Simultaneous rational approximation to successive powers of a real number (Part II)

Anthony Poëls (Nihon University) Damien Roy (University of Ottawa)

Webinar on Diophantine approximation and homogeneous dynamics

8th October 2021

Introduction ●00	Strategy and notation	

Introduction

Fix
$$\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$$
. Recall that for each $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$
 $L_{\xi}(\mathbf{x}) = \max\{|x_0\xi - x_1|, \dots, |x_0\xi^n - x_n|\}.$

三日 のへで

イロト 不同下 不同下 不同下

Introduction ●○○	Strategy and notation	

Introduction

Fix
$$\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$$
. Recall that for each $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$
 $L_{\xi}(\mathbf{x}) = \max\{|x_0\xi - x_1|, \dots, |x_0\xi^n - x_n|\}.$

 $\hat{\lambda}_n(\xi)$ is the supremum of the reals numbers $\lambda \ge 0$ such that

$$\|\mathbf{x}\| \leq X$$
 and $L_{\xi}(\mathbf{x}) \leq X^{-\lambda}$

has a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each large enough X.

三日 のへの

メロト メタト メヨト メヨト

Introduction			
000	000	00	00000000

Introduction

Fix
$$\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$$
. Recall that for each $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$

$$L_{\xi}(\mathbf{x}) = \max\{|x_0\xi - x_1|, \ldots, |x_0\xi'' - x_n|\}.$$

 $\hat{\lambda}_n(\xi)$ is the supremum of the reals numbers $\lambda \geq 0$ such that

$$\|\mathbf{x}\| \leq X$$
 and $L_{\xi}(\mathbf{x}) \leq X^{-\lambda}$

has a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each large enough X.

Theorem (P.-Roy, 2021)

$$\hat{\lambda}_n(\xi) \leq rac{1}{n/2 + a\sqrt{n} + 1/3}$$
 where $a = (1 - \log 2)/2 \cong 0.153$ for $n \geq 2$.

Introduction	Strategy and notation	First general height estimates	
000			

Given $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$ and $\ell \in \{0, 1, \dots, n\}$, define

$$\left. \begin{array}{l} \mathbf{x}^{(0,\ell)} = (x_0, \dots, x_{n-\ell}) \\ \mathbf{x}^{(1,\ell)} = (x_1, \dots, x_{n-\ell+1}) \\ \dots \\ \mathbf{x}^{(\ell,\ell)} = (x_\ell, \dots, x_{n+1}) \end{array} \right\} \in \mathbb{R}^{n-\ell+1}$$

and $\mathcal{U}^{\ell}(\mathbf{x}) = \langle \mathbf{x}^{(0,\ell)}, \dots, \mathbf{x}^{(\ell,\ell)} \rangle \subseteq \mathbb{R}^{n-\ell+1}.$

Introduction	Strategy and notation	First general height estimates	
000			

Given $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$ and $\ell \in \{0, 1, \dots, n\}$, define

$$\begin{array}{c} \mathbf{x}^{(0,\ell)} = (x_0, \dots, x_{n-\ell}) \\ \mathbf{x}^{(1,\ell)} = (x_1, \dots, x_{n-\ell+1}) \\ \dots \\ \mathbf{x}^{(\ell,\ell)} = (x_\ell, \dots, x_{n+1}) \end{array} \} \in \mathbb{R}^{n-\ell+1}$$

and $\mathcal{U}^{\ell}(\mathbf{x}) = \langle \mathbf{x}^{(0,\ell)}, \dots, \mathbf{x}^{(\ell,\ell)} \rangle \subseteq \mathbb{R}^{n-\ell+1}$. Fix $(\mathbf{x}_i)_{i\geq 0}$ sequence of minimal points and set $X_i = \|\mathbf{x}_i\|$ and $L_i = L_{\xi}(\mathbf{x}_i)$.

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Introduction	Strategy and notation	First general height estimates	
000			

Given
$$\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$$
 and $\ell \in \{0, 1, \dots, n\}$, define

$$\begin{array}{l} \mathbf{x}^{(0,\ell)} = (x_0, \dots, x_{n-\ell}) \\ \mathbf{x}^{(1,\ell)} = (x_1, \dots, x_{n-\ell+1}) \\ \dots \\ \mathbf{x}^{(\ell,\ell)} = (x_\ell, \dots, x_{n+1}) \end{array} \} \in \mathbb{R}^{n-\ell+1}$$

and $\mathcal{U}^{\ell}(\mathbf{x}) = \langle \mathbf{x}^{(0,\ell)}, \dots, \mathbf{x}^{(\ell,\ell)} \rangle \subseteq \mathbb{R}^{n-\ell+1}$. Fix $(\mathbf{x}_i)_{i\geq 0}$ sequence of minimal points and set $X_i = \|\mathbf{x}_i\|$ and $L_i = L_{\xi}(\mathbf{x}_i)$. Fix $\lambda < \hat{\lambda}_n(\xi)$ (arbitrarily close to $\hat{\lambda}_n(\xi)$).

Introduction	Strategy and notation	First general height estimates	
000			

Given
$$\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}$$
 and $\ell \in \{0, 1, \dots, n\}$, define

$$\left. \begin{array}{l} \mathbf{x}^{(0,\ell)} = (x_0, \dots, x_{n-\ell}) \\ \mathbf{x}^{(1,\ell)} = (x_1, \dots, x_{n-\ell+1}) \\ \dots \\ \mathbf{x}^{(\ell,\ell)} = (x_\ell, \dots, x_{n+1}) \end{array} \right\} \in \mathbb{R}^{n-\ell+1}$$

and $\mathcal{U}^{\ell}(\mathbf{x}) = \langle \mathbf{x}^{(0,\ell)}, \dots, \mathbf{x}^{(\ell,\ell)} \rangle \subseteq \mathbb{R}^{n-\ell+1}$. Fix $(\mathbf{x}_i)_{i\geq 0}$ sequence of minimal points and set $X_i = \|\mathbf{x}_i\|$ and $L_i = L_{\xi}(\mathbf{x}_i)$. Fix $\lambda < \hat{\lambda}_n(\xi)$ (arbitrarily close to $\hat{\lambda}_n(\xi)$). In particular $L_i \ll X_{i+1}^{-\lambda}$.

First general height estimates 00 Proof of the theorem 00000000

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

A. Poëls and D. Roy

三日 のへの

イロト イヨト イヨト イヨト

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

EL OQO

イロト イボト イヨト イヨ

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$ for some integer ℓ with $0 \le \ell \le n/2$. Then dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for each sufficiently large i.

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$ for some integer ℓ with $0 \le \ell \le n/2$. Then dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for each sufficiently large i.

Suppose dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for infinitely many *i*.

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$ for some integer ℓ with $0 \le \ell \le n/2$. Then dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for each sufficiently large i.

Suppose dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for infinitely many *i*. Then

$$1 \leq H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \leq \|\mathbf{x}_i^{(0,\ell)} \wedge \cdots \wedge \mathbf{x}_i^{(\ell,\ell)}\| \ll X_i L_i^{\ell} \ll X_i^{1-\ell\lambda}.$$

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$ for some integer ℓ with $0 \le \ell \le n/2$. Then dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for each sufficiently large i.

Suppose dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for infinitely many *i*. Then

$$1 \leq H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \leq \|\mathbf{x}_i^{(0,\ell)} \wedge \dots \wedge \mathbf{x}_i^{(\ell,\ell)}\| \ll X_i L_i^{\ell} \ll X_i^{1-\ell\lambda}.$$

 $\Rightarrow \hat{\lambda}_n(\xi) \leq 1/\ell.$

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$ for some integer ℓ with $0 \le \ell \le n/2$. Then dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for each sufficiently large i.

