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I. Uniform rational approximation

Let u be a non-zero point of Rn+1 for some integer n ≥ 1. We define λ̂(u)
to be the supremum of the real numbers λ > 0 for which the inequalities

‖x‖ ≤ X and ‖x ∧ u‖ ≤ X−λ

admit a non-zero solution x ∈ Zn+1 for each sufficiently large X.

λ̂(u) ≥ 1/n by a theorem of Dirichlet.

λ̂(uA) = λ̂(u) for each A ∈ GLn+1(Q).

For ξ ∈ R, we set λ̂n(ξ) = λ̂(1, ξ, . . . , ξn).

λ̂n(ξ) = 1/n for almost all ξ ∈ R and each ξ ∈ Q̄ with [Q(ξ) : Q] > n.

λ̂n(g .ξ) = λ̂(ξ) for each g ∈ GL2(Q).
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Some estimates

Let ξ ∈ R \ Q̄. Set γ = (1 +
√

5)/2 ∼= 1.618.

1) Davenport & Schmidt (1969): λ̂n(ξ) ≤


1/γ ∼= 0.618 if n = 2,

1/2 if n = 3,

1/bn/2c if n ≥ 4.

2) Laurent (2003): λ̂n(ξ) ≤ 1/dn/2e if n ≥ 3.

3) R. (2003): λ̂2(ξ) = 1/γ for an infinite countable set of ξ.

4) R. (2008): λ̂3(ξ) ≤ λ3
∼= 0.4245 the positive root of T 2 − γ3T + γ.

Goals of the talk:

similarities between 3) and 4),

hints for the proof that λ3 in 4) can be improved,

relevance of parametric geometry of numbers.



II. Two families of convex bodies
Let u ∈ Rn with Q-linearly independent coordinates. For each q ≥ 0, set

Cu(q) = {x ∈ Rn ; ‖x‖ ≤ 1 and |x · u| ≤ e−q},
C∗u(q) = {x ∈ Rn ; ‖x‖ ≤ 1 and |x ∧ u| ≤ e−q},

and, for each j = 1, . . . , n, define

Lu,j(q) = smallest L ≥ 0 such that eLCu(q) contains at least
j linearly independent points of Zn,

L∗u,j(q) = smallest L ≥ 0 such that eLC∗u(q) contains at least
j linearly independent points of Zn.

Finally define Lu : [0,∞)→ Rn and L∗u : [0,∞)→ Rn by

Lu(q) = (Lu,1(q), . . . , Lu,n(q)) and L∗u(q) = (L∗u,1(q), . . . , L∗u,n(q)).

Mahler’s duality : Lu,j(q) + L∗u,n+1−j(q) = q +O(1) for j = 1, . . . , n.
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The trajectory of a point

The trajectory of a non-zero point x ∈ Zn relative to the family C∗u(q) is
the map L∗u(x, ·) : [0,∞)→ R given by

L∗u(x, q) = smallest L such that x ∈ eLC∗u(q)

= max{log ‖x‖, q + log ‖x ∧ u‖}.

It is continuous and piecewise linear with slope 0 then 1.

q

L∗u(x, q)

log
‖x‖
‖x ∧ u‖

log ‖x ∧ u‖

log ‖x‖

0

slope 0

slope 1



The first minimum
Finitely many non-zero points x ∈ Zn have their trajectory cross the
domain 0 ≤ L ≤ L0: they all have log ‖x‖ ≤ L0.

Thus,

L∗u,1(q) = min{L∗u(x, q) ; x ∈ Zn \ {0}}

is a continuous piecewise linear function of q ≥ 0 with slopes 0 and 1, and
it is realized by a sequence (xi )i≥1 of integer points called “minimal
points”.
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Link with the exponent λ̂(u)

Fix λ > 0. The following conditions are equivalent:

There exists a constant c > 0 such that the conditions

‖x‖ ≤ X and ‖x ∧ u‖ ≤ cX−λ

admit a non-zero solution x ∈ Zn for any sufficiently large X .

We have ‖xi ∧ u‖ � ‖xi+1‖−λ for each i ≥ 1.

We have L∗u,1(q) ≤ q

1 + λ
+O(1) as q →∞.

