An effective version of Lindemann-Weierstrass theorem by methods of algebraic independence

Damien Roy (University of Ottawa)

Days of Transcendence (online)

celebrating Yuri Nesterenko's 75th birthday,

January 31-February 2, 2022

Two equivalent forms:

(i) If $\beta_1, \ldots, \beta_N \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_1}, \ldots, e^{\beta_N}$ are linearly independent over \mathbb{Q} .

Two equivalent forms:

- (i) If $\beta_1, \ldots, \beta_N \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_1}, \ldots, e^{\beta_N}$ are linearly independent over \mathbb{Q} .
- (ii) If $\alpha_1, \ldots, \alpha_t \in \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_t}$ are algebraically independent over \mathbb{Q} .

Two equivalent forms:

(i) If $\beta_1, \ldots, \beta_N \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_1}, \ldots, e^{\beta_N}$ are linearly independent over \mathbb{Q} .

(ii) If
$$\alpha_1, \ldots, \alpha_t \in \overline{\mathbb{Q}}$$
 are linearly independent over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_t}$ are algebraically independent over \mathbb{Q} .

Quantitative form of (ii):

Let $0 \neq P \in \mathbb{Z}[X_1, \dots, X_t]$ with $deg(P) \leq D$ and $H(P) = ||P|| \leq H$.

Two equivalent forms:

(i) If $\beta_1, \ldots, \beta_N \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_1}, \ldots, e^{\beta_N}$ are linearly independent over \mathbb{Q} .

(ii) If
$$\alpha_1, \ldots, \alpha_t \in \overline{\mathbb{Q}}$$
 are linearly independent over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_t}$ are algebraically independent over \mathbb{Q} .

Quantitative form of (ii):

 $\text{Let } 0 \neq P \in \mathbb{Z}[X_1, \dots, X_t] \text{ with } \boxed{ \deg(P) \leq D \text{ and } H(P) = \|P\| \leq H }.$

- Mahler (1931): $|P(e^{\alpha_1}, \ldots, e^{\alpha_t})| \ge H^{-c_1D^t}$ if $H \ge H_0(D)$, for some non-explicit c_1 and H_0 .
- Dirichlet box principle $\Rightarrow c_1 \ge 1/(2t!)$.

Two equivalent forms:

(i) If $\beta_1, \ldots, \beta_N \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_1}, \ldots, e^{\beta_N}$ are linearly independent over \mathbb{Q} .

(ii) If
$$\alpha_1, \ldots, \alpha_t \in \overline{\mathbb{Q}}$$
 are linearly independent over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_t}$ are algebraically independent over \mathbb{Q} .

Quantitative form of (ii):

Let $0 \neq P \in \mathbb{Z}[X_1, \dots, X_t]$ with $\deg(P) \leq D$ and $H(P) = \|P\| \leq H$.

- Mahler (1931): $|P(e^{\alpha_1}, \ldots, e^{\alpha_t})| \ge H^{-c_1D^t}$ if $H \ge H_0(D)$, for some non-explicit c_1 and H_0 .
- Dirichlet box principle $\Rightarrow c_1 \ge 1/(2t!)$.
- Nesterenko (1977): from his result about *E*-functions, one can take: $c_1 = (4d)^t (td^2 + d + 1)$ and $H_0(D) = \exp(\exp(c_2D^{2t}\log(D+1)))$ where $d = [K : \mathbb{Q}]$ and $K = \mathbb{Q}(\alpha_1, \dots, \alpha_t)$.

Main result

Theorem (2013). $|P(e^{\alpha_1}, \ldots, e^{\alpha_t})| \ge H^{-3dS^t} \exp\left(-(cqS)^{18S^t}\right)$ where S = 6dt(t!)D, $c = \max_{\substack{v \mid \infty}} \{|\alpha_1|_v, \ldots, |\alpha_t|_v\},$ $q \in \mathbb{Z}_{>0}$ such that $q\alpha_1, \ldots, q\alpha_t \in \mathcal{O}_K$.