Suppose dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for infinitely many *i*. Then

$$1 \leq H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \leq \|\mathbf{x}_i^{(0,\ell)} \wedge \dots \wedge \mathbf{x}_i^{(\ell,\ell)}\| \ll X_i L_i^{\ell} \ll X_i^{1-\ell\lambda}$$

 $\Rightarrow \hat{\lambda}_n(\xi) \leq 1/\ell.$ By the proposition $\hat{\lambda}_n(\xi) \leq \max\{1/(n-\ell+1), 1/\ell\}$

A first estimate - Case of one minimal point

Fix $\ell \leq n/2$.

Natural expectation: the blocks of $n - \ell + 1$ consecutive coordinates extracted from \mathbf{x}_i are linearly independent, *i.e.* dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$ for some integer ℓ with $0 \le \ell \le n/2$. Then dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for each sufficiently large i.

Suppose dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$ for infinitely many *i*. Then

$$1 \leq H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \leq \|\mathbf{x}_i^{(0,\ell)} \wedge \dots \wedge \mathbf{x}_i^{(\ell,\ell)}\| \ll X_i L_i^{\ell} \ll X_i^{1-\ell\lambda}.$$

 $\Rightarrow \hat{\lambda}_n(\xi) \le 1/\ell.$ By the proposition $\hat{\lambda}_n(\xi) \le \max\{1/(n-\ell+1), 1/\ell\}, \text{ so } \hat{\lambda}_n(\xi) \le 1/\lfloor n/2 \rfloor$ (Davenport-Schmidt, 1969).

A. Poëls and D. Roy

Strategy and notation

First general height estimates 00

Proof of the theorem 00000000

Our strategy: consider several points

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \ldots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

EL OQO

(日) (四) (日) (日) (日)

Introd	

Strategy and notation

First general height estimates 00

Proof of the theorem

Our strategy: consider several points

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \dots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

remark. For $\ell = \lfloor n/2 \rfloor$, the space $\mathcal{U}^{\ell}(\mathbf{x}_i) \subseteq \mathbb{R}^{n+1-\ell}$ is the whole space (*n* even) or an hyperplane (*n* odd).

Strategy and notation ●00	

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \dots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

remark. For $\ell = \lfloor n/2 \rfloor$, the space $\mathcal{U}^{\ell}(\mathbf{x}_i) \subseteq \mathbb{R}^{n+1-\ell}$ is the whole space (*n* even) or an hyperplane (*n* odd).

 \Rightarrow need to decrease ℓ to "make room" (we take $\ell \approx n/2 - b\sqrt{n}$).

イロト (周) (ヨト (ヨト) 三日 うなつ

Strategy and notation ●00	

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \dots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

remark. For $\ell = \lfloor n/2 \rfloor$, the space $\mathcal{U}^{\ell}(\mathbf{x}_i) \subseteq \mathbb{R}^{n+1-\ell}$ is the whole space (*n* even) or an hyperplane (*n* odd).

 \Rightarrow need to decrease ℓ to "make room" (we take $\ell \approx n/2 - b\sqrt{n}).$

Main difficulties

イロト (周) (ヨト (ヨト) 三日 ののの

Strategy and notation ●00	

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \dots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

remark. For $\ell = \lfloor n/2 \rfloor$, the space $\mathcal{U}^{\ell}(\mathbf{x}_i) \subseteq \mathbb{R}^{n+1-\ell}$ is the whole space (*n* even) or an hyperplane (*n* odd).

 \Rightarrow need to decrease ℓ to "make room" (we take $\ell \approx n/2 - b\sqrt{n}).$

Main difficulties

How to know that dim U^ℓ(x_i,...,x_j) is "big" enough (compared to dim ⟨x_i,...,x_i⟩)?

イロト (周) (ヨト (ヨト) 三日 ののの

Strategy and notation ●00	

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \dots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

remark. For $\ell = \lfloor n/2 \rfloor$, the space $\mathcal{U}^{\ell}(\mathbf{x}_i) \subseteq \mathbb{R}^{n+1-\ell}$ is the whole space (*n* even) or an hyperplane (*n* odd).

 \Rightarrow need to decrease ℓ to "make room" (we take $\ell \approx n/2 - b\sqrt{n}).$

Main difficulties

- How to know that dim U^ℓ(x_i,...,x_j) is "big" enough (compared to dim ⟨x_i,...,x_j⟩)?
- How to estimate $H(\mathcal{U}^{\ell}(\mathbf{x}_i, \ldots, \mathbf{x}_j))$?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ 三回 のなの

Strategy and notation ●○○	

Goal: increase the dimension by considering $\mathcal{U}^{\ell}(\mathbf{x}_i, \dots, \mathbf{x}_j)$, get an estimate for its height, and thus a smaller upper bound for $\hat{\lambda}_n(\xi)$.

remark. For $\ell = \lfloor n/2 \rfloor$, the space $\mathcal{U}^{\ell}(\mathbf{x}_i) \subseteq \mathbb{R}^{n+1-\ell}$ is the whole space (*n* even) or an hyperplane (*n* odd).

 \Rightarrow need to decrease ℓ to "make room" (we take $\ell \approx n/2 - b\sqrt{n}).$

Main difficulties

- How to know that dim U^ℓ(x_i,...,x_j) is "big" enough (compared to dim (x_i,...,x_j))?
- How to estimate $H(\mathcal{U}^{\ell}(\mathbf{x}_i,\ldots,\mathbf{x}_j))$?
- How to control the size of the points $\mathbf{x}_i,\ldots,\mathbf{x}_{j+1}?$ \red{points}

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ 三回 のなの

Strategy and notation ○●○	

Recall that $\langle \mathbf{x}_i, \mathbf{x}_{i+1}, \dots \rangle = \mathbb{R}^{n+1}$.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目目 のへで

Strategy and notation ○●○	

Recall that
$$\langle \mathbf{x}_i, \mathbf{x}_{i+1}, \dots \rangle = \mathbb{R}^{n+1}$$
.

Definition

For j = 0, ..., n - 1, let $q \ge i$ be the largest index for which $\langle \mathbf{x}_i, ..., \mathbf{x}_q \rangle$ has dimension j + 1. We set

$$A_j(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$$
 and $Y_j(i) = X_{q+1}$.

By convention $A_n(i) = \mathbb{R}^{n+1}$ and $Y_{-1}(i) = X_i$.

Strategy and notation ○●○	

Recall that
$$\langle \mathbf{x}_i, \mathbf{x}_{i+1}, \dots \rangle = \mathbb{R}^{n+1}$$
.

Definition

For j = 0, ..., n - 1, let $q \ge i$ be the largest index for which $\langle \mathbf{x}_i, ..., \mathbf{x}_q \rangle$ has dimension j + 1. We set

$$A_j(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$$
 and $Y_j(i) = X_{q+1}$.

By convention $A_n(i) = \mathbb{R}^{n+1}$ and $Y_{-1}(i) = X_i$.

•
$$A_0(i) = \langle \mathbf{x}_i \rangle$$
 and $Y_0(i) = X_{i+1}$.

Strategy and notation ○●○	

Recall that
$$\langle \mathbf{x}_i, \mathbf{x}_{i+1}, \dots \rangle = \mathbb{R}^{n+1}$$
.

Definition

For j = 0, ..., n - 1, let $q \ge i$ be the largest index for which $\langle \mathbf{x}_i, ..., \mathbf{x}_q \rangle$ has dimension j + 1. We set

$$A_j(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$$
 and $Y_j(i) = X_{q+1}$.

