{T}^{-1}(\mathcal{C}) \colon \left\{ egin{array}{l} |x - \xi y| \leq X^{-1} \ |y| \leq X \end{array}
ight.$$

$$\operatorname{vol}(\mathcal{T}(\mathcal{C})) = |\det(\mathcal{T})|\operatorname{vol}(\mathcal{C}).$$

Example: Let $X \ge 1$. The rectangle

$$\mathcal{C} \colon \begin{cases} |x| \le X^- \\ |y| \le X \end{cases}$$

is a convex body C of \mathbb{R}^2 of volume (area) 4. Given $\xi \in \mathbb{R}$, the inverse image of C under the linear map $T(x, y) = (x - \xi y, y)$ is the parallelogram

$$\mathcal{T}^{-1}(\mathcal{C})$$
: $\begin{cases} |x - \xi y| \leq X^{-1} \\ |y| \leq X \end{cases}$

Since det(T) = 1, its volume is also 4.

Let C be a convex body of \mathbb{R}^n . If $vol(C) \ge 2^n$, then C contains a non-zero integer point.

Let C be a convex body of \mathbb{R}^n . If $vol(C) \ge 2^n$, then C contains a non-zero integer point.

Corollary (Dirichlet, 1842)

Let $\xi \in \mathbb{R}$. For each X > 1, there exists a non-zero point $(x, y) \in \mathbb{Z}^2$ such that

$$|x-\xi y| \leq X^{-1}$$
 and $|y| \leq X$.

Let C be a convex body of \mathbb{R}^n . If $vol(C) \ge 2^n$, then C contains a non-zero integer point.

Corollary (Dirichlet, 1842)

Let $\xi \in \mathbb{R}$. For each X > 1, there exists a non-zero point $(x, y) \in \mathbb{Z}^2$ such that

$$|x-\xi y| \leq X^{-1}$$
 and $|y| \leq X$.

$$\implies \left|\frac{x}{y} - \xi\right| \le \frac{X^{-1}}{|y|} \le \frac{1}{y^2}$$

Let C be a convex body of \mathbb{R}^n . If $vol(C) \ge 2^n$, then C contains a non-zero integer point.

Corollary (Dirichlet, 1842)

Let $\xi \in \mathbb{R}$. For each X > 1, there exists a non-zero point $(x, y) \in \mathbb{Z}^2$ such that

$$|x-\xi y| \leq X^{-1}$$
 and $|y| \leq X$.

$$\implies \left|\frac{x}{y} - \xi\right| \leq \frac{X^{-1}}{|y|} \leq \frac{1}{y^2}.$$

 \implies If $\xi \notin \mathbb{Q}$, there are infinitely many rational numbers $\frac{x}{y} \in \mathbb{Q}$ with

$$\left|\frac{x}{y} - \xi\right| \le \frac{1}{y^2}$$

Thue-Siegel-Roth theorem (1909, 1921, 1955)

Let α be an algebraic number of degree $d \ge 3$. For each $\epsilon > 0$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{2+\epsilon}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

Thue-Siegel-Roth theorem (1909, 1921, 1955)

Let α be an algebraic number of degree $d \ge 3$. For each $\epsilon > 0$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{2+\epsilon}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

"One cannot do much better than Dirichlet in approximating algebraic numbers by rational numbers."

Thue-Siegel-Roth theorem (1909, 1921, 1955)

Let α be an algebraic number of degree $d \ge 3$. For each $\epsilon > 0$, there exists a constant C > 0 such that

$$\left|\frac{x}{y} - \alpha\right| \ge \frac{C}{y^{2+\epsilon}}$$

for any $x, y \in \mathbb{Z}$ with y > 0.

"One cannot do much better than Dirichlet in approximating algebraic numbers by rational numbers."

Open problem: Can the product $|y(x - y\sqrt[3]{2})|$ be made arbitrarily small for positive integers x, y?

A more general construction

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, the convex body of \mathbb{R}^{n+1} defined by $|x_0 + x_1\xi_1 + \cdots + x_n\xi_n| \le X^{-n}, |x_1| \le X, \ldots, |x_n| \le X$ (1) has volume 2^{n+1} .