Corollary (Schmidt and Summerer (2013))

For any non-zero u ∈ Rn, we have

λ̂(u) =
1

ϕ̄(u)
− 1 where ϕ̄(u) = lim sup

q→∞

L∗u,1(q)

q
.
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III. The n-systems

Let q0 ≥ 0. An n-system on [q0,∞) is a map P = (P1, . . . ,Pn) from
[q0,∞) to Rn with the following properties.

(S1) Each Pj is continuous and piecewise linear with slopes 0 and 1.

(S2) We have 0 ≤ P1(q) ≤ · · · ≤ Pn(q) and P1(q) + · · ·+ Pn(q) = q for
each q ≥ q0.

(S3) For each j = 1, . . . , n − 1 and each q > q0 at which P1 + · · ·+ Pj

decreases slope from 1 to 0, we have Pj(q) = Pj+1(q).

The switch points of such a map P are q0 and all points q > q0 at which
at least one of the sums P1 + · · ·+ Pj with 1 ≤ j < n increases slope from
0 to 1.

Let δ > 0. We say that P is rigid of mesh δ > 0 if P1(q), . . . ,Pn(q) are
distinct positive multiples of δ for each switch point q of P.
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The combined graph of a rigid n-system

The combined graph of an n-system P = (P1, . . . ,Pn) over an interval is
the union of the graphs of P1, . . . ,Pn over that interval. If P is rigid and
r < s are consecutive switch points of P, then it combined graph has the
following form over a neighborhood of [r , s] (here n = 6).
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Characterization of the minima up to bounded functions

Theorem (R. 2015)

For each nonzero u ∈ Rn and each δ > 0, there exists a rigid n-system
P : [q0,∞)→ Rn of mesh δ such that Lu − P is bounded on [q0,∞).
Conversely, given any n-system P : [q0,∞)→ Rn, there exists a nonzero
u ∈ Rn such that Lu − P is bounded on [q0,∞).

Schmidt and Summerer prove the first assertion with a larger class of
functions P called (n, γ)-systems, where γ is an auxiliary parameter.



Dual n-systems

Let q0 ≥ 0. A dual n-system on [q0,∞) is a map P∗ : [q0,∞)→ Rn

given by
P∗(q) = (q − Pn(q), . . . , q − P1(q)) (q ≥ q0)

for some n-system P = (P1, . . . ,Pn) : [q0,∞)→ Rn.

Equivalently, this is a map P∗ = (P∗1 , . . . ,P
∗
n) : [q0,∞)→ Rn with the

following properties.

(S1) Each P∗j is continuous and piecewise linear with slopes 0 and 1.

(S2) We have 0 ≤ P∗1 (q) ≤ · · · ≤ P∗n(q) and
P∗1 (q) + · · ·+ P∗n(q) = (n − 1)q for each q ≥ q0.

(S3) For each j = 1, . . . , n − 1 and each q > q0 at which P∗1 + · · ·+ P∗j
decreases slope from j to j − 1, we have P∗j (q) = P∗j+1(q).

Its switch points are q0 and the points q > q0 at which at least one of
the sums P∗1 + · · ·+ P∗j with 1 ≤ j < n increases slopes from j − 1 to j .
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of [r , s] (here n = 6).
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Characterization of the minima up to bounded functions

Corollary

For each nonzero u ∈ Rn and each δ > 0, there exists a dual rigid
n-system P∗ : [q0,∞)→ Rn of mesh δ such that L∗u − P∗ is bounded on
[q0,∞). Conversely, given any dual n-system P∗ : [q0,∞)→ Rn, there
exists a nonzero u ∈ Rn such that L∗u − P∗ is bounded on [q0,∞).



Combined graph of a dual 2-system

q0

· · ·

· · ·



Combined graph of a dual 3-system
There is a repetitive pattern :

q0

· · ·

· · ·



The generic pattern

qa a′



The generic pattern

When P∗3 has slope 1, (P∗1 ,P
∗
2 ) behaves like a dual 2-system.
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The generic pattern

When P∗1 has slope 1, (P∗2 ,P
∗
3 ) behaves like a dual 2-system.
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The generic pattern

When P∗1 and P∗3 have slope 1, (P∗2 ) behaves like a dual 1-system.

qa a′



Dual 4-systems



Dual 4-systems
When P∗4 has slope 1, (P∗1 ,P

∗
2 ,P

∗
3 ) behaves like a dual 3-system.



