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Introduction Strategy and notation First general height estimates Proof of the theorem

Introduction

Fix ξ ∈ R \ Q. Recall that for each x = (x0, . . . , xn) ∈ Rn+1

Lξ(x) = max{|x0ξ − x1|, . . . , |x0ξn − xn|}.

λ̂n(ξ) is the supremum of the reals numbers λ ≥ 0 such that

∥x∥ ≤ X and Lξ(x) ≤ X−λ

has a non-zero solution x ∈ Zn+1 for each large enough X .

Theorem (P.-Roy, 2021)

λ̂n(ξ) ≤ 1
n/2 + a

√
n + 1/3

where a = (1 − log 2)/2 ∼= 0.153 for n ≥ 2.
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Introduction Strategy and notation First general height estimates Proof of the theorem

Truncated points

Given x = (x0, . . . , xn) ∈ Rn+1 and ℓ ∈ {0, 1, . . . , n}, define

x(0,ℓ) = (x0, . . . , xn−ℓ)
x(1,ℓ) = (x1, . . . , xn−ℓ+1)

· · ·
x(ℓ,ℓ) = (xℓ, . . . , xn+1)

 ∈ Rn−ℓ+1

and Uℓ(x) = ⟨x(0,ℓ), . . . , x(ℓ,ℓ)⟩ ⊆ Rn−ℓ+1.

Fix (xi)i≥0 sequence of minimal points and set Xi = ∥xi∥ and Li = Lξ(xi).
Fix λ < λ̂n(ξ) (arbitrarily close to λ̂n(ξ)). In particular Li ≪ X−λ

i+1.
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A first estimate - Case of one minimal point

Fix ℓ ≤ n/2.

Natural expectation: the blocks of n − ℓ + 1 consecutive coordinates
extracted from xi are linearly independent, i.e. dim Uℓ(xi) = ℓ + 1.

Proposition (Badziahin-Schleischitz, 2021)

Suppose that λ̂n(ξ) > 1/(n − ℓ + 1) for some integer ℓ with 0 ≤ ℓ ≤ n/2.
Then dim Uℓ(xi) = ℓ + 1 for each sufficiently large i .

Suppose dim Uℓ(xi) = ℓ + 1 for infinitely many i . Then

1 ≤ H(Uℓ(xi)) ≤ ∥x(0,ℓ)
i ∧ · · · ∧ x(ℓ,ℓ)

i ∥ ≪ XiLℓ
i ≪ X 1−ℓλ

i .

⇒ λ̂n(ξ) ≤ 1/ℓ.

By the proposition λ̂n(ξ) ≤ max{1/(n − ℓ + 1), 1/ℓ}, so λ̂n(ξ) ≤ 1/⌊n/2⌋
(Davenport-Schmidt, 1969).
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Introduction Strategy and notation First general height estimates Proof of the theorem

Our strategy: consider several points

Goal: increase the dimension by considering Uℓ(xi , . . . , xj), get an
estimate for its height, and thus a smaller upper bound for λ̂n(ξ).

remark. For ℓ = ⌊n/2⌋, the space Uℓ(xi) ⊆ Rn+1−ℓ is the whole space (n
even) or an hyperplane (n odd).
⇒ need to decrease ℓ to “make room” (we take ℓ ≈ n/2 − b

√
n).

Main difficulties
How to know that dim Uℓ(xi , . . . , xj) is “big” enough (compared to

dim⟨ xi , . . . , xj⟩)?
How to estimate H(Uℓ(xi , . . . , xj))?

How to control the size of the points xi , . . . , xj+1?
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Introduction Strategy and notation First general height estimates Proof of the theorem

Definitions

Recall that ⟨ xi , xi+1, . . . ⟩ = Rn+1.

Definition
For j = 0, . . . , n − 1, let q ≥ i be the largest index for which ⟨ xi , . . . , xq⟩
has dimension j + 1. We set

Aj(i) = ⟨ xi , . . . , xq⟩ and Yj(i) = Xq+1.

