An effective version of Lindemann-Weierstrass theorem by methods of algebraic independence

Damien Roy (University of Ottawa)

> Days of Transcendence (online)
celebrating Yuri Nesterenko's 75th birthday,

January 31-February 2, 2022

Lindemann-Weierstrass theorem

Two equivalent forms:
(i) If $\beta_{1}, \ldots, \beta_{N} \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_{1}}, \ldots, e^{\beta_{N}}$ are linearly independent over \mathbb{Q}.

Lindemann-Weierstrass theorem

Two equivalent forms:
(i) If $\beta_{1}, \ldots, \beta_{N} \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_{1}}, \ldots, e^{\beta_{N}}$ are linearly independent over \mathbb{Q}.
(ii) If $\alpha_{1}, \ldots, \alpha_{t} \in \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q}, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}$ are algebraically independent over \mathbb{Q}.

Lindemann-Weierstrass theorem

Two equivalent forms:
(i) If $\beta_{1}, \ldots, \beta_{N} \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_{1}}, \ldots, e^{\beta_{N}}$ are linearly independent over \mathbb{Q}.
(ii) If $\alpha_{1}, \ldots, \alpha_{t} \in \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q}, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}$ are algebraically independent over \mathbb{Q}.

Quantitative form of (ii):

Let $0 \neq P \in \mathbb{Z}\left[X_{1}, \ldots, X_{t}\right]$ with $\operatorname{deg}(P) \leq D$ and $H(P)=\|P\| \leq H$.

Lindemann-Weierstrass theorem

Two equivalent forms:
(i) If $\beta_{1}, \ldots, \beta_{N} \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_{1}}, \ldots, e^{\beta_{N}}$ are linearly independent over \mathbb{Q}.
(ii) If $\alpha_{1}, \ldots, \alpha_{t} \in \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q}, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}$ are algebraically independent over \mathbb{Q}.

Quantitative form of (ii):

Let $0 \neq P \in \mathbb{Z}\left[X_{1}, \ldots, X_{t}\right]$ with $\operatorname{deg}(P) \leq D$ and $H(P)=\|P\| \leq H$.

- Mahler (1931): $\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right| \geq H^{-c_{1} D^{t}}$ if $H \geq H_{0}(D)$, for some non-explicit c_{1} and H_{0}.
- Dirichlet box principle $\Rightarrow c_{1} \geq 1 /(2 t!)$.

Lindemann-Weierstrass theorem

Two equivalent forms:
(i) If $\beta_{1}, \ldots, \beta_{N} \in \overline{\mathbb{Q}}$ are distinct, then $e^{\beta_{1}}, \ldots, e^{\beta_{N}}$ are linearly independent over \mathbb{Q}.
(ii) If $\alpha_{1}, \ldots, \alpha_{t} \in \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q}, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}$ are algebraically independent over \mathbb{Q}.

Quantitative form of (ii):

Let $0 \neq P \in \mathbb{Z}\left[X_{1}, \ldots, X_{t}\right]$ with $\operatorname{deg}(P) \leq D$ and $H(P)=\|P\| \leq H$.

- Mahler (1931): $\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right| \geq H^{-c_{1} D^{t}}$ if $H \geq H_{0}(D)$, for some non-explicit c_{1} and H_{0}.
- Dirichlet box principle $\Rightarrow c_{1} \geq 1 /(2 t!)$.
- Nesterenko (1977): from his result about E-functions, one can take:

$$
c_{1}=(4 d)^{t}\left(t d^{2}+d+1\right) \text { and } H_{0}(D)=\exp \left(\exp \left(c_{2} D^{2 t} \log (D+1)\right)\right)
$$

where $d=[K: \mathbb{Q}]$ and $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$.

Main result

Theorem (2013). $\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right| \geq H^{-3 d S^{t}} \exp \left(-(c q S)^{18 S^{t}}\right)$ where $S=6 d t(t!) D$,

$$
c=\max _{v \mid \infty}\left\{\left|\alpha_{1}\right|_{v}, \ldots,\left|\alpha_{t}\right|_{v}\right\},
$$

$q \in \mathbb{Z}_{>0}$ such that $q \alpha_{1}, \ldots, q \alpha_{t} \in \mathcal{O}_{K}$.

