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|. Uniform rational approximation

Let u be a non-zero point of R™*! for some integer n > 1. We define X(u)
to be the supremum of the real numbers A > 0 for which the inequalities

x| <X and [xAul <X

admit a non-zero solution x € Z"*! for each sufficiently large X.

° /):(u) > 1/n by a theorem of Dirichlet.
° X(uA) = X(u) for each A € GL,+1(Q).



|. Uniform rational approximation

Let u be a non-zero point of R™*! for some integer n > 1. We define X(u)
to be the supremum of the real numbers A > 0 for which the inequalities

x| <X and [xAul <X

admit a non-zero solution x € Z"*! for each sufficiently large X.

° /):(u) > 1/n by a theorem of Dirichlet.
° X(uA) = X(u) for each A € GL,+1(Q).

For £ € R, we set Ap(&) = A(L,€,...,€M). J

~

° X,,(f) = 1/n for almost all £ € R and each & € Q with [Q(¢) : Q] > n.
o An(g.£) = A(€) for each g € GL(Q).



Some estimates
Let € R\ Q. Set v=(1++/5)/221.618.

1/ 0618 if n=2,
1) Davenport & Schmidt (1969): X,,(f) <<{1)/2 if n =3,
1/|n/2] if n> 4.
2) Laurent (2003): A,(¢) <1/[n/2] if n> 3.
3) R. (2003): Ay(£) = 1/~ for an infinite countable set of £.
4) R. (2008): A3(¢) < A3 22 0.4245 the positive root of T2 — 73T + . )

Goals of the talk:
@ similarities between 3) and 4),
@ hints for the proof that A3 in 4) can be improved,

o relevance of parametric geometry of numbers.



II. Two families of convex bodies

Let u € R” with Q-linearly independent coordinates. For each g > 0, set
Cu(g)={xeR"; x| <1 and |x-u|l<e 9},
Colg) ={xeR";|x]| <1 and [xAu]<e 9}

and, for each j =1,...,n, define

Ly j(q) = smallest L > 0 such that e!C,(q) contains at least
J linearly independent points of Z",

Ly, j(q) = smallest L > 0 such that ekC(q) contains at least
J linearly independent points of Z".

Finally define Ly: [0,00) = R" and L}:[0,00) — R" by

Lu(q) = (Lu1(q), -+, Lun(q)) and Ly(q) = (Ly1(a), - - Ly n(9))-
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and, for each j =1,...,n, define

Ly j(q) = smallest L > 0 such that e!C,(q) contains at least
J linearly independent points of Z",

Ly, j(q) = smallest L > 0 such that ekC(q) contains at least
J linearly independent points of Z".

Finally define Ly: [0,00) = R" and L}:[0,00) — R" by

Lu(q) = (Lu1(q),---, Lun(q)) and Ly(q) = (Ly1(q);---, L5n(q))-

» buyn

Mabhler’s duality : | Ly ;(q) + Ly ,41-;(q) = g+ O(1) forj=1,...,n.




The trajectory of a point
The trajectory of a non-zero point x € Z" relative to the family C;(q) is

the map Lji(x,-): [0,00) — R given by
L:(x, q) = smallest L such that x € e'C}i(q)
— max{log x|, g +log [l A ull}.

It is continuous and piecewise linear with slope 0 then 1.

sIope 1 L::(X, q)
slope 0

log ||| y
4

— - - — X

log ||x A ul|




The first minimum

Finitely many non-zero points x € Z" have their trajectory cross the
domain 0 < L < Ly: they all have log ||x]| < Lo.




The first minimum

Finitely many non-zero points x € Z" have their trajectory cross the
domain 0 < L < Lg: they all have log ||x|| < Lo. Thus,

u1(q) = min{Ly(x, q); x € Z"\ {0}}

is a continuous piecewise linear function of g > 0 with slopes 0 and 1, and

it is realized by a sequence (x;);>1 of integer points called “minimal
points”.
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Link with the exponent A(u)

Fix A > 0. The following conditions are equivalent:

@ There exists a constant ¢ > 0 such that the conditions
x| <X and [xAul| <X
admit a non-zero solution x € Z" for any sufficiently large X.
o We have |[|x; Au|| < ||x;j41]™> for each i > 1.

. q
o We have L;,(q) < TN +O(1) as g — oc.