By convention An(i) = Rn+1 and Y−1(i) = Xi .

A0(i) = ⟨ xi⟩ and Y0(i) = Xi+1.
A1(i) = ⟨ xi , xi+1⟩ = ⟨ xi , . . . , xq⟩ and Y1(i) = Xq+1.
Aj+1(i) = ⟨ xi , . . . , xq, xq+1⟩.

Main goal
Study of the spaces Uℓ(Aj(i)) (Dimension? Height?)
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Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.

Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.
P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.
If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).
P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.
Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.
P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.
If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).
P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.
Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.
P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.
If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).
P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.
Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.

P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.
If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).
P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.
Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.
P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.

If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).
P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.
Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.
P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.
If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).

P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

Properties P(j , ℓ)
Preliminaries.

Uℓ(xi) is generated by ℓ + 1 points. Expectation: dim Uℓ(xi) = ℓ + 1.
Am(i) is generated by xi + m other linearly independent points.
Expectation: dim Uℓ(Am(i)) ≥ ℓ + 1 + m.

Definition
Let j , ℓ ∈ {0, . . . , n}. We say that property P(j , ℓ) holds if

dim Uℓ(Am(i)) ≥ ℓ + 1 + m (m = 0, . . . , j)

for each sufficiently large integer i ≥ 0.

P(j , ℓ) ⇒ P(j − 1, ℓ) if j > 0.
P(n, 0) holds since U0(Am(i)) = Am(i) has dimension m + 1.
If λ̂n(ξ) > 1/(n − ℓ + 1), then P(0, ℓ) holds (BS, 2021).
P(j , ℓ) ⇒ P(j + 1, ℓ − 1) (properties of ℓ 7→ dim Uℓ(A)).

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 7 / 17



Introduction Strategy and notation First general height estimates Proof of the theorem

First general height estimates

Proposition D
Suppose that P(j , ℓ) holds (with j , ℓ ∈ {0, . . . , n}). Then

H(Uℓ(Aj(i))) ≪ Yj−1(i)1−ℓλ(Yj−1(i) · · · Y0(i))−λ.

For j = 0, we get H(Uℓ(xi)) ≪ Y−1(i)1−ℓλ = X 1−ℓλ
i .

For ℓ = 0, we get H(Aj(i)) ≪ Yj−1(i)(Yj−1(i) · · · Y0(i))−λ.
Sketch of the proof (for j = 3). Write

A1(i) = ⟨ xi , xi+1⟩ = ⟨ xi , . . . , xq⟩,
A2(i) = ⟨ xi , . . . , xq, xq+1⟩ = ⟨ xi , . . . , xr ⟩,
A3(i) = ⟨ xi , . . . , xr , xr+1⟩.

Note that (Y0(i), Y1(i), Y2(i)) = (Xi+1, Xq+1, Xr+1).
Since xr+1 /∈ ⟨ xi , . . . , xr ⟩, we have dim⟨ xq, xq+1, . . . , xr+1⟩ ≥ 3.
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Proof of the proposition (end)
By P(3, ℓ), we have dim Uℓ(xr+1) = ℓ + 1, as well as

dim Uℓ(xr , xr+1) ≥ ℓ + 2,
dim Uℓ(xq, . . . , xr+1) ≥ ℓ + 3,
dim Uℓ(xi , . . . , xr+1) = dim Uℓ(A3(i)) ≥ ℓ + 4.

We get linearly independent points by taking x(0,ℓ)
r+1 , . . . , x(ℓ,ℓ)

r+1 and
one point y among x(0,ℓ)

r , . . . , x(ℓ,ℓ)
r ⇒ Lξ(y) ≤ Lr ,

one point z among the points x(0,ℓ)
k , . . . , x(ℓ,ℓ)

k (q ≤ k ≤ r),
⇒ Lξ(z) ≤ Lq,
one point t among the points x(0,ℓ)

k , . . . , x(ℓ,ℓ)
k (i ≤ k ≤ r),

⇒ Lξ(t) ≤ Li .