- Thus, one can take $c_{1}=6 d(6 d t(t!))^{t}$ and $H_{0}(D)=\exp \left((c q S)^{6}\right)$.
- Improves on the measure of Ably (1994),
- but worst than that of Sert (1999).

Reference: Une version effective du théorème de Lindemann-Weierstrass par des méthodes d'indépendance algébrique, L'Enseignement Mathématique, Revue Internationale, 59 (2013), 287-306.

The method

A first proof of Lindemann-Weierstrass by purely algebraic independence method was proposed by Chudnovsky for $t \leq 3$ in 1980, followed by that of Ably in 1994.
(1)

> auxiliary function with prescribed vanishing

Schwarz lemma

(3) zero estimate
(4) Criterion for algebraic independence

The method

A first proof of Lindemann-Weierstrass by purely algebraic independence method was proposed by Chudnovsky for $t \leq 3$ in 1980, followed by that of Ably in 1994.
auxiliary function with prescribed vanishing

Schwarz lemma
(4) Criterion for algebraic independence
(3)

growth estimates
"almost direct"
resultants

Interpolation polynomials

Let $\mathbb{N}=\{0,1,2, \ldots\}$. For each $\mathbf{m}=\left(m_{1}, \ldots, m_{t}\right) \in \mathbb{N}^{t}$, set

$$
\mathbf{m} \cdot \boldsymbol{\alpha}=m_{1} \alpha_{1}+\cdots+m_{t} \alpha_{t} \quad \text { and } \quad|\mathbf{m}|=m_{1}+\cdots+m_{t} .
$$

Define also

$$
\Sigma(S)=\left\{\mathbf{m} \in \mathbb{N}^{t} ;|\mathbf{m}|<S\right\} \quad \text { and } \quad N=|\Sigma(S)|=\binom{S-1+t}{t}
$$

Interpolation polynomials

Let $\mathbb{N}=\{0,1,2, \ldots\}$. For each $\mathbf{m}=\left(m_{1}, \ldots, m_{t}\right) \in \mathbb{N}^{t}$, set

$$
\mathbf{m} \cdot \boldsymbol{\alpha}=m_{1} \alpha_{1}+\cdots+m_{t} \alpha_{t} \quad \text { and } \quad|\mathbf{m}|=m_{1}+\cdots+m_{t} .
$$

Define also

$$
\Sigma(S)=\left\{\mathbf{m} \in \mathbb{N}^{t} ;|\mathbf{m}|<S\right\} \quad \text { and } \quad N=|\Sigma(S)|=\binom{S-1+t}{t}
$$

For each C^{∞} function $f: \mathbb{C} \rightarrow \mathbb{C}$ and each integer $T \geq 1$, there is a unique polynomial $p(x) \in \mathbb{C}[x]$ with $\operatorname{deg}(p)<N T$ such that

$$
p^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha})=f^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha})
$$

for each $\mathbf{m} \in \Sigma(S)$ and $j=0,1, \ldots, T-1$. It is given by

$$
p(x)=\sum_{\mathbf{m}, j} f^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha}) A_{\mathbf{m}, j}(x) \quad \text { with } A_{\mathbf{m}, j}(x) \in K[x] .
$$

(1) The auxiliary function

It is

$$
g(x)=e^{x}-p(x)
$$

where $p(x)$ is the interpolation polynomial for $f(x)=e^{x}$. Thus

$$
g(x)=e^{x}-\sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \leq j<T}} e^{\mathbf{m} \cdot \boldsymbol{\alpha}} A_{\mathbf{m}, j}(\mathbf{x})
$$

(1) The auxiliary function

It is

$$
g(x)=e^{x}-p(x)
$$

where $p(x)$ is the interpolation polynomial for $f(x)=e^{x}$. Thus

$$
g(x)=e^{x}-\sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \leq j<T}} e^{\boldsymbol{m} \cdot \alpha} A_{\boldsymbol{m}, j}(\mathbf{x}) .
$$

For each $\mathbf{n} \in \mathbb{N}^{t}$ and $\ell \in \mathbb{N}$, we find

$$
g^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})=e^{\mathbf{n} \cdot \boldsymbol{\alpha}}-\sum_{\substack{\mathbf{m} \in \Sigma(S) \\ 0 \leq j<T}} e^{\mathbf{m} \cdot \alpha} A_{\mathbf{m}, j}^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})=Q_{\mathbf{n}, \ell}\left(1, e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right),
$$

for some homogeneous polynomial $Q_{\mathbf{n}, \ell} \in K\left[X_{0}, X_{1}, \ldots, X_{t}\right]$ of degree $\max \{S-1,|\mathbf{n}|\}$.