A more general construction

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, the convex body of \mathbb{R}^{n+1} defined by $|x_0 + x_1\xi_1 + \cdots + x_n\xi_n| \le X^{-n}, |x_1| \le X, \ldots, |x_n| \le X$ (1) has volume 2^{n+1} .

Corollary (Dirichlet, 1842)

For each X > 0, the equations (1) have a solution in integers x_0, \ldots, x_n not all 0.

Minkowski's second convex body theorem

Let \mathcal{C} be a convex body in \mathbb{R}^n . Then

$$\frac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \operatorname{vol}(\mathcal{C}) \leq 2^n.$$
Let C be a convex body in \mathbb{R}^n . Then

$$\frac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \operatorname{vol}(\mathcal{C}) \leq 2^n.$$

Examples (n = 2):

Let C be a convex body in \mathbb{R}^n . Then

$$\frac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \operatorname{vol}(\mathcal{C}) \leq 2^n.$$

Examples (n = 2):

 $\lambda_1 = \lambda_2 = 1$, $\operatorname{vol}(\mathcal{C}) = 4$

Let C be a convex body in \mathbb{R}^n . Then

$$rac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \mathrm{vol}(\mathcal{C}) \leq 2^n.$$

Examples (n = 2):

$$\lambda_1 = \lambda_2 = 1$$
, $\operatorname{vol}(\mathcal{C}) = 4$
Here $\lambda_1 \lambda_2 \operatorname{vol}(\mathcal{C}) = 2^n$

Let C be a convex body in \mathbb{R}^n . Then

$$\frac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \operatorname{vol}(\mathcal{C}) \leq 2^n.$$

Examples (n = 2):

 $\lambda_1 = \lambda_2 = 1$, $\operatorname{vol}(\mathcal{C}) = 4$ Here $\lambda_1 \lambda_2 \operatorname{vol}(\mathcal{C}) = 2^n$

Let C be a convex body in \mathbb{R}^n . Then

$$\frac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \operatorname{vol}(\mathcal{C}) \leq 2^n.$$

Examples (n = 2):

 $\lambda_1 = \lambda_2 = 1$, $\operatorname{vol}(\mathcal{C}) = 4$ Here $\lambda_1 \lambda_2 \operatorname{vol}(\mathcal{C}) = 2^n$

$$\lambda_1 = \lambda_2 = 1$$
, $\operatorname{vol}(\mathcal{C}) = 2$

Let \mathcal{C} be a convex body in \mathbb{R}^n . Then

$$\frac{2^n}{n!} \leq \lambda_1(\mathcal{C}) \cdots \lambda_n(\mathcal{C}) \operatorname{vol}(\mathcal{C}) \leq 2^n.$$

Examples (n = 2):

 $\lambda_1 = \lambda_2 = 1$, $\operatorname{vol}(\mathcal{C}) = 4$ Here $\lambda_1 \lambda_2 \operatorname{vol}(\mathcal{C}) = 2^n$ $\lambda_1 = \lambda_2 = 1$, $\operatorname{vol}(\mathcal{C}) = 2$ Here $\lambda_1 \lambda_2 \operatorname{vol}(\mathcal{C}) = 2^n/n!$

Let \mathcal{C} be a convex body of \mathbb{R}^n with $\operatorname{vol}(\mathcal{C}) \geq 2^n$.

Let \mathcal{C} be a convex body of \mathbb{R}^n with $\operatorname{vol}(\mathcal{C}) \geq 2^n$.

We have

$$\lambda_1(\mathcal{C})\cdots\lambda_n(\mathcal{C})\operatorname{vol}(\mathcal{C})\leq 2^n.$$

Let C be a convex body of \mathbb{R}^n with $vol(C) \ge 2^n$. We have

$$\lambda_1(\mathcal{C})\cdots\lambda_n(\mathcal{C})\operatorname{vol}(\mathcal{C})\leq 2^n.$$

But

$$\lambda_1(\mathcal{C}) \leq \cdots \leq \lambda_n(\mathcal{C}),$$

Let $\mathcal C$ be a convex body of $\mathbb R^n$ with $\mathrm{vol}(\mathcal C)\geq 2^n.$ We have

$$\lambda_1(\mathcal{C})\cdots\lambda_n(\mathcal{C})\mathsf{vol}(\mathcal{C})\leq 2^n.$$