By convention $A_n(i) = \mathbb{R}^{n+1}$ and $Y_{-1}(i) = X_i$.

•
$$A_0(i) = \langle \mathbf{x}_i \rangle$$
 and $Y_0(i) = X_{i+1}$.
• $A_1(i) = \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and $Y_1(i) = X_{q+1}$.

Strategy and notation ○●○	

Recall that
$$\langle \mathbf{x}_i, \mathbf{x}_{i+1}, \dots \rangle = \mathbb{R}^{n+1}$$
.

Definition

For j = 0, ..., n - 1, let $q \ge i$ be the largest index for which $\langle \mathbf{x}_i, ..., \mathbf{x}_q \rangle$ has dimension j + 1. We set

$$A_j(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$$
 and $Y_j(i) = X_{q+1}$.

By convention $A_n(i) = \mathbb{R}^{n+1}$ and $Y_{-1}(i) = X_i$.

•
$$A_0(i) = \langle \mathbf{x}_i \rangle$$
 and $Y_0(i) = X_{i+1}$.
• $A_1(i) = \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and $Y_1(i) = X_{q+1}$.
• $A_{j+1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q, \mathbf{x}_{q+1} \rangle$.

Strategy and notation ○●○	

Recall that
$$\langle \mathbf{x}_i, \mathbf{x}_{i+1}, \dots \rangle = \mathbb{R}^{n+1}$$
.

Definition

For j = 0, ..., n - 1, let $q \ge i$ be the largest index for which $\langle \mathbf{x}_i, ..., \mathbf{x}_q \rangle$ has dimension j + 1. We set

$$A_j(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$$
 and $Y_j(i) = X_{q+1}$.

By convention $A_n(i) = \mathbb{R}^{n+1}$ and $Y_{-1}(i) = X_i$.

•
$$A_0(i) = \langle \mathbf{x}_i \rangle$$
 and $Y_0(i) = X_{i+1}$.
• $A_1(i) = \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and $Y_1(i) = X_{q+1}$.
• $A_{j+1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q, \mathbf{x}_{q+1} \rangle$.

Main goal

Study of the spaces $\mathcal{U}^{\ell}(A_j(i))$ (Dimension? Height?)

A. Poëls and D. Roy

イロト イヨト イヨト イヨト

Strategy and notation ○○●	

Preliminaries.

• $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目目 のへで

Strategy and notation	First general height estimates	
000		

Preliminaries.

- $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.
- $A_m(i)$ is generated by $\mathbf{x}_i + m$ other linearly independent points. Expectation: dim $\mathcal{U}^{\ell}(A_m(i)) \ge \ell + 1 + m$.

ELE NOO

イロト イ団ト イヨト イヨト

Strategy and notation	
000	

Preliminaries.

- $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.
- $A_m(i)$ is generated by $\mathbf{x}_i + m$ other linearly independent points. Expectation: dim $\mathcal{U}^{\ell}(A_m(i)) \ge \ell + 1 + m$.

Definition

Let $j, \ell \in \{0, \ldots, n\}$. We say that property $\mathcal{P}(j, \ell)$ holds if

$$\dim \mathcal{U}^{\ell}(A_m(i)) \geq \ell + 1 + m \quad (m = 0, \dots, j)$$

for each sufficiently large integer $i \ge 0$.

イロト (周) (ヨト (ヨト) 三日 ののの

Strategy and notation	
000	

Preliminaries.

- $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.
- $A_m(i)$ is generated by $\mathbf{x}_i + m$ other linearly independent points. Expectation: dim $\mathcal{U}^{\ell}(A_m(i)) \ge \ell + 1 + m$.

Definition

Let $j, \ell \in \{0, \ldots, n\}$. We say that property $\mathcal{P}(j, \ell)$ holds if

$$\dim \mathcal{U}^{\ell}(A_m(i)) \geq \ell + 1 + m \quad (m = 0, \dots, j)$$

for each sufficiently large integer $i \ge 0$.

•
$$\mathcal{P}(j,\ell) \Rightarrow \mathcal{P}(j-1,\ell) \text{ if } j > 0.$$

イロト (周) (ヨト (ヨト) 三日 ののの

Strategy and notation	
000	

Preliminaries.

- $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.
- $A_m(i)$ is generated by $\mathbf{x}_i + m$ other linearly independent points. Expectation: dim $\mathcal{U}^{\ell}(A_m(i)) \ge \ell + 1 + m$.

Definition

Let $j, \ell \in \{0, \ldots, n\}$. We say that property $\mathcal{P}(j, \ell)$ holds if

$$\dim \mathcal{U}^{\ell}(A_m(i)) \geq \ell + 1 + m \quad (m = 0, \dots, j)$$

for each sufficiently large integer $i \ge 0$.

•
$$\mathcal{P}(j,\ell) \Rightarrow \mathcal{P}(j-1,\ell) \text{ if } j > 0.$$

• $\mathcal{P}(n,0)$ holds since $\mathcal{U}^0(A_m(i)) = A_m(i)$ has dimension m+1.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ 三回 のなの

Strategy and notation	First general height estimates	
000		

Preliminaries.

- $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.
- $A_m(i)$ is generated by $\mathbf{x}_i + m$ other linearly independent points. Expectation: dim $\mathcal{U}^{\ell}(A_m(i)) \ge \ell + 1 + m$.

Definition

Let $j, \ell \in \{0, \ldots, n\}$. We say that property $\mathcal{P}(j, \ell)$ holds if

$$\dim \mathcal{U}^{\ell}(A_m(i)) \geq \ell + 1 + m \quad (m = 0, \dots, j)$$

for each sufficiently large integer $i \ge 0$.

- $\mathcal{P}(j,\ell) \Rightarrow \mathcal{P}(j-1,\ell)$ if j > 0.
- $\mathcal{P}(n,0)$ holds since $\mathcal{U}^0(A_m(i)) = A_m(i)$ has dimension m+1.
- If $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$, then $\mathcal{P}(0,\ell)$ holds (BS, 2021).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Strategy and notation	
000	

Preliminaries.

- $\mathcal{U}^{\ell}(\mathbf{x}_i)$ is generated by $\ell + 1$ points. Expectation: dim $\mathcal{U}^{\ell}(\mathbf{x}_i) = \ell + 1$.
- $A_m(i)$ is generated by $\mathbf{x}_i + m$ other linearly independent points. Expectation: dim $\mathcal{U}^{\ell}(A_m(i)) \ge \ell + 1 + m$.

Definition

Let $j, \ell \in \{0, \ldots, n\}$. We say that property $\mathcal{P}(j, \ell)$ holds if

$$\dim \mathcal{U}^\ell(A_m(i)) \geq \ell + 1 + m \quad (m = 0, \dots, j)$$

for each sufficiently large integer $i \ge 0$.

- $\mathcal{P}(j,\ell) \Rightarrow \mathcal{P}(j-1,\ell) \text{ if } j > 0.$
- $\mathcal{P}(n,0)$ holds since $\mathcal{U}^0(A_m(i)) = A_m(i)$ has dimension m+1.
- If $\hat{\lambda}_n(\xi) > 1/(n-\ell+1)$, then $\mathcal{P}(0,\ell)$ holds (BS, 2021).
- $\mathcal{P}(j,\ell) \Rightarrow \mathcal{P}(j+1,\ell-1)$ (properties of $\ell \mapsto \dim \mathcal{U}^{\ell}(A)$).

