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Diophantine equation
= an equation to be solved in integers

1. a2 + b2 = c2 a, b, c ∈ Z

⇐⇒ (a, b, c) or (b, a, c) = d(u2 − v2, 2uv , u2 + v2)
with d , u, v ∈ Z, gcd(u, v) = 1, u 6≡ v mod 2.

Example: d = 1, u = 2, v = 1 yields a = 3, b = 4, c = 5

2. an + bn = cn a, b, c ≥ 1, n ≥ 3 (Fermat, 1601-1665)

no solution: Wiles 1993, Taylor-Wiles 1994

3. am = bn + 1 a, b,m, n ≥ 2 (Catalan, 1844)

only solution: 32 = 23 + 1: Mihăilescu 2002

4. a2 = db2 + 1 d not a square (“Pell’s equation”)

has infinitely many solutions for each d : Lagrange (1768)
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A particular Pell equation: a2 = 2b2 + 1 (a, b ≥ 1)

Solutions: (a, b) = (3, 2), (17, 12), . . .

a2 = 2b2 + 1

⇔ a2 − 2b2 = 1

⇔ (a− b
√

2)(a + b
√

2) = 1

⇒ 0 ≤ a− b
√

2 =
1

a + b
√

2
≤ 1

2b
√

2
(since a ≥ b

√
2)

⇒
∣∣∣a
b
−
√

2
∣∣∣ ≤ 1

2b2
√

2
≤ 1

2b2

i.e.
a

b
is a very good rational approximation to

√
2.
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Convergents

The continued fraction expansion of ξ ∈ R is

finite ⇐⇒ ξ ∈ Q

ultimately periodic ⇐⇒ ξ is quadratic over Q

The convergents of ξ = (a0, a1, a2, . . . ) = a0 +
1

a1 +
1

a2 +
1

. . .

are
pn
qn

= (a0, a1, . . . , an) = a0 +
1

a1 +
1

a2+
.. .

+
1

an

∈ Q.
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Application to Pell equation

Theorem (Legendre)∣∣∣a
b
− ξ
∣∣∣ ≤ 1

2b2
=⇒ a

b
is a convergent of ξ

=⇒ The solutions of a Pell equation a2 = db2 + 1 come from

convergents
a

b
of
√
d .

Example: a2 = 2b2 + 1  
√

2 = (1, 2, 2, 2, . . . )

(1, 2) = 1 +
1

2
=

3

2
is a convergent of

√
2: 32 = 2× 22 + 1

(1, 2, 2) = 1 +
1

2 +
1

2

=
7

5
is a convergent of

√
2: 72 = 2× 52 − 1

(1, 2, 2, 2) =
17

12
is a convergent of

√
2: 172 = 2× 122 + 1
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Thue equation

Axel Thue
(Norway, 1863-1922)

A Thue equation is an equation of the
form

p(x , y) = m

where p(x , y) ∈ Z[x , y ] is an
irreducible homogeneous polynomial of
degree ≥ 3, and where m ∈ Z.

We search for solutions (x , y) ∈ Z2.
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Example of a Thue equation

x3 − 2y3 = 1, x , y ∈ Z (x > y > 0)

⇐⇒
(
x − 3
√

2y
) (

x2 + 3
√

2xy + 3
√

2
2
y2
)

= 1

=⇒
∣∣∣x − 3

√
2y
∣∣∣ =

1

x2 + 3
√

2xy + 3
√

2
2
y2
≤ 1

3y2
since x ≥ 3

√
2y ≥ y

=⇒
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≤ 1

3y3

Does there exist such good approximations to 3
√

2 ? How many are they ?
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Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1

 d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3

 take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣

≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3

=⇒ y ≤
(

1

3C

)3



Thue’s theorem (1909)

Let α be an algebraic number of degree d ≥ 3. For each µ > 1 +
d

2
, there

exists a constant C > 0 such that∣∣∣∣ xy − α
∣∣∣∣ ≥ C

yµ

for any x , y ∈ Z with y > 0.

=⇒ Any Thue equation has at most finitely many solutions.

Example: x3 − 2y 3 = 1  d = 3  take µ =
8

3
>

5

2
= 1 +

d

2

=⇒ 1

3y3
≥
∣∣∣∣ xy − 3

√
2

∣∣∣∣ ≥ C

y8/3
=⇒ y ≤

(
1

3C

)3



Geometry of numbers (Minkowski, 1889)

A (Minkowski) convex body in Rn is a subset of Rn which is

compact,

convex,

symmetric with respect to 0,

and has non-empty interior.
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Fact: The image of a convex body C of Rn by an invertible linear map
T : Rn → Rn is a convex body T (C) of Rn with

vol(T (C)) = | det(T )|vol(C).