Link with the exponent A(u)

Fix A > 0. The following conditions are equivalent:

@ There exists a constant ¢ > 0 such that the conditions
x| <X and [xAul| <X
admit a non-zero solution x € Z" for any sufficiently large X.
o We have |[|x; Au|| < ||x;j41]™> for each i > 1.

o We have L;,(q) < ﬁ—i-(’)(l) as g — 00.

Corollary (Schmidt and Summerer (2013))

For any non-zero u € R", we have

Nu)= —— —1 where @(u) = limsup ——
) P(u) A g0 4




lIl. The n-systems

Let go > 0. An n-system on [gg, o) is a map P = (Py,..., P,) from

[go, 0) to R” with the following properties.

(S1) Each P; is continuous and piecewise linear with slopes 0 and 1.

(S2) We have 0 < Pi(q) < --- < P,(q) and Pi(q) + -+ + Pn(q) = g for
each g > qo.

(S3) Foreach j=1,...,n—1 and each g > qo at which Py +--- + P;
decreases slope from 1 to 0, we have Pj(q) = Pj+1(q).
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The switch points of such a map P are gp and all points g > gg at which
at least one of the sums Py + --- + P; with 1 < j < n increases slope from

0tol.




lIl. The n-systems

Let go > 0. An n-system on [gg, o) is a map P = (Py,..., P,) from

[go, 0) to R” with the following properties.

(S1) Each P; is continuous and piecewise linear with slopes 0 and 1.

(S2) We have 0 < Py(q) < --- < Py(q) and Pi(q) +---+ Pn(q) = g for
each g > qo.

(S3) Foreach j=1,...,n—1 and each q > qo at which Py +--- + P;
decreases slope from 1 to 0, we have Pj(q) = Pj+1(q).

The switch points of such a map P are gp and all points g > gg at which
at least one of the sums Py + --- + P; with 1 < j < n increases slope from
0tol.

Let 5 > 0. We say that P is rigid of mesh § > 0 if Pi(q),..., P,(q) are
distinct positive multiples of § for each switch point g of P.




The combined graph of a rigid n-system

The combined graph of an n-system P = (Py,..., P,) over an interval is
the union of the graphs of Py, ..., P, over that interval. If P is rigid and
r < s are consecutive switch points of P, then it combined graph has the
following form over a neighborhood of [r,s] (here n = 6).
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The combined graph of a rigid n-system

The combined graph of an n-system P = (Py,..., P,) over an interval is
the union of the graphs of Py, ..., P, over that interval. If P is rigid and
r < s are consecutive switch points of P, then it combined graph has the
following form over a neighborhood of [r,s] (here n = 6).
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Characterization of the minima up to bounded functions

Theorem (R. 2015)

For each nonzero u € R" and each § > 0, there exists a rigid n-system
P: [go,00) — R" of mesh ¢ such that L, — P is bounded on [qo, c0).

Conversely, given any n-system P: [qo,00) — R", there exists a nonzero
u € R" such that L, — P is bounded on [qg, c0).

@ Schmidt and Summerer prove the first assertion with a larger class of
functions P called (n,~)-systems, where «y is an auxiliary parameter.



Dual n-systems

Let go > 0. A dual n-system on [qo, o) is a map P*: [go,00) — R”
given by
P*(q) = (q—Pn(q),---,a— P1(q)) (9= qo)

for some n-system P = (P1,...,Ppn): [qo,0) — R".




Dual n-systems

Let go > 0. A dual n-system on [qo, o) is a map P*: [go,00) — R”
given by
P*(q) = (g9 — Pn(q),-..,a— P1(q)) (9= qo)

for some n-system P = (P1,..., Py): [qo,00) — R".

Equivalently, this is a map P* = (P;,..., P}): [qo,00) — R” with the
following properties.
(S1) Each P is continuous and piecewise linear with slopes 0 and 1.
(S2) We have 0 < Pf(q) <--- < Pj(q) and
Pi(q)+---+ Pi(q) = (n— 1)q for each g > qo.
(S3) Foreach j=1,...,n—1 and each q > qo at which P} +--- + P
decreases slope from j to j — 1, we have P;(q) = P}, ;(q).

Its switch points are gy and the points g > qg at which at least one of
the sums Py + --- + Pj‘ with 1 < j < n increases slopes from j — 1 to j.
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of [r,s] (here n = 6).
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P*, then its combined graph has the following form over a neighborhood
of [r,s] (here n = 6).