⇒ H(Uℓ(Aj(i))) ≪ Xr+1Lℓ
r+1Lr LqLi ≪ X 1−ℓλ

r+1 X−λ
r+1X−λ

q+1X−λ
i+1

≪ Y2(i)1−ℓλY2(i)−λY1(i)−λY0(i)−λ.

A. Poëls and D. Roy Simultaneous rational approximation 8th October 2021 9 / 17
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Introduction Strategy and notation First general height estimates Proof of the theorem

Remaining problems

Problem 1. Growth of the quantities Ym(i)?

“Ideal” situation: Y0(i) ≍ · · · ≍ Yj−1(i). In that case (if P(j , ℓ) holds),
Proposition D yields

1 ≤ H(Uℓ(Aj(i))) ≪ Yj−1(i)1−(ℓ+j)λ,

and so λ̂n(ξ) ≤ 1/(ℓ + j) (with the condition 2ℓ + j ≤ n).
In general, we prove that Ym(i)θ ≪ Ym−1(i) for a given θ “close” to 1.
This implies that

1 ≤ H(Uℓ(Aj(i))) ≪ Yj−1(i)1−λ(ℓ+1+θ+θ2+···+θj−1)

which yields λ̂n(ξ) ≤ 1/(ℓ + 1 + θ + · · · + θj−1).

Problem 2. How to ensure that P(j , ℓ) holds (for a large j)?
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Introduction Strategy and notation First general height estimates Proof of the theorem

Growth’s estimates

Proposition E
Suppose that P(j , ℓ) holds for some integers 1 ≤ j ≤ ℓ < n. Then, for
each i ≥ 0, we have

Yj(i)(ℓ−j+1)λ ≪ Yj−1(i)
( j−1∏

m=1
Ym(i)−2λ

)
Y0(i)−λ.

Corollary
Suppose that P(j , ℓ) holds for some integers 1 ≤ j ≤ ℓ < n, and that
θj−1 + θj ≥ 1, where θ = ℓλ/(1 − λ). Then we have Ym(i)θ ≪ Ym−1(i)
for each i ≥ 0 and each m = 0, 1, . . . , j .

Ingredients for Proposition E: an alternative height estimate.
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Introduction Strategy and notation First general height estimates Proof of the theorem

Ideas of the proof of Proposition E

Naive approach.

Write Aj−1(i) = ⟨ xi , . . . , xq⟩ and

Aj(i) = ⟨ xi , . . . , xq+1⟩ = ⟨ xi , . . . , xr ⟩,

with q and r maximal. In particular Yj−1(i) = Xq+1 and Yj(i) = Xr+1.

We construct a basis of Uℓ(Aj(i)) by starting with the points
x(0,ℓ)

r , . . . , x(ℓ,ℓ)
r and by completing as previously. Then

1 ≤ H(Uℓ(Aj(i))) ≪ Xr Lℓ
r Lq · · · ≪ Xr X−ℓλ

r+1 X−λ
q+1 · · ·

= Xr Yj(i)−ℓλYj−1(i) · · ·

Problem. Factor Xr potentially way bigger than Yj−1(i). How to get rid
of it?
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Introduction Strategy and notation First general height estimates Proof of the theorem

Ideas of the proof
Solution. Schmidt’s inequality H(U + V )H(U ∩ V ) ≪ H(U)H(V ).

Construct U and V such that:
U + V = Uℓ(Aj(i));
V has m + 1 (with m as large as possible) points among
x(0,ℓ)

r , . . . , x(ℓ,ℓ)
r to make Lr (and thus Yj(i)−λ) appear in the upper

bound for H(V );
U ∩ V = ⟨ x(0,ℓ)

r ⟩ (to control the height of the intersection).
Write g = gcd of the coordinates of x(0,ℓ)

r . Then we will have

H(U ∩ V ) ≍ g−1Xr and H(V ) ≪ g−1Xr Lm
r · · · ≪ g−1Xr Yj(i)−mλ · · ·

Using Schmidt’s inequality, it gives

H(Uℓ(Aj(i)))g−1Xr ≪ H(U)g−1Xr Yj(i)−mλ · · · ,

hence 1 ≪ H(U)Yj(i)−mλ · · · .
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Introduction Strategy and notation First general height estimates Proof of the theorem

Ideas of the proof

Problem. We want to estimate H(U) in function of Y0(i), . . . , Yj−1(i)
only, but x(0,ℓ)

r ∈ U...