(2) Growth estimate

Since $e^{x}=\sum_{k=0}^{\infty} x^{k} / k!$, we also have

$$
g(x)=\sum_{k=N T}^{\infty} \frac{1}{k!}\left(x^{k}-p_{k}(x)\right)
$$

where $p_{k}(x)$ is the interpolation polynomial of x^{k}. The coefficient $1 / k$! makes the summands small (as in Hermite's method). We find

$$
g(x)=\sum_{k=N T}^{\infty} \frac{1}{k!}\left(x^{k}-\sum_{\substack{\mathbf{m} \in \sum(S) \\ 0 \leq j<T}} k^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha})^{k-j} A_{\mathbf{m}, j}(\mathbf{x})\right),
$$

thus
$g^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})=\sum_{k=N T}^{\infty} \frac{1}{k!}\left(k^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})^{k-\ell}-\sum_{\substack{\mathbf{m} \in \sum(S) \\ 0 \leq j<T}} k^{(j)}(\mathbf{m} \cdot \boldsymbol{\alpha})^{k-j} A_{\mathbf{m}, j}^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})\right)$
for each $\ell \in \mathbb{N}$ and $\mathbf{n} \in \mathbb{N}^{t}$.

(3) Zero estimate

Recall that, for $\mathbf{n} \in \mathbb{N}^{t}$ and $\ell \in N$ with $|\mathbf{n}|=S$ and $\ell<T$, we have

$$
g^{(\ell)}(\mathbf{n} \cdot \boldsymbol{\alpha})=Q_{\mathbf{n}, \ell}\left(1, e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)
$$

for some homogeneous polynomial $Q_{\mathbf{n}, \ell} \in K\left[X_{0}, \ldots, X_{t}\right]$ of degree S.
These polynomials have no common zero in $\mathbb{P}^{t}(\mathbb{C})$.

Note however that, by construction, $Q_{\mathbf{m}, \ell}\left(1, e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)=0$ for each $\mathbf{m} \in \mathbb{N}^{t}$ with $|\mathbf{m}|<S$ (i.e $\mathbf{m} \in \Sigma(S)$) and $\ell=0, \ldots, T-1$.

(4) Resultant

Let $\tilde{P} \in \mathbb{Z}\left[X_{0}, \ldots, X_{n}\right]$ the homogeneous polynomial of degree D such that

$$
P\left(X_{1}, \ldots, X_{t}\right)=\tilde{P}\left(1, X_{1}, \ldots, X_{t}\right) .
$$

Let $\Delta \in \mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{t}\right], B \geq 1$ and $\delta>0$ such that
(i) $\Delta Q_{\mathbf{n}, \ell} \in \mathcal{O}_{k}\left[X_{0}, \ldots, X_{n}\right]$,
(ii) $\max _{v \mid \infty} \| \Delta Q_{\mathbf{n}, \ell \|_{v} \leq B \text {, }}$
for each $\mathbf{n} \in \mathbb{N}^{t}$ with $|\mathbf{n}|=S$,
and each $\ell=0,1, \ldots, T-1$.
(iii) $\left|\Delta Q_{\mathbf{n}, \ell}\left(1, e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right| \leq \delta$.