Dual 4-systems
When P∗1 has slope 1, (P∗2 ,P
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3 ,P
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Dual 4-systems
When P∗1 and P∗4 have slope 1, (P∗2 ,P

∗
3 ) behaves like a dual 2-system.



No repetitive pattern for dual 4-systems

Transitions when P∗1 and P∗4 have slope 1 may be qualitatively very
different



Self-similar dual systems
They are the dual n-systems P∗ : [q0,∞)→ Rn which, for some ρ > 1,
satisfy

P∗(ρq) = ρP∗(q) for each q ≥ q0

Example for n = 3:

0 ρq0 ρ2q0 ρ3q0
q0



IV. The trajectory of a subspace

Let 1 ≤ k < n be integers and let u ∈ Rn \ {0}. Mahler’s k-th compound
of

C∗u(q) =
{

x ∈ Rn ; log ‖x‖ ≤ 1 and log ‖x ∧ u‖ ≤ −q
}

is comparable to

(C∗u)(k)(q) =
{
X ∈

∧k Rn ; log ‖X‖ ≤ −(k−1)q and log ‖X∧u‖ ≤ −kq
}
.

The trajectory of a non-zero X ∈
∧k Rn is

L∗u(X , q) = max{log ‖X‖+ (k − 1)q, log ‖X ∧ u‖+ kq}.

The trajectory of a k-dimensional subspace V of Rn defined over Q is

L∗u(V , q) = L(x1 ∧ · · · ∧ xk , q)

where (x1, . . . , xk) is any basis of V ∩ Zn.



A glimpse at Mahler’s theory
Suppose that I is a sub-interval of [0,∞) such that

L∗u,k(q) < L∗u,k+1(q) for each q ∈ I .

Then, the subspace V of Rn generated by the first k minima of C∗u(q) in
Zn is independent of q ∈ I , and we have

L∗u(V , q) ' L∗u,1(q) + · · ·+ L∗u,k(q) for each q ∈ I .

Consequence. Let P∗ = (P∗1 , . . . ,P
∗
n) is a dual n-system on [q0,∞) for

which c := ‖P∗ − L∗u‖∞ <∞. Suppose that I is a subinterval of [q0,∞)
such that

P∗k (q) < P∗k+1(q)− 2c for each q ∈ I .

for each q ≥ q0. Then, the subspace V of Rn generated by the points
x ∈ Zn with L∗u(x, q) < P∗k+1(q)− c for some q ∈ I has dimension k and

L∗u(V , q) ' P∗1 (q) + · · ·+ P∗k (q) for each q ∈ I .
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Illustration for planes in 3-space
P∗3 > P∗2

2cL∗u,3 > L∗u,2

the subspace gener-
ated by the first two
minima is constant

P∗1 + P∗2x

z

y

〈x, y〉 = 〈y, z〉
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V. Approximation to (1, ξ, ξ2)

Hypothesis

Let ξ ∈ R with [Q(ξ) : Q] > 2. Set u = (1, ξ, ξ2) and suppose that there
exist λ > 1/2 and c > 0 such that the inequalities

‖x‖ ≤ X and ‖x ∧ u‖ ≤ cX−λ

admit a non-zero solution x ∈ Z3 for each large enough X .

Fix a dual 3-system P∗ = (P∗1 ,P
∗
2 ,P

∗
3 ) such that L∗u − P∗ is bounded. The

last hypothesis becomes

P∗1 (q) ≤ q

1 + λ
+O(1)

as q →∞.



Exploiting the nature of the point

For each point x = (x0, x1, x2) ∈ Z3, we define

x− = (x0, x1), x+ = (x1, x2) and ∆x = x+ − ξx−.

Then, ‖x ∧ u‖ � ‖∆x‖.

Theorem (Davenport and Schmidt, 1969)

For any minimal point x ∈ Z3 with ‖x‖ large enough, we have

det(x) := det(x−, x+) 6= 0.

Then, 1 ≤ | det(x−, x+)| = | det(x−,∆x)| � ‖x‖‖∆x‖,

and so, 0 ≤ log ‖x‖+ log ‖x ∧ u‖+O(1).



Consequence on P∗1

We have P∗1 (q) ≥ q/2 +O(1) as q →∞.

Proof. We may assume that P∗1 changes slope
from 0 to 1 at q.