First general height estimates •O

Proof of the theorem 00000000

First general height estimates

Proposition D

Suppose that $\mathcal{P}(j, \ell)$ holds (with $j, \ell \in \{0, ..., n\}$). Then

 $H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-\ell\lambda}(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}.$

First general height estimates •O

Proof of the theorem 00000000

First general height estimates

Proposition D

Suppose that $\mathcal{P}(j, \ell)$ holds (with $j, \ell \in \{0, \dots, n\}$). Then

 $H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-\ell\lambda}(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}.$

• For j = 0, we get $H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \ll Y_{-1}(i)^{1-\ell\lambda} = X_i^{1-\ell\lambda}$.

First general height estimates •O

Proof of the theorem 00000000

First general height estimates

Proposition D

Suppose that $\mathcal{P}(j, \ell)$ holds (with $j, \ell \in \{0, ..., n\}$). Then

 $H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-\ell\lambda}(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}.$

- For j = 0, we get $H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \ll Y_{-1}(i)^{1-\ell\lambda} = X_i^{1-\ell\lambda}$.
- For $\ell = 0$, we get $H(A_j(i)) \ll Y_{j-1}(i)(Y_{j-1}(i) \cdots Y_0(i))^{-\lambda}$.

First general height estimates •O

Proof of the theorem 00000000

First general height estimates

Proposition D

Suppose that $\mathcal{P}(j, \ell)$ holds (with $j, \ell \in \{0, ..., n\}$). Then

 $H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-\ell\lambda}(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}.$

- For j = 0, we get $H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \ll Y_{-1}(i)^{1-\ell\lambda} = X_i^{1-\ell\lambda}$.
- For $\ell = 0$, we get $H(A_j(i)) \ll Y_{j-1}(i)(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}$. Sketch of the proof (for j = 3). Write

$$\begin{aligned} A_1(i) &= \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle, \\ A_2(i) &= \langle \mathbf{x}_i, \dots, \mathbf{x}_q, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_r \rangle, \\ A_3(i) &= \langle \mathbf{x}_i, \dots, \mathbf{x}_r, \mathbf{x}_{r+1} \rangle. \end{aligned}$$

A. Poëls and D. Roy

First general height estimates •O

Proof of the theorem 00000000

First general height estimates

Proposition D

Suppose that $\mathcal{P}(j, \ell)$ holds (with $j, \ell \in \{0, ..., n\}$). Then

 $H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-\ell\lambda}(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}.$

- For j = 0, we get $H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \ll Y_{-1}(i)^{1-\ell\lambda} = X_i^{1-\ell\lambda}$.
- For $\ell = 0$, we get $H(A_j(i)) \ll Y_{j-1}(i)(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}$. Sketch of the proof (for j = 3). Write

$$\begin{aligned} A_1(i) &= \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle, \\ A_2(i) &= \langle \mathbf{x}_i, \dots, \mathbf{x}_q, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_r \rangle, \\ A_3(i) &= \langle \mathbf{x}_i, \dots, \mathbf{x}_r, \mathbf{x}_{r+1} \rangle. \end{aligned}$$

Note that $(Y_0(i), Y_1(i), Y_2(i)) = (X_{i+1}, X_{q+1}, X_{r+1}).$

First general height estimates •O

Proof of the theorem 00000000

First general height estimates

Proposition D

Suppose that $\mathcal{P}(j, \ell)$ holds (with $j, \ell \in \{0, ..., n\}$). Then

 $H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-\ell\lambda}(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}.$

- For j = 0, we get $H(\mathcal{U}^{\ell}(\mathbf{x}_i)) \ll Y_{-1}(i)^{1-\ell\lambda} = X_i^{1-\ell\lambda}$.
- For $\ell = 0$, we get $H(A_j(i)) \ll Y_{j-1}(i)(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}$. Sketch of the proof (for j = 3). Write

$$\begin{array}{l} A_1(i) = \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle, \\ A_2(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \dots, \mathbf{x}_r \rangle, \\ A_3(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_r, \mathbf{x}_{r+1} \rangle. \end{array}$$
Note that $(Y_0(i), Y_1(i), Y_2(i)) = (X_{i+1}, X_{q+1}, X_{r+1}).$
Since $\mathbf{x}_{r+1} \notin \langle \mathbf{x}_i, \dots, \mathbf{x}_r \rangle$, we have dim $\langle \mathbf{x}_q, \mathbf{x}_{q+1}, \dots, \mathbf{x}_{r+1} \rangle \ge 3.$

000 000 0 0		First general height estimates
		00

Proof of the theorem 00000000

Proof of the proposition (end)

By
$$\mathcal{P}(3,\ell)$$
, we have dim $\mathcal{U}^\ell(\mathbf{x}_{r+1})=\ell+1$, as well as

- dim $\mathcal{U}^{\ell}(\mathbf{x}_r, \mathbf{x}_{r+1}) \geq \ell + 2$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_q,\ldots,\mathbf{x}_{r+1}) \geq \ell + 3$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_i, \ldots, \mathbf{x}_{r+1}) = \dim \mathcal{U}^{\ell}(A_3(i)) \ge \ell + 4.$

イロト イヨト イヨト イヨト

三日 のへの

Strategy and notation	First general height estimates	
	00	

Proof of the proposition (end)

By
$$\mathcal{P}(3,\ell)$$
, we have dim $\mathcal{U}^\ell({f x}_{r+1})=\ell+1$, as well as

- dim $\mathcal{U}^{\ell}(\mathbf{x}_r, \mathbf{x}_{r+1}) \geq \ell + 2$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_q,\ldots,\mathbf{x}_{r+1}) \geq \ell + 3$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_i, \ldots, \mathbf{x}_{r+1}) = \dim \mathcal{U}^{\ell}(A_3(i)) \ge \ell + 4.$

We get linearly independent points by taking $\mathbf{x}_{r+1}^{(0,\ell)}, \ldots, \mathbf{x}_{r+1}^{(\ell,\ell)}$ and

(日) (四) (日) (日) (日)

	First general height estimates	
	00	

Proof of the proposition (end)

By
$$\mathcal{P}(3,\ell)$$
, we have dim $\mathcal{U}^\ell(\mathbf{x}_{r+1}) = \ell+1$, as well as

- dim $\mathcal{U}^{\ell}(\mathbf{x}_r, \mathbf{x}_{r+1}) \geq \ell + 2$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_q, \ldots, \mathbf{x}_{r+1}) \geq \ell + 3$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_i, \ldots, \mathbf{x}_{r+1}) = \dim \mathcal{U}^{\ell}(A_3(i)) \ge \ell + 4.$

We get linearly independent points by taking $\mathbf{x}_{r+1}^{(0,\ell)},\ldots,\mathbf{x}_{r+1}^{(\ell,\ell)}$ and

- one point **y** among $\mathbf{x}_r^{(0,\ell)},\ldots,\mathbf{x}_r^{(\ell,\ell)}\Rightarrow L_{\xi}(\mathbf{y})\leq L_r$,
- one point z among the points $\mathbf{x}_{k}^{(0,\ell)}, \dots, \mathbf{x}_{k}^{(\ell,\ell)}$ $(q \leq k \leq r), \Rightarrow L_{\xi}(\mathbf{z}) \leq L_{q},$
- one point **t** among the points $\mathbf{x}_{k}^{(0,\ell)}, \ldots, \mathbf{x}_{k}^{(\ell,\ell)}$ $(i \leq k \leq r), \Rightarrow L_{\xi}(\mathbf{t}) \leq L_{i}.$

イロト 不得 トイヨト イヨト 三日 ろくの

Strategy and notation	First general height estimates	
	00	

Proof of the proposition (end)

By
$$\mathcal{P}(3,\ell)$$
, we have dim $\mathcal{U}^\ell(\mathbf{x}_{r+1})=\ell+1$, as well as

- dim $\mathcal{U}^{\ell}(\mathbf{x}_r, \mathbf{x}_{r+1}) \geq \ell + 2$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_q, \ldots, \mathbf{x}_{r+1}) \geq \ell + 3$,
- dim $\mathcal{U}^{\ell}(\mathbf{x}_i,\ldots,\mathbf{x}_{r+1})$ = dim $\mathcal{U}^{\ell}(A_3(i)) \geq \ell + 4$.