Characterization of the minima up to bounded functions

Corollary

For each nonzero u € R" and each § > 0, there exists a dual rigid
n-system P*: [qo,00) — R" of mesh § such that L}, — P* is bounded on
[qo, 00). Conversely, given any dual n-system P*: [qo,00) — R", there
exists a nonzero u € R" such that L}, — P* is bounded on [qp, >0).




Combined graph of a dual 2-system




Combined graph of a dual 3-system

There is a repetitive pattern :




The generic pattern




The generic pattern

When P5 has slope 1, (Pj, P;) behaves like a dual 2-system.
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The generic pattern

When Pj has slope 1, (P, P;) behaves like a dual 2-system.




The generic pattern

When Pf and P35 have slope 1, (P5) behaves like a dual 1-system.




Dual 4-systems



Dual 4-systems
When P has slope 1, (P, P5, P5) behaves like a dual 3-system.




Dual 4-systems
When P; has slope 1, (P53, P;, P;) behaves like a dual 3-system.




Dual 4-systems

system.

When P{ and Pj have slope 1, (P;, P;) behaves like a dual 2




No repetitive pattern for dual 4-systems

P, have slope 1 may be qualitatively very

Transitions when P and

different




Self-similar dual systems

They are the dual n-systems P*: [go,00) — R” which, for some p > 1,
satisfy

P*(pq) = pP*(q) for each g > qo

Example for n = 3:

7

'
0 G PG g P>a0



I\V. The trajectory of a subspace

Let 1 < k < n be integers and let u € R" \ {0}. Mahler's k-th compound
of

Cu(q) = {x € R"; log||x|| <1and log|x Aull < —q}

is comparable to
(C2)*¥)(q) = {X € A“R" log | X]| < ~(k—1)q and log |XAu|| < ~kq}.
The trajectory of a non-zero X € /\k R is
Li(X, q) = max{log | X]| + (k — 1)q, log |.X A ul| + kq}.
The trajectory of a k-dimensional subspace V of R" defined over Q is
Ly(V,q) = L(x1 A -+ A Xk, q)

where (x1,...,Xx) is any basis of V NZ".



A glimpse at Mahler's theory
Suppose that / is a sub-interval of [0, 00) such that
uk(q) < Ljxy1(q) foreach gel.
Then, the subspace V of R” generated by the first k minima of C(q) in
Z" is independent of g € I, and we have
La(V,q) ~ Li1(q) + -+ L5 (q) foreach g€l



A glimpse at Mahler's theory
Suppose that / is a sub-interval of [0, 00) such that
uk(q) < Ljxy1(q) foreach gel.

Then, the subspace V of R” generated by the first k minima of C(q) in
Z" is independent of g € I, and we have

La(V,q) ~ Li1(q) + -+ L5 (q) foreach g€l

Consequence. Let P* = (P;,..., P}) is a dual n-system on [qo, c0) for
which ¢ := ||P* — Lj|lcc < 00. Suppose that / is a subinterval of [go, 0)
such that

Pi(q) < Pry1(q) —2c foreach g € /.

for each g > qg. Then, the subspace V of R" generated by the points
x € Z" with Li(x,q) < P;,,(q) — c for some g € / has dimension k and

Ly(V,q) ~ P{(q) +---+ Pg(q) foreachqgel.
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V. Approximation to (1,&, £?)

Hypothesis

Let £ € R with [Q(€) : Q] > 2. Set u = (1,&,£2) and suppose that there
exist A > 1/2 and ¢ > 0 such that the inequalities

x| <X and [xAu| <X

admit a non-zero solution x € Z3 for each large enough X.

Fix a dual 3-system P* = (P;, P3, P;) such that L}, — P* is bounded. The
last hypothesis becomes

* q
<7_|_
Pl(Q)_l \ O(l)

as g — oo.



Exploiting the nature of the point

For each point x = (xo, x1,X2) € Z3, we define
x~ = (x0,x1), xT =(x,x) and Ax=x"—¢x".

Then, |xAu| =< [|AX].

Theorem (Davenport and Schmidt, 1969)

For any minimal point x € Z3 with ||x|| large enough, we have
det(x) := det(x~,x") # 0.

’

Then, 1< |det(x™,xT)| = |det(x™, Ax)| < ||x]|||Ax

and so, 0 <log||x|| + log||x A ul| + O(1).




Consequence on P;

We have Pi(q) > q/2+ O(1) as g — cc.