But

$$\lambda_1(\mathcal{C}) \leq \cdots \leq \lambda_n(\mathcal{C}),$$

SO

 $\lambda_1(\mathcal{C})^n \mathrm{vol}(\mathcal{C}) \leq 2^n$,

Let $\mathcal C$ be a convex body of $\mathbb R^n$ with $\mathrm{vol}(\mathcal C)\geq 2^n.$ We have

$$egin{aligned} \lambda_1(\mathcal{C}) & \cdots & \lambda_n(\mathcal{C}) ext{vol}(\mathcal{C}) \leq 2^n. \ \lambda_1(\mathcal{C}) & \leq \cdots \leq \lambda_n(\mathcal{C}), \ \lambda_1(\mathcal{C})^n ext{vol}(\mathcal{C}) \leq 2^n, \ \lambda_1(\mathcal{C}) \leq 1, \end{aligned}$$

and thus

But

SO

Let $\mathcal C$ be a convex body of $\mathbb R^n$ with ${\rm vol}(\mathcal C)\geq 2^n.$ We have

$$\lambda_1(\mathcal{C})\cdots\lambda_n(\mathcal{C})\operatorname{vol}(\mathcal{C})\leq 2^n$$

But

$$\lambda_1(\mathcal{C}) \leq \cdots \leq \lambda_n(\mathcal{C}),$$

SO

 $\lambda_1(\mathcal{C})^n \mathrm{vol}(\mathcal{C}) \leq 2^n,$

and thus

 $\lambda_1(\mathcal{C}) \leq 1,$

i.e. C contains a non-zero point of \mathbb{Z}^n .

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, let $\mathcal{C}(X)$ denote the convex body of \mathbb{R}^{n+1} defined by

$$|x_0 + x_1\xi_1 + \dots + x_n\xi_n| \le X^{-n}, \ |x_1| \le X, \ \dots, \ |x_n| \le X$$

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, let $\mathcal{C}(X)$ denote the convex body of \mathbb{R}^{n+1} defined by

$$|x_0 + x_1\xi_1 + \dots + x_n\xi_n| \le X^{-n}, \ |x_1| \le X, \ \dots, \ |x_n| \le X$$

$$\operatorname{vol}(\mathcal{C}(X)) = 2^{n+1}$$

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, let $\mathcal{C}(X)$ denote the convex body of \mathbb{R}^{n+1} defined by

$$|x_0 + x_1\xi_1 + \dots + x_n\xi_n| \le X^{-n}, \ |x_1| \le X, \ \dots, \ |x_n| \le X$$

$$\operatorname{vol}(\mathcal{C}(X)) = 2^{n+1} \Longrightarrow \frac{1}{(n+1)!} \leq \lambda_1(X) \cdots \lambda_{n+1}(X) \leq 1$$

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, let $\mathcal{C}(X)$ denote the convex body of \mathbb{R}^{n+1} defined by

$$x_0 + x_1\xi_1 + \dots + x_n\xi_n | \le X^{-n}, |x_1| \le X, \dots, |x_n| \le X$$

$$\operatorname{vol}(\mathcal{C}(X)) = 2^{n+1} \Longrightarrow \ rac{1}{(n+1)!} \leq \lambda_1(X) \cdots \lambda_{n+1}(X) \leq 1$$

$$\implies \sum_{i=1}^{n+1} \log(\lambda_i(X)) = \mathcal{O}(1).$$

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}$. For each X > 0, let $\mathcal{C}(X)$ denote the convex body of \mathbb{R}^{n+1} defined by

$$x_0 + x_1\xi_1 + \dots + x_n\xi_n | \le X^{-n}, |x_1| \le X, \dots, |x_n| \le X$$

$$\operatorname{vol}(\mathcal{C}(X)) = 2^{n+1} \Longrightarrow \frac{1}{(n+1)!} \leq \lambda_1(X) \cdots \lambda_{n+1}(X) \leq 1$$

$$\implies \sum_{i=1}^{n+1} \log(\lambda_i(X)) = \mathcal{O}(1).$$

Ideally:
$$\sum_{i=1}^{n+1} \log(\lambda_i(X)) = 0$$

The ideal model of Schmidt and Summerer (2013)

