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52 4122 =132, ...



Diophantine equation
= an equation to be solved in integers



Diophantine equation
= an equation to be solved in integers

L@+ =] abeez



Diophantine equation
= an equation to be solved in integers

L@+ =] abeez

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.



Diophantine equation
= an equation to be solved in integers

L[240 =2 abce

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.

Example: d =1, u=2,v=1yieldsa=3, b=4,¢c=5



Diophantine equation
= an equation to be solved in integers

L[240 =2 abce

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.

Example: d =1, u=2,v=1yieldsa=3, b=4,¢c=5

2. a,b,c > 1, n >3 (Fermat, 1601-1665)



Diophantine equation
= an equation to be solved in integers

L[240 =2 abce

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.

Example: d =1, u=2,v=1yieldsa=3, b=4,¢c=5

2. a,b,c > 1, n >3 (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994



Diophantine equation
= an equation to be solved in integers

L[240 =2 abce

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.
Example: d =1, u=2,v=1yieldsa=3, b=4,¢c=5

2. a,b,c > 1, n >3 (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3. a,b,m,n > 2 (Catalan, 1844)



Diophantine equation
= an equation to be solved in integers

L[240 =2 abce

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.
Example: d =1, u=2,v=1yieldsa=3, b=4,¢c=5

2. a,b,c > 1, n >3 (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3. a,b,m,n > 2 (Catalan, 1844)

only solution: 3% = 23 4 1: Mih3ilescu 2002



Diophantine equation
= an equation to be solved in integers

1|+ b =c% abcel

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.

Example: d =1, u=2,v=1yieldsa=3, b=4,¢c=5

|
3

2.1a"+b"=c a,b,c > 1, n> 3 (Fermat, 1601-1665)
no solution: Wiles 1993, Taylor-Wiles 1994

3.1am=b"4+1| a,b,m n>2 (Catalan, 1844)
only solution: 3% = 23 4 1: Mih3ilescu 2002

4.|a®> =db>+1| d not a square (“Pell's equation”)



Diophantine equation
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1|+ b =c% abcel

<= (a,b,c)or (b,a,c)=d(u?—v?2uv,u*+v?)
with d,u,v € Z, ged(u,v) =1, u Z v mod 2.
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2.1a"+b"=c a,b,c > 1, n> 3 (Fermat, 1601-1665)
no solution: Wiles 1993, Taylor-Wiles 1994

3.1am=b"4+1| a,b,m n>2 (Catalan, 1844)
only solution: 3% = 23 4 1: Mih3ilescu 2002

4.|a®> =db>+1| d not a square (“Pell's equation”)
has infinitely many solutions for each d: Lagrange (1768)



A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...



A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...

a2 =2p2+1



A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...

a2 =20+1
s a2 -2 =1



A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...
a?=2b*+1
&P -2 =1

& (a—bV2)(a+bV2) =1



A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...

a?=2b*+1

a2 =1

& (a—bV2)(a+ bV2) =1
1

1
=0<a—b/2= <
- a+bv2 ~ 2by2

(since a > by/2)




A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...

a>=2p"+1

s a2 -2 =1

& (a—bV2)(a+bV2) =1
1 _ 1
a+bﬁ—2bﬁ

‘ f’ b2\f - 2;

=0<a-bV2= (since a > by/2)




A particular Pell equation: a*> =2b*>+1 (a,b>1)

Solutions: (a, b) = (3,2),(17,12),...
a?=2b*+1
&P -2 =1

& (a—bV2)(a+bV2) =1

1 1
=0<a—b/2= < since a > b2
- a+bﬁ—2b\@ (s > bV2)
1
<
‘ f’ 2b2\f—2b2

. a . . . .
i.e. b is a very good rational approximation to v/2.
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Convergents

The continued fraction expansion of £ € R is
o finite <= £ € Q

@ ultimately periodic <= ¢ is quadratic over QQ

1
The convergents of ¢ = (ap,a1,a2,...) =ao + — 0
a+——
' 1
a+ —
Pn 1
are — = (ag,a1,...,an) = a0+ € Q.
qn 1
nt+t——
az+
g
+_
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Axel Thue
(Norway, 1863-1922)

A Thue equation is an equation of the
form

p(x,y) =m
where p(x,y) € Z[x,y] is an

irreducible homogeneous polynomial of
degree > 3, and where m € Z.

We search for solutions (x, y) € Z2.
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Example of a Thue equation

x3—2y% =1, x,y €Z (x>y>0)

= (x=V2y) (3 V20 +92y?) = 1

1

— ‘x—\gﬁy‘: < =5 since x> V2y >y
X2+ Voxy +9/20y2 3
X 3 1
- *—\/5 §73
y 3y

Does there exist such good approximations to v/2 ? How many are they ?J
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d
Let o be an algebraic number of degree d > 3. For each p > 1+ > there
exists a constant C > 0 such that

for any x,y € Z with y > 0.

