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Lindemann-Weierstrass theorem
Two equivalent forms:

(i) If β1, . . . , βN ∈ Q̄ are distinct, then eβ1 , . . . , eβN are linearly
independent over Q.

(ii) If α1, . . . , αt ∈ Q̄ are linearly independent over Q, then
eα1 , . . . , eαt are algebraically independent over Q.

Quantitative form of (ii):

Let 0 6= P ∈ Z[X1, . . . ,Xt ] with deg(P) ≤ D and H(P) = ‖P‖ ≤ H .

Mahler (1931): |P(eα1 , . . . , eαt )| ≥ H−c1Dt
if H ≥ H0(D),

for some non-explicit c1 and H0.

Dirichlet box principle ⇒ c1 ≥ 1/(2t!).

Nesterenko (1977): from his result about E -functions, one can take:

c1 = (4d)t(td2 + d + 1) and H0(D) = exp(exp(c2D
2t log(D + 1)))

where d = [K : Q] and K = Q(α1, . . . , αt) .
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Main result

Theorem (2013). |P(eα1 , . . . , eαt )| ≥ H−3dS t
exp

(
−(cqS)18S t

)
where S = 6dt(t!)D,

c = max
v |∞
{|α1|v , . . . , |αt |v},

q ∈ Z>0 such that qα1, . . . , qαt ∈ OK .

Thus, one can take c1 = 6d(6dt(t!))t and H0(D) = exp((cqS)6).

Improves on the measure of Ably (1994),

but worst than that of Sert (1999).

Reference: Une version effective du théorème de Lindemann-Weierstrass
par des méthodes d’indépendance algébrique, L’Enseignement
Mathématique, Revue Internationale, 59 (2013), 287–306.



The method

A first proof of Lindemann-Weierstrass by purely algebraic independence
method was proposed by Chudnovsky for t ≤ 3 in 1980, followed by that
of Ably in 1994.

1
auxiliary function

with prescribed vanishing

explicit construction

y
2 Schwarz lemma

growth estimates

y
3 zero estimate

“almost direct”

+

4 Criterion for algebraic independence

resultants
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Interpolation polynomials

Let N = {0, 1, 2, . . . }. For each m = (m1, . . . ,mt) ∈ Nt , set

m ·α = m1α1 + · · ·+ mtαt and |m| = m1 + · · ·+ mt .

Define also

Σ(S) = {m ∈ Nt ; |m| < S} and N = |Σ(S)| =

(
S − 1 + t

t

)
.

For each C∞ function f : C→ C and each integer T ≥ 1, there is a
unique polynomial p(x) ∈ C[x ] with deg(p) < NT such that

p(j)(m ·α) = f (j)(m ·α)

for each m ∈ Σ(S) and j = 0, 1, . . . ,T − 1. It is given by

p(x) =
∑
m,j

f (j)(m ·α)Am,j(x) with Am,j(x) ∈ K [x ].
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1 The auxiliary function

It is
g(x) = ex − p(x)

where p(x) is the interpolation polynomial for f (x) = ex . Thus

g(x) = ex −
∑

m∈Σ(S)
0≤j<T

em·αAm,j(x).

For each n ∈ Nt and ` ∈ N, we find

g (`)(n ·α) = en·α −
∑

m∈Σ(S)
0≤j<T

em·αA
(`)
m,j(n ·α) = Qn,`(1, eα1 , . . . , eαt ),

for some homogeneous polynomial Qn,` ∈ K [X0,X1, . . . ,Xt ] of degree
max{S − 1, |n|}.
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2 Growth estimate

Since ex =
∑∞

k=0 x
k/k!, we also have

g(x) =
∞∑

k=NT

1

k!
(xk − pk(x))

where pk(x) is the interpolation polynomial of xk . The coefficient 1/k!
makes the summands small (as in Hermite’s method). We find

g(x) =
∞∑

k=NT

1

k!

(
xk −

∑
m∈Σ(S)
0≤j<T

k(j)(m ·α)k−jAm,j(x)

)
,

thus

g (`)(n ·α) =
∞∑

k=NT

1

k!

(
k(`)(n ·α)k−` −

∑
m∈Σ(S)
0≤j<T

k(j)(m ·α)k−jA
(`)
m,j(n ·α)

)

for each ` ∈ N and n ∈ Nt .



3 Zero estimate

Recall that, for n ∈ Nt and ` ∈ N with |n| = S and ` < T , we have

g (`)(n ·α) = Qn,`(1, eα1 , . . . , eαt )

for some homogeneous polynomial Qn,` ∈ K [X0, . . . ,Xt ] of degree S .

These polynomials have no common zero in Pt(C).

Note however that, by construction, Qm,`(1, eα1 , . . . , eαt ) = 0 for each
m ∈ Nt with |m| < S (i.e m ∈ Σ(S)) and ` = 0, . . . ,T − 1.



4 Resultant

Let P̃ ∈ Z[X0, . . . ,Xn] the homogeneous polynomial of degree D such that

P(X1, . . . ,Xt) = P̃(1,X1, . . . ,Xt).

Let ∆ ∈ Z[α1, . . . , αt ], B ≥ 1 and δ > 0 such that

(i) ∆Qn,` ∈ Ok [X0, . . . ,Xn],

(ii) max
v |∞
‖∆Qn,`‖v ≤ B,

(iii) |∆Qn,`(1, eα1 , . . . , eαt )| ≤ δ.

for each n ∈ Nt with |n| = S ,
and each ` = 0, 1, . . . ,T − 1.

Then, there are integer linear combinations Q̃1, . . . , Q̃t of the polynomials
∆Qn,` such that P̃, Q̃1, . . . , Q̃t have no common zero in Pt(C), and

1 ≤
∣∣NormK/Q(Res(P̃, Q̃1, . . . , Q̃t))

∣∣
≤ H(P)dS

t(
(t + 1)8SS2tB

)dtDS t−1

max

{
δ

B
, |P(eα1 , . . . , eαt )|

}
.



5 Choice of parameters

To simplify, let c1, c2, c3, . . . denote quantities that depend only on c, q,
d , and D. For a suitable ∆, we can take

B = (c1T
2)T and δ =

B

TNT
.

Recall that S = 6dt(t!)D and that

N = |Σ(S)| =

(
S − 1 + t

t

)
≥ S t

t!
≥ 6dtDS t−1.

Thus we get

1 ≤ c2H(P)dS
t
BdtDS t−1

max

{
δ

B
, |P(eα1 , . . . , eαt )|

}
≤ (c3H(P))dS

t
TNT/3 max

{
T−NT , |P(eα1 , . . . , eαt )|

}
If H(P) ≥ c4, then (c3H(P))dS

t ≤ TNT/3 ≤ (c3H(P))2dS t
for some

integer T ≥ 1, and thus

|P(eα1 , . . . , eα1)| ≥ (c3H(P))−3dS t
.
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