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Classical setting
Let u = (u1, . . . , un) ∈ Rn \ {0}.

Define ωn−1(u) = supremum of all ω ≥ 0 for which the inequalities

‖x‖ = max{|x1|, . . . , |xn|} ≤ Q , |x · u| = |x1u1 + · · ·+ xnun| ≤ Q−ω

have a solution x = (x1, . . . , xn) ∈ Zn \ {0} for arbitrarily large Q’s.

Define ω̂n−1(u) = same but for all sufficiently large values of Q.

Dirichlet (1842): n − 1 ≤ ω̂n−1(u) ≤ ωn−1(u) ≤ ∞

Hermite (1873), Mahler (1932): ωn−1(1, e, . . . , en−1) = n − 1, so e /∈ Q̄.

There are many other exponents of Diophantine approximation

ωi (u), ω̂i (u) (1 ≤ i ≤ n − 1), etc. . .
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The spectrum of a family of exponents τ1, . . . , τm is the set

{(τ1(u), . . . , τm(u)) ; u ∈ Rn has Q-linearly independent coordinates}

A new tool: Parametric Geometry of numbers

Schmidt 1983

Schmidt and Summerer 2009, 2013

Roy 2015



Reformulation in the new language
Consider the one-parameter family of Minkowski convex bodies

Cu(q) =
{

x ∈ Rn ; ‖x‖ ≤ 1, |x · u| ≤ e−q
}

(q ≥ 0).

For i = 1, . . . , n, define

Lu,i (q) = the smallest λ such that eλCu(q) contains at least
i linearly independent elements of Zn

and form the map

Lu : [0,∞) −→ Rn

q 7−→ (Lu,1(q), . . . , Lu,n(q))

Classical exponents of approximation can be computed from Lu:

ωn−1(u) =
1

¯
ϕ

1
(u)
− 1 where

¯
ϕ
i
(u) := lim inf

q→∞

Lu,i (q)

q

ω̂n−1(u) =
1

ϕ̄1(u)
− 1 where ϕ̄i (u) := lim sup

q→∞

Lu,i (q)

q
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Some known spectra

(
¯
ϕ

1
, ϕ̄n): Khintchine (1926,1928), Jarńık (1935, 1936)

(ϕ̄1,
¯
ϕ
n
): Jarńık (1938), German (2012),

Schmidt and Summerer (≥ 2016), Marnat (≥ 2016)

(
¯
ϕ

1
, ϕ̄1,

¯
ϕ

3
, ϕ̄3) for n = 3: Laurent (2009)

(
¯
ψ

1
, . . . ,

¯
ψ
n−1

): Schmidt (1967), Laurent (2009), Roy (2016)

where

¯
ψ
i
(u) = lim inf

q→∞
q−1(Lu,1(q) + · · ·+ Lu,i (q)) (1 ≤ i ≤ n − 1).



n-systems

Definition (Schmidt and Summerer 2013)

An n-system is a map P : [q0,∞) −→ Rn

q 7−→ (P1(q), . . . ,Pn(q))

such that

0 ≤ P1(q) ≤ · · · ≤ Pn(q) and P1(q) + · · ·+ Pn(q) = q (q ≥ q0),

each Pi is continuous and piecewise linear with slopes 0 and 1,

for each q > q0, there is exactly one pair of indices k and ` for which

P ′k(q−) = 1 and P ′`(q
+) = 1,

whenever ` > k , we have Pk(q) = · · · = P`(q).

Theorem (Roy 2015)

For each u ∈ Rn \ {0}, there is an n-system P such that P− Lu is
bounded, and conversely.
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Basic pattern for the combined graph of a 3-system

a b c d e f a′ b′

P1

P2

P3

The knowledge of P2 determines the whole map P : [q0,∞)→ R3.
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A general notion of spectrum

Suppose that P− Lu is bounded for some u ∈ Rn \ {0}. Then

¯
ϕ
i
(u) = lim infq→∞ q−1Pi (q) (1 ≤ i ≤ n)

the coordinates of u are linearly independent over Q iff
limq→∞ P1(q) =∞ : such a system is said to be proper.

Definition

Let T : Rn −→ Rm

x 7−→ (T1(x), . . . ,Tm(x))

be a linear map.

For each n-system P define

µT (P) =

(
lim inf
q→∞

T1(q−1P(q)), . . . , lim inf
q→∞

Tm(q−1P(q))

)
.

The spectrum of T is {µT (P) ; P is a proper n-system}



Self-similar systems

We say that an n-system P : [q0,∞)→ Rn is self-similar if there exists
ρ > 1 such that P(ρq) = ρP(q) for each q ≥ q0.

Example (n=3):

q0 ρq0 ρ2q0 ρ3q0 ρ4q0

· · ·



Main result

Let T : Rn → Rm be a linear map. Then

The set
{µT (P) ; P is a proper self-similar n-system}

is dense in the spectrum of T .

The spectrum of T is a compact connected subset of Rm.

If n = 3, then the spectrum of T is a semi-algebraic subset of Rm.
Moreover, it is closed under componentwise minimum: if (x1, . . . , xm)
and (y1, . . . , ym) belong to the spectrum of T , then

(min(x1, y1), . . . ,min(xm, ym))

also belong to that spectrum.

Application: Computation of the spectrum of (
¯
ϕ

1
, ϕ̄1,

¯
ϕ

2
, ϕ̄2,

¯
ϕ

3
, ϕ̄3)

when n = 3.
Open problem: Is the spectrum always semi-algebraic?
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