Proof. We may assume that P} changes slope
from 0 to 1 at g.

Pi(q)] ;

Pi(a) —q
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We have Pi(q) > q/2+ O(1) as g — cc.

Proof. We may assume that P changes slope
from 0 to 1 at gq. We have

P3(q) = (Pi(q) + P3(q))/2 > q/2

since P{ + P; has slope 1 or 2. So, we may
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Consequence on P;

We have Pi(q) > q/2+ O(1) as g — cc.

Proof. We may assume that P changes slope
from 0 to 1 at gq. We have

P2(a) = (P1(a) + P2(q))/2 = q/2
since P{ + P; has slope 1 or 2. So, we may
assume that P;(q) — Py (q) is large.

Choose a minimal point x € Z3 such that
L51(q) = Li(x, q).
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Consequence on P;

We have Pi(q) > q/2+ O(1) as g — cc.

Proof. We may assume that P changes slope
from 0 to 1 at gq. We have

Py(q) = (Pi(q) + P2(q))/2 > q/2

since P{ + P; has slope 1 or 2. So, we may
assume that P;(q) — Py (q) is large.

Choose a minimal point x € Z3 such that
L3 1(q) = Li(x,q). Then, we have
log [[x|| = P1(g), log|x Aul| =~ Pi(q) g,

Thus, 0 <log||x|| + log ||x A u|| + O(1)
< Pi(q) + (Pi(q) — q) + O(1).

log ||| |
P(q)]

Pi(a) —q

log [|x A ul| '



Summary of the constraints

We have

[Q(€) : Q] > 2 <= u=(1,&,£2) has Q-linearly independent coordinates

<= | P3 changes slope infinitely often

Moreover

N|Q

+0() < Pi(a) < 7 +O)

One can show that these conditions imply
Theorem (Davenport and Schmidt, 1969)

A< 1/y20.618




Application to a generic pattern
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(1) S t/(1+ )
[(t) S E/(1+)




Application to a generic pattern

1(5) St/(1+A)

1) S H/(1+ )




Application to a generic pattern

—~~
= =
l__l —~
l__l — —~ ~
~ // S ke K
S R T o QA
ve VO AL ALV
—~~
S w T T T

N~ N~ N~ ~—~




Application to a generic pattern

q— Pi(q)
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Application to a generic pattern
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Application to a generic pattern

~— q
= _
N—r
*
—~ Q- =
— ~ ~—
~ 4 f Py
+ —~ O © G
~ = = =+ ~
et I/ ~ ¥ X —_ IS
> 2 o Qo 2T A
VAL A VI =
V2 iy xm - a7
~— ~— ~— +
T L T T T Y = I _
~— N N~ ~—~ ~—~ i *
P R I T B Q. o
E] N (o]




Application to a generic pattern
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Limit case

@ Solving the above inequalities yields A < 1/~.
e If A =1/~, all inequalities are equalities up to a bounded difference:




A particular minimal point
As P3(q) — Pj(q) — oo, there is a unique primitive pair +y € Z3 with

log [lyll ~ /2 and log|ly Aull ~ —q/2
and thus | det(y)| < 1.

vq/2

Pi(q) = q/2




A particular minimal point

As P3(q) — Pj(q) — oo, there is a unique primitive pair +y € Z3 with
log [lyll ~ /2 and log|ly Aull ~ —q/2

and thus | det(y)| < 1.

log [|y|| ~ q/2 / -

0 7

log |y Aul| ~ —q/2



The sequence of these points
We get real numbers g; > 0 in R and primitive points y; € Z* with
qi+1 = 7qi, logllyill = qi/2, logllyi Aul =~ —q;/2.

We may choose P* self similar with ratio ~,
so that gj+1 = yq; for each i > 1.

N
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We get real numbers g; > 0 in R and primitive points y; € Z* with
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so that gj+1 = yq; for each i > 1. . yi

Yi+1

N\

- — = = = = =

0 qdi-1 qi qi+1 giy2



The sequence of these points
We get real numbers g; > 0 in R and primitive points y; € Z* with

gi+1 = 7qi, logllyill = gi/2, log|lyi Aul| ~ —gi/2.
We may choose P* self similar with ratio ~,

so that gj+1 = yq; for each i > 1. . yi

Yi+1

Yit2
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The sequence of these points
We get real numbers g; > 0 in R and primitive points y; € Z* with

gi+1 = 7qi, logllyill = gi/2, log|lyi Aul| ~ —gi/2.
We may choose P* self similar with ratio ~,

so that gj+1 = yq; for each i > 1. . yi

Yi+1

Yit2

- — = = = == -

0 gi-1 qi gi+1 gi+2



Linear independence of three consecutive points

Claim. The points y;_1,Y;,Yir1 are linearly independent if / > 1.