Example: Let X ≥ 1. The rectangle

C :

{
|x | ≤ X−1

|y | ≤ X

is a convex body C of R2 of volume (area) 4.
Given ξ ∈ R, the inverse image of C under the
linear map T (x , y) = (x − ξy , y) is the parallel-
ogram

T−1(C) :

{
|x − ξy | ≤ X−1

|y | ≤ X

Since det(T ) = 1, its volume is also 4.

X−1

X

x

y

X−1

X

x

y
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C :

{
|x | ≤ X−1

|y | ≤ X

is a convex body C of R2 of volume (area) 4.
Given ξ ∈ R, the inverse image of C under the
linear map T (x , y) = (x − ξy , y) is the parallel-
ogram

T−1(C) :

{
|x − ξy | ≤ X−1

|y | ≤ X

Since det(T ) = 1, its volume is also 4.
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Minkowski’s first convex body theorem

Let C be a convex body of Rn. If vol(C) ≥ 2n, then C contains a non-zero
integer point.

Corollary (Dirichlet, 1842)

Let ξ ∈ R. For each X > 1, there exists a non-zero point (x , y) ∈ Z2 such
that

|x − ξy | ≤ X−1 and |y | ≤ X .

=⇒
∣∣∣∣xy − ξ

∣∣∣∣ ≤ X−1

|y |
≤ 1

y2
.

=⇒ If ξ /∈ Q, there are infinitely many rational numbers
x

y
∈ Q with∣∣∣∣xy − ξ

∣∣∣∣ ≤ 1

y2
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Thue-Siegel-Roth theorem (1909, 1921, 1955)

Let α be an algebraic number of degree d ≥ 3. For each ε > 0, there
exists a constant C > 0 such that∣∣∣∣ xy − α

∣∣∣∣ ≥ C

y2+ε

for any x , y ∈ Z with y > 0.

“One cannot do much better than Dirichlet in approximating algebraic
numbers by rational numbers.”

Open problem: Can the product |y(x − y 3
√

2)| be made arbitrarily small
for positive integers x , y?
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A more general construction

Let ξ1, . . . , ξn ∈ R. For each X > 0, the convex body of Rn+1 defined by

|x0 + x1ξ1 + · · ·+ xnξn| ≤ X−n, |x1| ≤ X , . . . , |xn| ≤ X (1)

has volume 2n+1.

Corollary (Dirichlet, 1842)

For each X > 0, the equations (1) have a solution in integers x0, . . . , xn
not all 0.
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Minkowski’s successive minima

Let C be a convex body in Rn. For i = 1, . . . , n, the i -th minimum of C,
denoted λi (C), is the smallest λ such that λC contains at least i linearly
independent points of Zn.
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Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4
Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2
Here λ1λ2vol(C) = 2n/n!



Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4
Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2
Here λ1λ2vol(C) = 2n/n!



Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4

Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2
Here λ1λ2vol(C) = 2n/n!



Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4
Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2
Here λ1λ2vol(C) = 2n/n!



Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4
Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2
Here λ1λ2vol(C) = 2n/n!



Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4
Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2

Here λ1λ2vol(C) = 2n/n!



Minkowski’s second convex body theorem

Let C be a convex body in Rn. Then

2n

n!
≤ λ1(C) · · ·λn(C)vol(C) ≤ 2n.

Examples (n = 2):

x

y

1

1

λ1 = λ2 = 1, vol(C) = 4
Here λ1λ2vol(C) = 2n

x

y

1

1

λ1 = λ2 = 1, vol(C) = 2
Here λ1λ2vol(C) = 2n/n!



Second theorem implies first

Let C be a convex body of Rn with vol(C) ≥ 2n.

We have
λ1(C) · · ·λn(C)vol(C) ≤ 2n.

But
λ1(C) ≤ · · · ≤ λn(C),

so
λ1(C)nvol(C) ≤ 2n,

and thus
λ1(C) ≤ 1,

i.e. C contains a non-zero point of Zn.
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Parametric geometry of numbers

Let ξ1, . . . , ξn ∈ R. For each X > 0, let C(X ) denote the convex body of
Rn+1 defined by

|x0 + x1ξ1 + · · ·+ xnξn| ≤ X−n, |x1| ≤ X , . . . , |xn| ≤ X

For i = 1, . . . , n, denote by λi (X ) = λi (C(X )) the i-th minimum of C(X ).

vol(C(X )) = 2n+1 =⇒ 1

(n + 1)!
≤ λ1(X ) · · ·λn+1(X ) ≤ 1

=⇒
n+1∑
i=1

log(λi (X )) = O(1).

Ideally:
n+1∑
i=1

log(λi (X )) = 0
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The ideal model of Schmidt and Summerer (2013)
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