We get linearly independent points by taking $\mathbf{x}_{r+1}^{(0,\ell)},\ldots,\mathbf{x}_{r+1}^{(\ell,\ell)}$ and

- one point **y** among $\mathbf{x}_r^{(0,\ell)},\ldots,\mathbf{x}_r^{(\ell,\ell)}\Rightarrow L_{\xi}(\mathbf{y})\leq L_r$,
- one point z among the points $\mathbf{x}_{k}^{(0,\ell)}, \dots, \mathbf{x}_{k}^{(\ell,\ell)}$ $(q \leq k \leq r), \Rightarrow L_{\xi}(\mathbf{z}) \leq L_{q},$
- one point **t** among the points $\mathbf{x}_{k}^{(0,\ell)}, \ldots, \mathbf{x}_{k}^{(\ell,\ell)}$ $(i \leq k \leq r), \Rightarrow L_{\xi}(\mathbf{t}) \leq L_{i}.$

$$\Rightarrow H(\mathcal{U}^{\ell}(A_{j}(i))) \ll X_{r+1}L_{r+1}^{\ell}L_{r}L_{q}L_{i} \ll X_{r+1}^{1-\ell\lambda}X_{r+1}^{-\lambda}X_{q+1}^{-\lambda}X_{i+1}^{-\lambda} \\ \ll Y_{2}(i)^{1-\ell\lambda}Y_{2}(i)^{-\lambda}Y_{1}(i)^{-\lambda}Y_{0}(i)^{-\lambda}.$$

First general height estimates 00

Proof of the theorem

Remaining problems

Problem 1. \mathcal{Y} Growth of the quantities $Y_m(i)$?

三日 のへで

イロト イヨト イヨト イヨト

Strategy and notation	Proof of the theorem ●0000000

Problem 1. $\mathcal{Y}_m(i)$?

"Ideal" situation: $Y_0(i) \asymp \cdots \asymp Y_{j-1}(i)$.

Strategy and notation 000	Proof of the theorem ●0000000

Problem 1. \mathcal{Y} Growth of the quantities $Y_m(i)$?

"Ideal" situation: $Y_0(i) \simeq \cdots \simeq Y_{j-1}(i)$. In that case (if $\mathcal{P}(j, \ell)$ holds), Proposition D yields

 $1 \leq H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-(\ell+j)\lambda},$

<ロ> <日> < 圖> < 필> < 필> 三日 < 의 < 이 < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○)

Strategy and notation	Proof of the theorem ●0000000

Problem 1. \mathcal{Y} Growth of the quantities $Y_m(i)$?

"Ideal" situation: $Y_0(i) \asymp \cdots \asymp Y_{j-1}(i)$. In that case (if $\mathcal{P}(j, \ell)$ holds), Proposition D yields

 $1 \leq H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-(\ell+j)\lambda},$

and so $\hat{\lambda}_n(\xi) \leq 1/(\ell+j)$ (with the condition $2\ell+j \leq n$).

(日) (同) (三) (三) (三) (○) (○)

Strategy and notation	First general height estimates	Proof of the theorem
		•••••

Problem 1. \mathcal{Y} Growth of the quantities $Y_m(i)$?

"Ideal" situation: $Y_0(i) \simeq \cdots \simeq Y_{j-1}(i)$. In that case (if $\mathcal{P}(j, \ell)$ holds), Proposition D yields

 $1 \leq H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-(\ell+j)\lambda},$

and so $\hat{\lambda}_n(\xi) \leq 1/(\ell+j)$ (with the condition $2\ell+j \leq n$). In general, we prove that $Y_m(i)^{\theta} \ll Y_{m-1}(i)$ for a given θ "close" to 1.

	Proof of the theorem
	0000000

Problem 1. \mathcal{Y} Growth of the quantities $Y_m(i)$?

"Ideal" situation: $Y_0(i) \simeq \cdots \simeq Y_{j-1}(i)$. In that case (if $\mathcal{P}(j, \ell)$ holds), Proposition D yields

$$1 \leq H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-(\ell+j)\lambda},$$

and so $\hat{\lambda}_n(\xi) \leq 1/(\ell+j)$ (with the condition $2\ell+j \leq n$). In general, we prove that $Y_m(i)^{\theta} \ll Y_{m-1}(i)$ for a given θ "close" to 1. This implies that

$$1 \leq H(\mathcal{U}^{\ell}(A_{j}(i))) \ll Y_{j-1}(i)^{1-\lambda(\ell+1+\theta+\theta^{2}+\cdots+\theta^{j-1})}$$

which yields $\hat{\lambda}_n(\xi) \leq 1/(\ell + 1 + \theta + \dots + \theta^{j-1}).$

	Proof of the theorem
	0000000

Problem 1. \mathcal{Y} Growth of the quantities $Y_m(i)$?

"Ideal" situation: $Y_0(i) \simeq \cdots \simeq Y_{j-1}(i)$. In that case (if $\mathcal{P}(j, \ell)$ holds), Proposition D yields

$$1 \leq H(\mathcal{U}^{\ell}(A_j(i))) \ll Y_{j-1}(i)^{1-(\ell+j)\lambda},$$

and so $\hat{\lambda}_n(\xi) \leq 1/(\ell+j)$ (with the condition $2\ell + j \leq n$). In general, we prove that $Y_m(i)^{\theta} \ll Y_{m-1}(i)$ for a given θ "close" to 1. This implies that

$$1 \leq H(\mathcal{U}^{\ell}(A_{j}(i))) \ll Y_{j-1}(i)^{1-\lambda(\ell+1+\theta+\theta^{2}+\cdots+\theta^{j-1})}$$

which yields $\hat{\lambda}_n(\xi) \leq 1/(\ell+1+ heta+\dots+ heta^{j-1}).$

Problem 2. *W* How to ensure that $\mathcal{P}(j, \ell)$ holds (for a large *j*)?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Growth's estimates

Proposition E

Suppose that $\mathcal{P}(j, \ell)$ holds for some integers $1 \leq j \leq \ell < n$. Then, for each $i \geq 0$, we have

$$Y_j(i)^{(\ell-j+1)\lambda} \ll Y_{j-1}(i) \Big(\prod_{m=1}^{j-1} Y_m(i)^{-2\lambda}\Big) Y_0(i)^{-\lambda}$$

Growth's estimates

Proposition E

Suppose that $\mathcal{P}(j, \ell)$ holds for some integers $1 \leq j \leq \ell < n$. Then, for each $i \geq 0$, we have

$$Y_{j}(i)^{(\ell-j+1)\lambda} \ll Y_{j-1}(i) \Big(\prod_{m=1}^{j-1} Y_{m}(i)^{-2\lambda}\Big) Y_{0}(i)^{-\lambda}.$$

Corollary

Suppose that $\mathcal{P}(j, \ell)$ holds for some integers $1 \leq j \leq \ell < n$, and that $\theta^{j-1} + \theta^j \geq 1$, where $\theta = \ell \lambda / (1 - \lambda)$. Then we have $Y_m(i)^{\theta} \ll Y_{m-1}(i)$ for each $i \geq 0$ and each $m = 0, 1, \ldots, j$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Growth's estimates

Proposition E

Suppose that $\mathcal{P}(j, \ell)$ holds for some integers $1 \leq j \leq \ell < n$. Then, for each $i \geq 0$, we have

$$Y_{j}(i)^{(\ell-j+1)\lambda} \ll Y_{j-1}(i) \Big(\prod_{m=1}^{j-1} Y_{m}(i)^{-2\lambda}\Big) Y_{0}(i)^{-\lambda}.$$

Corollary

Suppose that $\mathcal{P}(j, \ell)$ holds for some integers $1 \leq j \leq \ell < n$, and that $\theta^{j-1} + \theta^j \geq 1$, where $\theta = \ell \lambda / (1 - \lambda)$. Then we have $Y_m(i)^{\theta} \ll Y_{m-1}(i)$ for each $i \geq 0$ and each $m = 0, 1, \ldots, j$.