Step 1. The trajectory of a non-zero x € Z3 changes slope at

q(x) =

Thus, if x,y € Z* are linearly independent, then g(x) = g(y).

Since Lj(yi, g) changes slope around g; and gj+1 — g; — oo, the points y;
and y; 1 are linearly independent if i > 1.



Step 2

The trajectory of (y;_1,y;)r changes slope around g;.




Step 2

The trajectory of (y;_1,y;)r changes slope around g;.
= That of (y;,yi+1)r changes slope around gj;1.




Step 2

The trajectory of (y;_1,y;)r changes slope around g;.
= That of (y;,yi+1)r changes slope around gj;1.
= (Yi-1, YR # (¥i, Yir1)r if i > 1.




Summary

Set u = (1,¢&,£?) for some € € R with [Q(€) : Q] > 2. Suppose that, for
some ¢ > 0,

x| <X and |xAu| <X

admits a non-zero solution x € Z3 for each large enough X.

Then, there exist an unbounded sequence (y;);j>1 of primitive points of Z3
such that, for each large enough i,

o |lyirll =< llyill” and [JAy]| < [ly; Aull = |lyill 72,
o |det(y;)| <1,

® yi_1,Yi,Yi+1 are linearly independent.



The polynomial map =
We define a polynomial map = : R3 x R3 — R3 by
=(x,y) = (det(x~,y") —det(x",y7))x — det(x)y.

where det(x) := det(x~,x+) = |0 .

X1 X2

Algebraic properties

(i) det(=(x,y)) = det(x)? det(y),
(i) =(x,=(x,y)) = det(x)?y.

Analytic properties

(@) 1261 < XAy ]+ llylllAy]?,
(i) [AZ(x, y)IF < (IxII1AY]] + Nyl Ax]) | Ax]).




Application

We find

o [I=(yi,yir1)ll < llyi—2ll  and  [[AZ(yi,yit1)ll < lyi-2ll ™,
and then

o |det(yi—2,yi-1,=(yi,yit1))| < [lyi—al 7t =0,
o |det(yi—3,yi—2,=(yi,yit1))| < [lyi-s[ "t = 0.
Thus, for each large enough i/,

det(yi—2,¥i-1,=(¥i,¥i+1)) =0 and det(y;—3,yi—2,=(yi,yi+1)) =0,

and so =(y;,¥i+1) X yi—2. As =(y;,yi+1) # 0, we find

‘E(y,w yi—2) < =(yi, =(yi, ¥i+1)) X Yit1,

which determines the primitive point y;11 as a function of y;_» and y; up
to multiplication by +1.



Solution to the inverse problem

Choose linearly independent yi,y»,y3 € Z3 with det(y;) = 1 for j = 1,2, 3.
Then the sequence (y;)i>1 given recursively by

Yit1 = =(yi,yi—2) for each i >3

belongs to Z3. For each i > 1, it has det(y;) = 1 and (y;,yit1,Yit2) is a
linearly independent triple.

For an appropriate choice of y1,Y¥2,y3, the image of y; in P2(R) converges
to the class of (1,£,&?) for some & € R with [Q(€) : Q] > 2 and
A2(§) =1/7.



VI. Approximation to (1,&,£2,€3)

Let A\ = \3 = 0.4245... = the positive root of T2 — 3T + 7.

Hypothesis

Let £ € R with [Q(€) : Q] > 3. Set u = (1,&,£2,£3) and suppose that
there exists ¢ > 0 such that the inequalities

x| <X and [xAu| <X

admit a non-zero solution x € Z3 for each large enough X.

We want to show that this leads to a contradiction. The proof can be
adapted to shows that A\3(£) < A3 — e for some small explicit € (not
computed).



First main tool : the map C

For each point x = (xp, x1, X2, x3) € R*, we define

X = (X07X17X2)7 X+ = (X]_,X27X3) and AX = X+ — {x_.

Then, ||Ax]| < |[x A u]l.