Solution. Choose U of the form U = ⟨ x(0,ℓ)
r , y(0,ℓ)

1 , . . . , y(0,ℓ)
j ⟩ where

xr , y1, . . . , yj is a basis of Aj(i) ∩ Zn+1.

Difficulty. Ensure that dim(U) = j + 1 (technical issue). If so, then

H(U) ≤ ∥x(0,ℓ)
r ∧ y(0,ℓ)

1 ∧ · · · ∧ y(0,ℓ)
j ∥ ≤ ∥xr ∧ y1 ∧ · · · ∧ yj∥ = H(Aj(i)).

We conclude with the estimate H(Aj(i)) ≪ Yj−1(i)(Yj−1(i) · · · Y0(i))−λ

combined with 1 ≪ H(U)Yj(i)−mλ · · · .
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Property P(j , ℓ)
Problem. Find a condition so that P(j , ℓ) holds.

Proposition F (Corollary of Proposition C)
Let j , ℓ with 2ℓ + j ≤ n. Suppose that P(j , ℓ − 1) holds but not P(j , ℓ).
Then, there are infinitely many i such that

1 ≪ H(Uℓ−1(Aj((i)))Lm
i−1 (1)

where m = n − j − 2ℓ + 2.

Since P(j , ℓ − 1), we can use our estimate H(Uℓ−1(Aj(i)) as well as
Yk(i)θ ≪ Yk−1(i) for k = 0, . . . , j − 1. By (1)

1 ≪
(

Yj−1(i)1−ℓλYj−2(i)−λ · · · Y0(i)−λ
)

Y −mλ
−1

≪ Yj−1(i)1−λ(ℓ+θ+θ2+···+θj−1+mθj ).

Hence λ̂n(ξ) ≤ 1/(ℓ + θ + · · · + θj−1 + mθj).
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Property P(j , ℓ)

Conclusion.
If P(j , ℓ − 1) holds but not P(j , ℓ) ⇒ upper bound for λ̂n(ξ) .

So, if P(j , ℓ − 1) holds and λ̂n(ξ) is “large” enough, then P(j , ℓ)
holds. This gives another upper bound for λ̂n(ξ) (height estimate of
Proposition D).

By induction on j and with our choice of parameters, we show that there
are ρn, ρ′

n such that
if λ̂n(ξ) > ρn, then P(j , ℓ) holds;
if P(j , ℓ) holds, then λ̂n(ξ) ≤ ρ′

n.
So λ̂n(ξ) ≤ max{ρn, ρ′

n}. By optimizing the choice of ℓ and j , we get

λ̂n(ξ) ≤ 1
n/2 + a

√
n + 1/3

.
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Thank you.
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Ideas of the proof of Proposition F

Since P(j , ℓ − 1) holds but not P(j , ℓ), there are infinitely many i s.t.

dim(Uℓ(Ai(j))) = ℓ + j .

By Proposition B (see first part of the talk), we have

H(Uℓ−1(Ai(j))) ≍ H(V )m,

where m = n − j − 2ℓ + 2 and V = Ud(Aj(i)) (with d = n − ℓ − j) is an
hyperplane of Rℓ+j+1.

Without loss of generality (easy technical argument), we can assume
Ud(xi−1) ̸⊂ V , so that

1 ≪ H(V )Li−1.

Raising to the power m, we get 1 ≪ H(Uℓ−1(Ai(j)))Lm
i−1.
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