Ingredients for Proposition E: an alternative height estimate.

A. Poëls and D. Roy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First general height estimates OO

Proof of the theorem

Ideas of the proof of Proposition E

Naive approach.

E1= 990

イロト イヨト イヨト イヨ

First general height estimates OO

Proof of the theorem

Ideas of the proof of Proposition E

Naive approach. Write $A_{j-1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and

$$A_j(i) = \langle \mathbf{x}_i, \ldots, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \ldots, \mathbf{x}_r \rangle,$$

with q and r maximal.

三日 のへで

イロト イヨト イヨト イヨト

First general height estimates OO

Proof of the theorem

Ideas of the proof of Proposition E

Naive approach. Write $A_{j-1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and

$$A_j(i) = \langle \mathbf{x}_i, \ldots, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \ldots, \mathbf{x}_r \rangle,$$

with q and r maximal. In particular $Y_{j-1}(i) = X_{q+1}$ and $Y_j(i) = X_{r+1}$.

First general height estimates 00

Proof of the theorem

Ideas of the proof of Proposition E

Naive approach. Write $A_{j-1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and

$$A_j(i) = \langle \mathbf{x}_i, \ldots, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \ldots, \mathbf{x}_r \rangle,$$

with q and r maximal. In particular $Y_{j-1}(i) = X_{q+1}$ and $Y_j(i) = X_{r+1}$. We construct a basis of $\mathcal{U}^{\ell}(A_j(i))$ by starting with the points $\mathbf{x}_{i}^{(0,\ell)}, \ldots, \mathbf{x}_{i}^{(\ell,\ell)}$ and by completing as previously.

First general height estimates OO

Proof of the theorem

Ideas of the proof of Proposition E

Naive approach. Write $A_{j-1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and

$$A_j(i) = \langle \mathbf{x}_i, \ldots, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \ldots, \mathbf{x}_r \rangle,$$

with q and r maximal. In particular $Y_{j-1}(i) = X_{q+1}$ and $Y_j(i) = X_{r+1}$. We construct a basis of $\mathcal{U}^{\ell}(A_j(i))$ by starting with the points $\mathbf{x}_r^{(0,\ell)}, \ldots, \mathbf{x}_r^{(\ell,\ell)}$ and by completing as previously. Then

$$1 \leq H(\mathcal{U}^{\ell}(A_{j}(i))) \ll X_{r}L_{r}^{\ell}L_{q} \cdots \ll X_{r}X_{r+1}^{-\ell\lambda}X_{q+1}^{-\lambda} \cdots \\ = X_{r}Y_{j}(i)^{-\ell\lambda}Y_{j-1}(i) \cdots$$

First general height estimates 00

Proof of the theorem

Ideas of the proof of Proposition E

Naive approach. Write $A_{j-1}(i) = \langle \mathbf{x}_i, \dots, \mathbf{x}_q \rangle$ and

$$A_j(i) = \langle \mathbf{x}_i, \ldots, \mathbf{x}_{q+1} \rangle = \langle \mathbf{x}_i, \ldots, \mathbf{x}_r \rangle,$$

with q and r maximal. In particular $Y_{j-1}(i) = X_{q+1}$ and $Y_j(i) = X_{r+1}$. We construct a basis of $\mathcal{U}^{\ell}(A_j(i))$ by starting with the points $\mathbf{x}_{i}^{(0,\ell)}, \dots, \mathbf{x}_{i}^{(\ell,\ell)}$ and by completing as previously. Then

$$1 \leq H(\mathcal{U}^{\ell}(A_{j}(i))) \ll X_{r}L_{r}^{\ell}L_{q} \cdots \ll X_{r}X_{r+1}^{-\ell\lambda}X_{q+1}^{-\lambda} \cdots$$
$$= X_{r}Y_{j}(i)^{-\ell\lambda}Y_{j-1}(i) \cdots$$

Problem. Factor X_r potentially way bigger than $Y_{j-1}(i)$. How to get rid of it?

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

三日 のへで

イロト イヨト イヨト イヨト

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

• $U + V = \mathcal{U}^{\ell}(A_j(i));$

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

- $U + V = \mathcal{U}^{\ell}(A_j(i));$
- V has m+1 (with m as large as possible) points among x_r^(0,ℓ),...,x_r^(ℓ,ℓ) to make L_r (and thus Y_j(i)^{-λ}) appear in the upper bound for H(V);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

- $U + V = \mathcal{U}^{\ell}(A_j(i));$
- V has m+1 (with m as large as possible) points among x_r^(0,ℓ),...,x_r^(ℓ,ℓ) to make L_r (and thus Y_j(i)^{-λ}) appear in the upper bound for H(V);
- $U \cap V = \langle \mathbf{x}_r^{(0,\ell)} \rangle$ (to control the height of the intersection).

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 通言 のへ⊙

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

- $U + V = \mathcal{U}^{\ell}(A_j(i));$
- V has m + 1 (with m as large as possible) points among $\mathbf{x}_{r}^{(0,\ell)}, \ldots, \mathbf{x}_{r}^{(\ell,\ell)}$ to make L_r (and thus $Y_j(i)^{-\lambda}$) appear in the upper bound for H(V);
- $U \cap V = \langle \mathbf{x}_r^{(0,\ell)} \rangle$ (to control the height of the intersection).

Write g = gcd of the coordinates of $\mathbf{x}_r^{(0,\ell)}$.

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

- $U + V = \mathcal{U}^{\ell}(A_j(i));$
- V has m+1 (with m as large as possible) points among x_r^(0,ℓ),...,x_r^(ℓ,ℓ) to make L_r (and thus Y_j(i)^{-λ}) appear in the upper bound for H(V);
- $U \cap V = \langle \mathbf{x}_r^{(0,\ell)} \rangle$ (to control the height of the intersection).

Write g = gcd of the coordinates of $\mathbf{x}_r^{(0,\ell)}$. Then we will have

 $H(U \cap V) \asymp g^{-1}X_r$ and $H(V) \ll g^{-1}X_r L_r^m \cdots \ll g^{-1}X_r Y_j(i)^{-m\lambda} \cdots$

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

- $U + V = \mathcal{U}^{\ell}(A_j(i));$
- V has m+1 (with m as large as possible) points among x_r^(0,ℓ),...,x_r^(ℓ,ℓ) to make L_r (and thus Y_j(i)^{-λ}) appear in the upper bound for H(V);
- $U \cap V = \langle \mathbf{x}_r^{(0,\ell)} \rangle$ (to control the height of the intersection).

Write g = gcd of the coordinates of $\mathbf{x}_r^{(0,\ell)}$. Then we will have

$$H(U \cap V) \asymp g^{-1}X_r$$
 and $H(V) \ll g^{-1}X_r L_r^m \cdots \ll g^{-1}X_r Y_j(i)^{-m\lambda} \cdots$

Using Schmidt's inequality, it gives

$$H(\mathcal{U}^{\ell}(A_j(i)))g^{-1}X_r \ll H(U)g^{-1}X_r \frac{Y_j(i)^{-m\lambda}}{Y_j(i)}\cdots,$$

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Solution. Schmidt's inequality $H(U + V)H(U \cap V) \ll H(U)H(V)$.