For any x,y,z € R*,
o C(x,y) = (det(x™,x",y"), det(x,x*,y")) € R? satisfies
ICx I < lIxl| I Ax] [ Ay ] + [lyl[lAx]>
[AC(, y)I| < [[x[[[[Ax|[| Ayl
o w:= C(x,y)"z" — C(x,y)Tz~ € R3 satisfies

Iwlf < [IC(x, y) [l Az + [[2[[[[AC(x, y)l
[Awl[| < [[C(x, y)l[[|Az]].




Non-vanishing results
Let (x;);>1 denote a sequence of minimal points for & in Z*.
For each sufficiently large 7,
e Davenport and Schmidt 1969 : V; := (
dimension 2 (uses A > 1/3),

@ R.2008 : V;# Vi (uses A\ > /2 — 1220.4142),
thus

x;,x7)r C R3 has

C(xi,xj+1) #0 and C(xjt1,%;) # 0.




Non-vanishing results
Let (x;);>1 denote a sequence of minimal points for & in Z*.

For each sufficiently large 7,
e Davenport and Schmidt 1969 : V; := (x;,x; )gr C R3 has
dimension 2 (uses A > 1/3),

@ R. 2008 : V;# Vi (uses A > /2 —1220.4142),
thus

C(xi,xj+1) #0 and C(xjt1,%;) # 0.

In particular, this gives 1 < ||C(x;,x;_1)|| which yields

1-X
Ixiv1]l < [[xi]|® where 6 = —

In terms of a dual 4-system P* that approximates L;;, we find

2P1(q) + P3(q) > 29 + O(1).




First reduction

Using the above, we can argue in two ways

@ we can work with minimal points only using Schmidt’s height
inequalities for subspaces spanned by consecutive minimal points

@ or we can use a dual 4-system P* with ||L} — P*|| < occ.

Then, there exist an unbounded sequence (y;);>1 of primitive points of Z*
such that, for each large enough i/,

o |det(yzi—2,Y2i—1, Y2, ¥2i+1)| < 1 and det(yzi_3,y2i—2,y2i—1,¥2i) =0,

o [[C(y2i,y2i-1)| < 1,
o [ly2ill =< lly2i—1]”/? and |lyzital = |ly2ill?,
o [[Ayzi-1 < [ly2il 7 and [ Ayl = [ly2i+1] 7




Consequence on L*
There is a self-similar dual 4-system P* with ratio v such that L* — P* is
bounded. Its combined graph is the following.

Y2i42

qz2i-1  qQ2j aQri+1 CI2::+2
=7q2i-1 = Yq2i



Consequence on L*
There is a self-similar dual 4-system P* with ratio v such that L* — P* is
bounded. Its combined graph is the following.
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Consequence on L*
There is a self-similar dual 4-system P* with ratio v such that L* — P* is
bounded. Its combined graph is the following.

Y2i42

qz2i-1  qQ2j aQri+1 CI2::+2
=7Yq2i-1 = Yq2i



Consequence on L*
There is a self-similar dual 4-system P* with ratio v such that L* — P* is
bounded. Its combined graph is the following.

/

Y2i42

qz2i-1  qQ2j aQri+1 CI2::+2
=7Yq2i-1 = Yq2i



Consequence on L*
There is a self-similar dual 4-system P* with ratio v such that L* — P* is
bounded. Its combined graph is the following.

Y2i+2

qz2i-1  qQ2j aQri+1 CI2::+2
=7Yq2i-1 = Yq2i



Second main tool : the maps V.
For each sign € among {—, +}, we define W.: (R*)3 — R* by
V. (x,y,z) = C(y,z)x + E(y, z,x)y — C(y,x)‘z

where E(y, z,x) is the unique 3-linear map, symmetric in its first two
arguments, such that E(y,y, x) = 2C(y, x).

General estimates imply that the integer

de'¢(¥2i727 Y2i—1,Y2i, Ws(Y2ia Y2i+1, Y2i+2))

vanishes for any sign € if i is large enough. Then algebraic considerations
show the existence of non-zero rational numbers ¢; and t; with bounded
numerator and denominator such that

1) C(y2it1,Y2i+2) = tiC(y2i, y2i+1),
2) C(y2it+2,Y2i+1) = citiC(y2i, ¥2i-1),
3) det(C(y2i+2,Y2i); C(y2i, ¥2i—1) = c? det(C(y2i-1,¥2i), C(Y2i,¥2i-1))-




Final contradiction
e The condition 2), namely

C(y2i+2, Y2i+1) = citiC(y2i, ¥2i-1),

implies that each C(y2;,y2i—1) with i large enough is a bounded integer
multiple of some fixed primitive integer point of Z2.