Then, there are integer linear combinations $\tilde{Q}_{1}, \ldots, \tilde{Q}_{t}$ of the polynomials $\Delta Q_{\mathbf{n}, \ell}$ such that $\tilde{P}, \tilde{Q}_{1}, \ldots, \tilde{Q}_{t}$ have no common zero in $\mathbb{P}^{t}(\mathbb{C})$, and

$$
\begin{aligned}
1 & \leq\left|\operatorname{Norm}_{K / \mathbb{Q}}\left(\operatorname{Res}\left(\tilde{P}, \tilde{Q}_{1}, \ldots, \tilde{Q}_{t}\right)\right)\right| \\
& \leq H(P)^{d S^{t}}\left((t+1)^{8 S} S^{2 t} B\right)^{d t D S^{t-1}} \max \left\{\frac{\delta}{B},\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right|\right\} .
\end{aligned}
$$

(5) Choice of parameters

To simplify, let $c_{1}, c_{2}, c_{3}, \ldots$ denote quantities that depend only on c, q, d, and D. For a suitable Δ, we can take

$$
B=\left(c_{1} T^{2}\right)^{T} \quad \text { and } \quad \delta=\frac{B}{T^{N T}} .
$$

(5) Choice of parameters

To simplify, let $c_{1}, c_{2}, c_{3}, \ldots$ denote quantities that depend only on c, q, d, and D. For a suitable Δ, we can take

$$
B=\left(c_{1} T^{2}\right)^{T} \quad \text { and } \quad \delta=\frac{B}{T^{N T}} .
$$

Recall that $S=6 d t(t!) D$ and that

$$
N=|\Sigma(S)|=\binom{S-1+t}{t} \geq \frac{S^{t}}{t!} \geq 6 d t D S^{t-1}
$$

Thus we get

$$
\begin{aligned}
1 & \leq c_{2} H(P)^{d S^{t}} B^{d t D S^{t-1}} \max \left\{\frac{\delta}{B},\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right|\right\} \\
& \leq\left(c_{3} H(P)\right)^{d S^{t}} T^{N T / 3} \max \left\{T^{-N T},\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right|\right\}
\end{aligned}
$$

(5) Choice of parameters

To simplify, let $c_{1}, c_{2}, c_{3}, \ldots$ denote quantities that depend only on c, q, d, and D. For a suitable Δ, we can take

$$
B=\left(c_{1} T^{2}\right)^{T} \quad \text { and } \quad \delta=\frac{B}{T^{N T}}
$$

Recall that $S=6 d t(t!) D$ and that

$$
N=|\Sigma(S)|=\binom{S-1+t}{t} \geq \frac{S^{t}}{t!} \geq 6 d t D S^{t-1}
$$

Thus we get

$$
\begin{aligned}
1 & \leq c_{2} H(P)^{d S^{t}} B^{d t D S^{t-1}} \max \left\{\frac{\delta}{B},\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right|\right\} \\
& \leq\left(c_{3} H(P)\right)^{d S^{t}} T^{N T / 3} \max \left\{T^{-N T},\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{t}}\right)\right|\right\}
\end{aligned}
$$

If $H(P) \geq c_{4}$, then $\left(c_{3} H(P)\right)^{d S^{t}} \leq T^{N T / 3} \leq\left(c_{3} H(P)\right)^{2 d S^{t}}$ for some integer $T \geq 1$, and thus

$$
\left|P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{1}}\right)\right| \geq\left(c_{3} H(P)\right)^{-3 d S^{t}}
$$

$$
\begin{aligned}
& \ln \left\|L_{N}\right\| \leq \sigma(N), \|_{1}(\theta) \leqslant c_{2} e^{-\tau_{2} \sigma(N)} \\
& c_{1} e^{-c_{1} \sigma(N)} \leqslant L^{2}
\end{aligned}
$$

$c_{1} e^{-c_{r}(N)} \leqslant 1-X_{y}(\nu) \leqslant 4^{r-1} N(y) \nu^{r-1}$
Bon anniversaire!

$$
\begin{aligned}
& \gamma_{2}=\left(\exp \exp _{p}<r_{\cdot} d^{2 m} \operatorname{trdeg} Q(q, P(q), Q(q), R(q)) \geqslant 3\right. \\
& \text { if } 0<|q|<1 \\
& \left.\left.y_{0}<f_{1}<\ldots<f_{r-1} g_{r}=y^{n}\left(d_{1}\right)\right\}\right)>1
\end{aligned}
$$