Construct U and V such that:

- $U + V = \mathcal{U}^{\ell}(A_j(i));$
- V has m+1 (with m as large as possible) points among x_r^(0,ℓ),...,x_r^(ℓ,ℓ) to make L_r (and thus Y_j(i)^{-λ}) appear in the upper bound for H(V);
- $U \cap V = \langle \mathbf{x}_r^{(0,\ell)} \rangle$ (to control the height of the intersection).

Write g = gcd of the coordinates of $\mathbf{x}_r^{(0,\ell)}$. Then we will have

$$H(U \cap V) \asymp g^{-1}X_r$$
 and $H(V) \ll g^{-1}X_r L_r^m \cdots \ll g^{-1}X_r Y_j(i)^{-m\lambda} \cdots$

Using Schmidt's inequality, it gives

$$H(\mathcal{U}^{\ell}(A_j(i)))g^{-1}X_r \ll H(U)g^{-1}X_r \frac{Y_j(i)^{-m\lambda}}{Y_j(i)}\cdots,$$

hence $1 \ll H(U) Y_j(i)^{-m\lambda} \cdots$.

Strategy and notation	Proof of the theorem 0000€000

Problem. We want to estimate H(U) in function of $Y_0(i), \ldots, Y_{j-1}(i)$ only, but $\mathbf{x}_r^{(0,\ell)} \in U...$

三日 のへで

メロト メロト メヨト メヨト

	Proof of the theorem
	0000000

Problem. We want to estimate H(U) in function of $Y_0(i), \ldots, Y_{j-1}(i)$ only, but $\mathbf{x}_r^{(0,\ell)} \in U$...

Solution. Choose *U* of the form $U = \langle \mathbf{x}_r^{(0,\ell)}, \mathbf{y}_1^{(0,\ell)}, \dots, \mathbf{y}_j^{(0,\ell)} \rangle$ where $\mathbf{x}_r, \mathbf{y}_1, \dots, \mathbf{y}_j$ is a basis of $A_j(i) \cap \mathbb{Z}^{n+1}$.

(日) (同) (三) (三) (三) (○) (○)

	Proof of the theorem
	0000000

Problem. We want to estimate H(U) in function of $Y_0(i), \ldots, Y_{j-1}(i)$ only, but $\mathbf{x}_r^{(0,\ell)} \in U...$

Solution. Choose *U* of the form $U = \langle \mathbf{x}_r^{(0,\ell)}, \mathbf{y}_1^{(0,\ell)}, \dots, \mathbf{y}_j^{(0,\ell)} \rangle$ where $\mathbf{x}_r, \mathbf{y}_1, \dots, \mathbf{y}_j$ is a basis of $A_j(i) \cap \mathbb{Z}^{n+1}$.

Difficulty. Ensure that $\dim(U) = j + 1$ (technical issue).

Strategy and notation	First general height estimates	Proof of the theorem
		0000000

Problem. We want to estimate H(U) in function of $Y_0(i), \ldots, Y_{j-1}(i)$ only, but $\mathbf{x}_r^{(0,\ell)} \in U...$

Solution. Choose *U* of the form $U = \langle \mathbf{x}_r^{(0,\ell)}, \mathbf{y}_1^{(0,\ell)}, \dots, \mathbf{y}_j^{(0,\ell)} \rangle$ where $\mathbf{x}_r, \mathbf{y}_1, \dots, \mathbf{y}_j$ is a basis of $A_j(i) \cap \mathbb{Z}^{n+1}$.

Difficulty. Ensure that $\dim(U) = j + 1$ (technical issue). If so, then

 $H(U) \leq \|\mathbf{x}_r^{(0,\ell)} \wedge \mathbf{y}_1^{(0,\ell)} \wedge \cdots \wedge \mathbf{y}_j^{(0,\ell)}\| \leq \|\mathbf{x}_r \wedge \mathbf{y}_1 \wedge \cdots \wedge \mathbf{y}_j\| = H(A_j(i)).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Strategy and notation	Proof of the theorem 0000●000

Problem. We want to estimate H(U) in function of $Y_0(i), \ldots, Y_{j-1}(i)$ only, but $\mathbf{x}_r^{(0,\ell)} \in U...$

Solution. Choose *U* of the form $U = \langle \mathbf{x}_r^{(0,\ell)}, \mathbf{y}_1^{(0,\ell)}, \dots, \mathbf{y}_j^{(0,\ell)} \rangle$ where $\mathbf{x}_r, \mathbf{y}_1, \dots, \mathbf{y}_j$ is a basis of $A_j(i) \cap \mathbb{Z}^{n+1}$.

Difficulty. Ensure that $\dim(U) = j + 1$ (technical issue). If so, then

$$H(U) \leq \|\mathbf{x}_r^{(0,\ell)} \wedge \mathbf{y}_1^{(0,\ell)} \wedge \cdots \wedge \mathbf{y}_j^{(0,\ell)}\| \leq \|\mathbf{x}_r \wedge \mathbf{y}_1 \wedge \cdots \wedge \mathbf{y}_j\| = H(A_j(i)).$$

We conclude with the estimate $H(A_j(i)) \ll Y_{j-1}(i)(Y_{j-1}(i)\cdots Y_0(i))^{-\lambda}$ combined with $1 \ll H(U)Y_j(i)^{-m\lambda}\cdots$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Problem. Find a condition so that $\mathcal{P}(j, \ell)$ holds.

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Problem. Find a condition so that $\mathcal{P}(j, \ell)$ holds.

Proposition F (Corollary of Proposition C)

Let j, ℓ with $2\ell + j \leq n$. Suppose that $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$. Then, there are infinitely many *i* such that

$$1 \ll H(\mathcal{U}^{\ell-1}(A_j((i)))L_{i-1}^m)$$
(1)

where $m = n - j - 2\ell + 2$.

Problem. Find a condition so that $\mathcal{P}(j, \ell)$ holds.

Proposition F (Corollary of Proposition C)

Let j, ℓ with $2\ell + j \leq n$. Suppose that $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$. Then, there are infinitely many *i* such that

$$1 \ll H(\mathcal{U}^{\ell-1}(A_j((i)))L_{i-1}^m)$$
(1)

where $m = n - j - 2\ell + 2$.

Since $\mathcal{P}(j, \ell - 1)$, we can use our estimate $H(\mathcal{U}^{\ell-1}(A_j(i)))$ as well as $Y_k(i)^{\theta} \ll Y_{k-1}(i)$ for $k = 0, \dots, j-1$.

Problem. Find a condition so that $\mathcal{P}(j, \ell)$ holds.

Proposition F (Corollary of Proposition C)

Let j, ℓ with $2\ell + j \leq n$. Suppose that $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$. Then, there are infinitely many i such that

$$1 \ll H(\mathcal{U}^{\ell-1}(A_j((i)))L_{i-1}^m)$$
(1)

where $m = n - j - 2\ell + 2$.

Since $\mathcal{P}(j, \ell - 1)$, we can use our estimate $H(\mathcal{U}^{\ell-1}(A_j(i)))$ as well as $Y_k(i)^{\theta} \ll Y_{k-1}(i)$ for $k = 0, \dots, j-1$. By (1)

$$1 \ll \left(Y_{j-1}(i)^{1-\ell\lambda}Y_{j-2}(i)^{-\lambda}\cdots Y_0(i)^{-\lambda}\right)Y_{-1}^{-m\lambda}$$
$$\ll Y_{j-1}(i)^{1-\lambda(\ell+\theta+\theta^2+\cdots+\theta^{j-1}+m\theta^j)}.$$

Problem. Find a condition so that $\mathcal{P}(j, \ell)$ holds.