—> Any Thue equation has at most finitely many solutions.

Example: x3 —2y3 =1 ~ d=3 ~ takepu= - >
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Thue's theorem (1909)

d
Let a be an algebraic number of degree d > 3. For each u > 1+ > there
exists a constant C > 0 such that

for any x,y € Z with y > 0.

= Any Thue equation has at most finitely many solutions.

e e

w|
N o1

Example: x3 —2y3 =1 ~ d =3 ~ take u=

1
:>—>
3y3 —

5_3/5‘
y




Thue's theorem (1909)

d
Let a be an algebraic number of degree d > 3. For each u > 1+ > there
exists a constant C > 0 such that

for any x,y € Z with y > 0.

= Any Thue equation has at most finitely many solutions.

(.UIOO
I\JIU'I
I
—_
_I_

I

Example: x3 —2y3 =1 ~ d =3 ~ take u=

1
3y3 —
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Thue's theorem (1909)

d
Let a be an algebraic number of degree d > 3. For each u > 1+ > there
exists a constant C > 0 such that

for any x,y € Z with y > 0.

= Any Thue equation has at most finitely many solutions.

Example: x3 —2y3 =1 ~ d=3 ~ takeu—g

1 1
Pz = s(e)

= —
3y3_
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Geometry of numbers (Minkowski, 1889)

A (Minkowski) convex body in R" is a subset of R” which is
@ compact,
@ convex,
@ symmetric with respect to 0,

@ and has non-empty interior.
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Fact: The image of a convex body C of R” by an invertible linear map
T:R" — R" is a convex body T(C) of R” with

vol(T(C)) = | det(T)|vol(C).

Example: Let X > 1. The rectangle y

x| < X1
C:
ly| < X

is a convex body C of R? of volume (area) 4.
Given £ € R, the inverse image of C under the
linear map T(x,y) = (x — £y, y) is the parallel-
ogram

T_I(C): |X_£y| SX_l
ly| < X

Since det(T) = 1, its volume is also 4.
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Minkowski's first convex body theorem

Let C be a convex body of R”. If vol(C) > 2", then C contains a non-zero
integer point.

Corollary (Dirichlet, 1842)

Let £ € R. For each X > 1, there exists a non-zero point (x,y) € Z? such
that

Ix—&y| < X7t and |y| < X.

1

L.
Iy\

= If £ ¢ Q, there are infinitely many rational numbers Xe Q with
y

X 1
<2
y y
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Thue-Siegel-Roth theorem (1909, 1921, 1955)

Let a be an algebraic number of degree d > 3. For each € > 0, there
exists a constant C > 0 such that

for any x,y € Z with y > 0.

“One cannot do much better than Dirichlet in approximating algebraic
numbers by rational numbers.”

Open problem: Can the product |y(x — yv/2)| be made arbitrarily small
for positive integers x, y?
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A more general construction

Let &,...,&, € R. For each X > 0, the convex body of R"*! defined by
’XO +x1é1+ - +Xn§n| < X_n7 |X1| <X, ..., ’Xn| <X (1)

has volume 27+1,

Corollary (Dirichlet, 1842)

For each X > 0, the equations (1) have a solution in integers X, . . ., Xn
not all 0.
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denoted \;(C), is the smallest A such that AC contains at least / linearly
independent points of Z".
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Minkowski's successive minima

Let C be a convex body in R". For i =1,...,n, the i-th minimum of C,

denoted \;(C), is the smallest A such that AC contains at least / linearly
independent points of Z".

A =14
=3
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Examples (n = 2):

y

)\1 = )\2 =1, VO|(C) =4 )\1 = )\2 =1, VO|(C) =2
Here A1 Aovol(C) = 27 Here A1 Aovol(C) = 2"/n!
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Second theorem implies first

Let C be a convex body of R” with vol(C) > 2".

We have
A1(C) - An(C)vol(C) < 2".

But

M(C) < < A(0),
o)

A1(C)"vol(C) < 27,
and thus

)\1(6) < 17

i.e. C contains a non-zero point of Z".
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Parametric geometry of numbers

Let &1,...,&, € R. For each X > 0, let C(X) denote the convex body of

R"*! defined by

’X0+X1£1+"’+Xn€n’§X7na ’X1|SX7 sy ’Xn|SX

For i =1,...,n, denote by \;(X) = \i(C(X)) the i-th minimum of C(X)

v

vol(C(X)) = 2" —=

= > log(Xi(X)) = O(1).
i=1

Ideally:

1

n+1

CES] < A(X) - Apa(X) <1

n+1

> log(Ai(X)) =0
i=1




The ideal model of Schmidt and Summerer (2013)
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