Final contradiction
e The condition 2), namely

C(y2i+2, Y2i+1) = citiC(y2i, ¥2i-1),

implies that each C(y2;,y2i—1) with i large enough is a bounded integer
multiple of some fixed primitive integer point of Z2.

e The condition 3), namely
det(C(y2i+2, ¥2i), C(yais y2i—1) = ¢ det(C(y2i—1,¥2i), C(¥2i,¥2i-1)),
implies that

1C(y2i—1,y2) || < | C(yaiza, y2i)|| < ||yai|[YE~A07)=0-1113...

which is much better than the standard estimate
| Cly2i—1,y2i)|| < \|y2,-||1*2)‘:0-1509~-.

With some additional work, this leads to a contradiction.



Similarities with the case n = 2

Although the upper bound X3(£) < A3 =0.424506... can be improved,
the analysis of the two cases have similarities.

@ Both yield that L}, is approximated by a self-similar dual n-system P*
with ratio «, the golden ratio.

@ In both cases, we have a subsequence (y;);>1 of the sequence of
minimal points which realizes the successive minima of C;;(q).

@ There are bounded quantities namely det(y;) for n = 2, and
C(y2i,y2-1) for n = 3.

@ There is also a polynomial map =: (R*)3 — R* with similar
properties, given by

E(Xv y, Z) = C(Z? X)_W+(y, X, Z) - C(Zv x)+w—(Y7 X,z

)
= —det(E(x,2,y), C(z,x))x — det(C(x,z), C(z,x))y
+ det(C(x,y), C(z,x))z.



Properties of =

We can recover z from =(x,y, z) via the formula

E(x7 z7 E(X7 y7 z)) = det(C(E(x7 y? 2)7 x)7 C(X') E(x7 Y7 z))) z.
We also have a factorization for the determinant on the right.
o C((x,y,2),x) = det(C(2,x), C(2.y)) det(C(x, ), C(x,2))C(x, 2),
o C(x,=(x,y,2)) = det(C(x,y), C(x,2))C(z,x),

So, det(C(=(x,y, z),x), C(x,=(x,y,2)))
= det(C(z,x), C(z,y)) det(C(x,y), C(x,z))? det(C(x, z), C(z,x))




Properties of =

We can recover z from =(x,y, z) via the formula

=(x,z,=(x,y,2)) = det(C(=(x,y, 2),x), C(x,=(x,y,2))) z.

We also have a factorization for the determinant on the right.
o C((x,y,2),x) = det(C(2,x), C(2.y)) det(C(x, ), C(x,2))C(x, 2),
o C(x,=(x,y,2)) = det(C(x,y), C(x,2))C(z,x),

So, det(C(=(x,y, z),x), C(x,=(x,y,2)))
= det(C(z,x), C(z,y)) det(C(x,y), C(x,z))? det(C(x, z), C(z,x))

Assuming that \ = 0.4245, general estimates imply that

det(y2i—6, Y2i—5, ¥2i—4, =(¥2i, ¥2i+1, Y2i+2)) = 0

for each large enough i, a polynomial relation of degree 10 in 24 variables.



VIl. Relevant dual 4-systems

Suppose that R
A3(€) > V2 —12=0.4142

for some £ € R with [Q(§) : Q] > 3. We set
u= (17 57 €27 53)
and choose a dual 4-system P* for which Lj; — P* is bounded. Then,

im_P3(q) ~ Pi(q) =oc and  lim P;(q)~ P3(q) = .

g—o0



VIl. Relevant dual 4-systems

Suppose that R
A3(€) > V2 —12=0.4142

for some £ € R with [Q(§) : Q] > 3. We set
u= (17 57 €27 53)
and choose a dual 4-system P* for which Lj; — P* is bounded. Then,

q"_>mOOP3(q)— Pi(q) = oo and q"_>’20P4(q)— P5(q) = oo.

Moreover, if P5(r) = P3(r) and P;(s) = P;(s) for some r < s, then we
have Py (t) = P;(t) for some t with r < t <s. J




Consequence of the last assertion

Suppose that ty < t; are consecutive points at which Pj and Pj coincide.
Suppose also that there is a point r between tg and t; where P; and Py
coincide. Then the combined graph of P* over [ty, t;] takes the form
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