Proposition F (Corollary of Proposition C)

Let j, ℓ with $2\ell + j \leq n$. Suppose that $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$. Then, there are infinitely many i such that

$$1 \ll H(\mathcal{U}^{\ell-1}(A_j((i)))L_{i-1}^m)$$
(1)

where $m = n - j - 2\ell + 2$.

Since $\mathcal{P}(j, \ell - 1)$, we can use our estimate $H(\mathcal{U}^{\ell-1}(A_j(i)))$ as well as $Y_k(i)^{\theta} \ll Y_{k-1}(i)$ for $k = 0, \dots, j-1$. By (1)

$$1 \ll \left(Y_{j-1}(i)^{1-\ell\lambda}Y_{j-2}(i)^{-\lambda}\cdots Y_0(i)^{-\lambda}\right)Y_{-1}^{-m\lambda}$$
$$\ll Y_{j-1}(i)^{1-\lambda(\ell+\theta+\theta^2+\cdots+\theta^{j-1}+m\theta^j)}.$$

Hence $\hat{\lambda}_n(\xi) \leq 1/(\ell + \theta + \dots + \theta^{j-1} + m\theta^j).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

Strategy and notation	Proof of the theorem 000000●0

Conclusion.

• If $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.

Strategy and notation	Proof of the theorem ○○○○○○●○

Conclusion.

- If $\mathcal{P}(j, \ell 1)$ holds but not $\mathcal{P}(j, \ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds.

	Proof of the theorem
	00000000

Conclusion.

- If $\mathcal{P}(j,\ell-1)$ holds but not $\mathcal{P}(j,\ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds. This gives another upper bound for $\hat{\lambda}_n(\xi)$ (height estimate of Proposition D).

ELE NOO

	Proof of the theorem
	00000000

Conclusion.

- If $\mathcal{P}(j, \ell 1)$ holds but not $\mathcal{P}(j, \ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds. This gives another upper bound for $\hat{\lambda}_n(\xi)$ (height estimate of Proposition D).

By induction on j and with our choice of parameters, we show that there are ρ_n,ρ_n' such that

イロト (周) (ヨト (ヨト) 三日 ののの

Conclusion.

- If $\mathcal{P}(j,\ell-1)$ holds but not $\mathcal{P}(j,\ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds. This gives another upper bound for $\hat{\lambda}_n(\xi)$ (height estimate of Proposition D).

By induction on j and with our choice of parameters, we show that there are ρ_n,ρ_n' such that

• if $\hat{\lambda}_n(\xi) > \rho_n$, then $\mathcal{P}(j,\ell)$ holds;

Conclusion.

- If $\mathcal{P}(j,\ell-1)$ holds but not $\mathcal{P}(j,\ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds. This gives another upper bound for $\hat{\lambda}_n(\xi)$ (height estimate of Proposition D).

By induction on j and with our choice of parameters, we show that there are ρ_n,ρ_n' such that

- if $\hat{\lambda}_n(\xi) > \rho_n$, then $\mathcal{P}(j, \ell)$ holds;
- if $\mathcal{P}(j,\ell)$ holds, then $\hat{\lambda}_n(\xi) \leq \rho'_n$.

Conclusion.

- If $\mathcal{P}(j,\ell-1)$ holds but not $\mathcal{P}(j,\ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds. This gives another upper bound for $\hat{\lambda}_n(\xi)$ (height estimate of Proposition D).

By induction on j and with our choice of parameters, we show that there are ρ_n,ρ_n' such that

- if $\hat{\lambda}_n(\xi) > \rho_n$, then $\mathcal{P}(j, \ell)$ holds;
- if $\mathcal{P}(j,\ell)$ holds, then $\hat{\lambda}_n(\xi) \leq \rho'_n$.

So $\hat{\lambda}_n(\xi) \leq \max\{\rho_n, \rho'_n\}.$

Conclusion.

- If $\mathcal{P}(j,\ell-1)$ holds but not $\mathcal{P}(j,\ell) \Rightarrow$ upper bound for $\hat{\lambda}_n(\xi)$.
- So, if $\mathcal{P}(j, \ell 1)$ holds and $\hat{\lambda}_n(\xi)$ is "large" enough, then $\mathcal{P}(j, \ell)$ holds. This gives another upper bound for $\hat{\lambda}_n(\xi)$ (height estimate of Proposition D).

By induction on j and with our choice of parameters, we show that there are ρ_n,ρ_n' such that

- if $\hat{\lambda}_n(\xi) > \rho_n$, then $\mathcal{P}(j, \ell)$ holds;
- if $\mathcal{P}(j,\ell)$ holds, then $\hat{\lambda}_n(\xi) \leq \rho'_n$.

So $\hat{\lambda}_n(\xi) \leq \max\{\rho_n, \rho'_n\}$. By optimizing the choice of ℓ and j, we get

$$\hat{\lambda}_n(\xi) \leq rac{1}{n/2 + a\sqrt{n} + 1/3}$$

Thank you.

三日 のへで

イロト イヨト イヨト イヨト

Ideas of the proof of Proposition F

Since $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$, there are infinitely many *i* s.t.

 $\dim(\mathcal{U}^{\ell}(A_i(j))) = \ell + j.$

ELE OQO

< □ > < 同 > < 回 > < Ξ > < Ξ

Ideas of the proof of Proposition F

Since $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$, there are infinitely many *i* s.t.

$$\dim(\mathcal{U}^{\ell}(A_i(j))) = \ell + j.$$

By Proposition B (see first part of the talk), we have

$$H(\mathcal{U}^{\ell-1}(A_i(j))) \asymp H(V)^m,$$

where $m = n - j - 2\ell + 2$ and $V = U^d(A_j(i))$ (with $d = n - \ell - j$) is an hyperplane of $\mathbb{R}^{\ell+j+1}$.

Since $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$, there are infinitely many *i* s.t.

$$\dim(\mathcal{U}^{\ell}(A_i(j))) = \ell + j.$$

By Proposition B (see first part of the talk), we have

$$H(\mathcal{U}^{\ell-1}(A_i(j))) \asymp H(V)^m,$$

where $m = n - j - 2\ell + 2$ and $V = U^d(A_j(i))$ (with $d = n - \ell - j$) is an hyperplane of $\mathbb{R}^{\ell+j+1}$.

Without loss of generality (easy technical argument), we can assume $\mathcal{U}^d(\mathbf{x}_{i-1}) \not\subset V$, so that

 $1 \ll H(V)L_{i-1}.$

Since $\mathcal{P}(j, \ell - 1)$ holds but not $\mathcal{P}(j, \ell)$, there are infinitely many *i* s.t.

$$\dim(\mathcal{U}^{\ell}(A_i(j))) = \ell + j.$$

By Proposition B (see first part of the talk), we have

$$H(\mathcal{U}^{\ell-1}(A_i(j))) \asymp H(V)^m,$$

where $m = n - j - 2\ell + 2$ and $V = U^d(A_j(i))$ (with $d = n - \ell - j$) is an hyperplane of $\mathbb{R}^{\ell+j+1}$.

Without loss of generality (easy technical argument), we can assume $\mathcal{U}^d(\mathbf{x}_{i-1}) \not\subset V$, so that

$$1 \ll H(V)L_{i-1}.$$

Raising to the power *m*, we get $1 \ll H(\mathcal{U}^{\ell-1}(A_i(j)))L_{i-1}^m$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ 三回 のなの