- Thus, one can take $c_1 = 6d(6dt(t!))^t$ and $H_0(D) = \exp((cqS)^6)$.
- Improves on the measure of Ably (1994),
- but worst than that of Sert (1999).

Reference: Une version effective du théorème de Lindemann-Weierstrass par des méthodes d'indépendance algébrique, *L'Enseignement Mathématique, Revue Internationale*, **59** (2013), 287–306.

A first proof of Lindemann-Weierstrass by purely algebraic independence method was proposed by Chudnovsky for $t \leq 3$ in 1980, followed by that of Ably in 1994.

A first proof of Lindemann-Weierstrass by purely algebraic independence method was proposed by Chudnovsky for $t \le 3$ in 1980, followed by that of Ably in 1994.

Interpolation polynomials

Let
$$\mathbb{N} = \{0, 1, 2, ...\}$$
. For each $\mathbf{m} = (m_1, ..., m_t) \in \mathbb{N}^t$, set
 $\mathbf{m} \cdot \boldsymbol{\alpha} = m_1 \alpha_1 + \dots + m_t \alpha_t$ and $|\mathbf{m}| = m_1 + \dots + m_t$.
Define also

$$\Sigma(S) = \{\mathbf{m} \in \mathbb{N}^t; |\mathbf{m}| < S\}$$
 and $N = |\Sigma(S)| = {S-1+t \choose t}.$

Interpolation polynomials

Let
$$\mathbb{N} = \{0, 1, 2, \dots\}$$
. For each $\mathbf{m} = (m_1, \dots, m_t) \in \mathbb{N}^t$, set

 $\mathbf{m} \cdot \boldsymbol{\alpha} = m_1 \alpha_1 + \dots + m_t \alpha_t$ and $|\mathbf{m}| = m_1 + \dots + m_t$.

Define also

$$\Sigma(S) = \{ \mathbf{m} \in \mathbb{N}^t \ ; \ |\mathbf{m}| < S \} \quad ext{and} \quad N = |\Sigma(S)| = inom{S-1+t}{t}.$$

For each C^{∞} function $f : \mathbb{C} \to \mathbb{C}$ and each integer $T \ge 1$, there is a unique polynomial $p(x) \in \mathbb{C}[x]$ with $\deg(p) < NT$ such that

$$p^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha}) = f^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha})$$

for each $\mathbf{m} \in \Sigma(S)$ and $j = 0, 1, \dots, T - 1$. It is given by

$$p(x) = \sum_{\mathbf{m},j} f^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha}) A_{\mathbf{m},j}(x) \text{ with } A_{\mathbf{m},j}(x) \in K[x].$$

1 The auxiliary function

lt is

$$g(x)=e^x-p(x)$$

where p(x) is the interpolation polynomial for $f(x) = e^x$. Thus

$$g(\mathbf{x}) = e^{\mathbf{x}} - \sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \le j < T}} e^{\mathbf{m} \cdot \alpha} A_{\mathbf{m}, j}(\mathbf{x}).$$

$(\underline{1})$ The auxiliary function

lt is

$$g(x)=e^{x}-p(x)$$

where p(x) is the interpolation polynomial for $f(x) = e^x$. Thus

$$g(\mathbf{x}) = e^{\mathbf{x}} - \sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \le j < T}} e^{\mathbf{m} \cdot \boldsymbol{\alpha}} A_{\mathbf{m}, j}(\mathbf{x}).$$

For each $\mathbf{n} \in \mathbb{N}^t$ and $\ell \in \mathbb{N}$, we find

$$g^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha}) = e^{\mathbf{n} \cdot \boldsymbol{\alpha}} - \sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \le j < T}} e^{\mathbf{m} \cdot \boldsymbol{\alpha}} A_{\mathbf{m},j}^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha}) = Q_{\mathbf{n},\ell}(1, e^{\alpha_1}, \dots, e^{\alpha_t}),$$

for some homogeneous polynomial $Q_{\mathbf{n},\ell} \in K[X_0, X_1, \dots, X_t]$ of degree max $\{S - 1, |\mathbf{n}|\}$.

(2) Growth estimate

Since $e^x = \sum_{k=0}^{\infty} x^k / k!$, we also have

$$g(x) = \sum_{k=NT}^{\infty} \frac{1}{k!} (x^k - p_k(x))$$

where $p_k(x)$ is the interpolation polynomial of x^k . The coefficient 1/k! makes the summands small (as in Hermite's method). We find

$$g(x) = \sum_{k=NT}^{\infty} \frac{1}{k!} \left(x^k - \sum_{\substack{\mathbf{m}\in\Sigma(S)\\0\leq j< T}} k^{(j)} (\mathbf{m}\cdot\boldsymbol{\alpha})^{k-j} A_{\mathbf{m},j}(\mathbf{x}) \right),$$

thus

$$g^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha}) = \sum_{k=NT}^{\infty} \frac{1}{k!} \left(k^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})^{k-\ell} - \sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \le j < T}} k^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha})^{k-j} A_{\mathbf{m},j}^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha}) \right)$$

for each $\ell \in \mathbb{N}$ and $\mathbf{n} \in \mathbb{N}^t$.

Recall that, for $\mathbf{n} \in \mathbb{N}^t$ and $\ell \in N$ with $|\mathbf{n}| = S$ and $\ell < T$, we have

$$g^{(\ell)}(\mathbf{n}\cdot oldsymbol{lpha}) = Q_{\mathbf{n},\ell}(1,e^{lpha_1},\ldots,e^{lpha_t})$$

for some homogeneous polynomial $Q_{n,\ell} \in K[X_0, \ldots, X_t]$ of degree S.

These polynomials have no common zero in $\mathbb{P}^t(\mathbb{C})$.

Note however that, by construction, $Q_{\mathbf{m},\ell}(1, e^{\alpha_1}, \ldots, e^{\alpha_t}) = 0$ for each $\mathbf{m} \in \mathbb{N}^t$ with $|\mathbf{m}| < S$ (i.e $\mathbf{m} \in \Sigma(S)$) and $\ell = 0, \ldots, T - 1$.

$\textcircled{4} \mathsf{Resultant}$

Let $ilde{P} \in \mathbb{Z}[X_0, \dots, X_n]$ the homogeneous polynomial of degree D such that

$$P(X_1,\ldots,X_t)=\tilde{P}(1,X_1,\ldots,X_t).$$

Let $\Delta \in \mathbb{Z}[lpha_1,\ldots,lpha_t]$, $B \geq 1$ and $\delta > 0$ such that

(i)
$$\Delta Q_{\mathbf{n},\ell} \in \mathcal{O}_k[X_0,\ldots,X_n],$$

(iii) $|\Delta Q_{\mathbf{n}\ell}(1, e^{\alpha_1}, \dots, e^{\alpha_t})| \leq \delta.$

(ii) $\max_{\mathbf{v}\mid\infty} \left\|\Delta Q_{\mathbf{n},\ell}\right\|_{\mathbf{v}} \leq B$,

 $\begin{array}{l} \text{for each } \mathbf{n} \in \mathbb{N}^t \text{ with } |\mathbf{n}| = S \text{,} \\ \text{and each } \ell = 0, 1, \dots, \, \mathcal{T} - 1. \end{array}$

Then, there are integer linear combinations $\tilde{Q}_1, \ldots, \tilde{Q}_t$ of the polynomials $\Delta Q_{\mathbf{n},\ell}$ such that $\tilde{P}, \tilde{Q}_1, \ldots, \tilde{Q}_t$ have no common zero in $\mathbb{P}^t(\mathbb{C})$, and

$$1 \leq \left| \mathsf{Norm}_{\mathcal{K}/\mathbb{Q}}(\operatorname{Res}(\tilde{P}, \tilde{Q}_1, \dots, \tilde{Q}_t)) \right|$$

$$\leq H(P)^{dS^t} \left((t+1)^{8S} S^{2t} B \right)^{dt DS^{t-1}} \max \left\{ \frac{\delta}{B}, \left| P(e^{\alpha_1}, \dots, e^{\alpha_t}) \right| \right\}.$$

(5) Choice of parameters

To simplify, let c_1, c_2, c_3, \ldots denote quantities that depend only on c, q, d, and D. For a suitable Δ , we can take

$$B = (c_1 T^2)^T$$
 and $\delta = \frac{B}{T^{NT}}$.

(5) Choice of parameters

To simplify, let c_1 , c_2 , c_3 , ... denote quantities that depend only on c, q, d, and D. For a suitable Δ , we can take

$$B = (c_1 T^2)^T$$
 and $\delta = rac{B}{T^{NT}}.$

Recall that S = 6dt(t!)D and that

$$|N = |\Sigma(S)| = {S-1+t \choose t} \ge rac{S^t}{t!} \ge 6dt DS^{t-1}$$

Thus we get

$$\begin{split} &1 \leq c_2 H(P)^{dS^t} B^{dt DS^{t-1}} \max\left\{\frac{\delta}{B}, \left|P(e^{\alpha_1}, \dots, e^{\alpha_t})\right|\right\} \\ &\leq (c_3 H(P))^{dS^t} T^{NT/3} \max\left\{T^{-NT}, \left|P(e^{\alpha_1}, \dots, e^{\alpha_t})\right|\right\} \end{split}$$

(5) Choice of parameters

To simplify, let c_1 , c_2 , c_3 , ... denote quantities that depend only on c, q, d, and D. For a suitable Δ , we can take

$$B = (c_1 T^2)^T$$
 and $\delta = \frac{B}{T^{NT}}$.

Recall that S = 6dt(t!)D and that

$$N = |\Sigma(S)| = {S-1+t \choose t} \ge rac{S^t}{t!} \ge 6dt DS^{t-1}.$$

Thus we get

If H(

$$1 \leq c_2 H(P)^{dS^t} B^{dtDS^{t-1}} \max\left\{\frac{\delta}{B}, |P(e^{\alpha_1}, \dots, e^{\alpha_t})|\right\}$$
$$\leq (c_3 H(P))^{dS^t} T^{NT/3} \max\left\{T^{-NT}, |P(e^{\alpha_1}, \dots, e^{\alpha_t})|\right\}$$
$$P) \geq c_4, \text{ then } (c_3 H(P))^{dS^t} \leq T^{NT/3} \leq (c_3 H(P))^{2dS^t} \text{ for some}$$

integer $T \geq 1$, and thus

$$|P(e^{\alpha_1},\ldots,e^{\alpha_1})| \ge (c_3 H(P))^{-3dS^t}$$

 $\sum_{\substack{n=1\\ n \in \mathbb{Z}}} \sum_{j=1}^{n} (n) \leq |l - n|^{(n)} \leq |l - n|^{(n)} \leq |l - n|^{(n)} \leq |l - n|^{(n)}$ $\int w \| \mathcal{L} w \| \leq \sigma(\mathcal{L}),$ $\chi_{\mathcal{F}^{(n)}} \leq \mathcal{A}_{n-1} \mathcal{N}(\mathcal{F})_{\mathcal{N}_{n-1}}$ Bon anniversaire! $+rdeg \mathcal{Q}(q, P(q), Q(q), R(q)) \ge 3$ if 0 < |q| < 1 $y_{2} = (e_{t}p_{e_{t}}p_{[c,d^{2m}e_{h}(d_{t})]}) - 1$ $y_{0} < y_{1} < \dots < y_{r} <$