We have

P∗2 (q) ≥ (P∗1 (q) + P∗2 (q))/2 ≥ q/2

since P∗1 + P∗2 has slope 1 or 2. So, we may
assume that P∗2 (q)− P∗1 (q) is large.

Choose a minimal point x ∈ Z3 such that
L∗u,1(q) = L∗u(x, q). Then, we have

log ‖x‖ ' P∗1 (q), log ‖x ∧ u‖ ' P∗1 (q)− q,
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Summary of the constraints

We have

[Q(ξ) : Q] > 2⇐⇒ u = (1, ξ, ξ2) has Q-linearly independent coordinates

⇐⇒ P∗3 changes slope infinitely often

Moreover

q

2
+O(1) ≤ P∗1 (q) ≤ q

1 + λ
+O(1)

One can show that these conditions imply

Theorem (Davenport and Schmidt, 1969)

λ ≤ 1/γ ∼= 0.618



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Application to a generic pattern

a t q a′ t ′

q

P∗1 (t) . t/(1 + λ)

P∗1 (t ′) . t ′/(1 + λ)

P∗1 (q) & q/2

P∗1 (q) ≥ P∗1 (t)

P∗3 (q) ≤ P∗1 (t ′)

t ′ − P∗1 (t ′) = q − P∗1 (q)

2P∗1 (t)− t

= P∗1 (q) + P∗2 (q)− q

2q =
3∑

i=1

P∗i (q)



Limit case
Solving the above inequalities yields λ ≤ 1/γ.

If λ = 1/γ, all inequalities are equalities up to a bounded difference:

0 a t q a′ t ′

t

γ
' P∗1 (t) ' P∗1 (q) ' q

2

t ′

γ
' P∗1 (t ′) ' P∗3 (q) ' γq

2

P∗2 (q) ' (3− γ)q

2



A particular minimal point
As P∗2 (q)− P∗1 (q)→∞, there is a unique primitive pair ±y ∈ Z3 with

log ‖y‖ ' q/2 and log ‖y ∧ u‖ ' −q/2

and thus | det(y)| � 1.

0
t γtq

γq/2

P∗1 (q) = q/2
L∗u,1

q

log ‖y‖ ' q/2

log ‖y ∧ u‖ ' −q/2

y
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The sequence of these points
We get real numbers qi > 0 in R and primitive points yi ∈ Z4 with

qi+1 ' γqi , log ‖yi‖ ' qi/2, log ‖yi ∧ u‖ ' −qi/2.

We may choose P∗ self similar with ratio γ,
so that qi+1 = γqi for each i ≥ 1.

0 qi qi+1 qi+2qi−1

yi

yi+1

yi+2yi−1
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Linear independence of three consecutive points

Claim. The points yi−1, yi , yi+1 are linearly independent if i � 1.

Step 1. The trajectory of a non-zero x ∈ Z3 changes slope at

q(x) = log
‖x‖
‖x ∧ u‖

.

Thus, if x, y ∈ Z3 are linearly independent, then q(x) = q(y).

Since L∗u(yi , q) changes slope around qi and qi+1 − qi →∞, the points yi
and yi+1 are linearly independent if i � 1.



Step 2
The trajectory of 〈yi−1, yi 〉R changes slope around qi .

=⇒ That of 〈yi , yi+1〉R changes slope around qi+1.
=⇒ 〈yi−1, yi 〉R 6= 〈yi , yi+1〉R if i � 1.

q

P∗3 > P∗2

qi

yi
yi−1
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Summary

Set u = (1, ξ, ξ2) for some ξ ∈ R with [Q(ξ) : Q] > 2. Suppose that, for
some c > 0,

‖x‖ ≤ X and ‖x ∧ u‖ ≤ cX−1/γ

admits a non-zero solution x ∈ Z3 for each large enough X .

Then, there exist an unbounded sequence (yi )i≥1 of primitive points of Z3

such that, for each large enough i ,

‖yi+1‖ � ‖yi‖γ and ‖∆yi‖ � ‖yi ∧ u‖ � ‖yi‖−1,

| det(yi )| � 1,

yi−1, yi , yi+1 are linearly independent.



The polynomial map Ξ

We define a polynomial map Ξ : R3 × R3 → R3 by

Ξ(x, y) = (det(x−, y+)− det(x+, y−))x− det(x)y.

where det(x) := det(x−, x+) =

∣∣∣∣x0 x1

x1 x2

∣∣∣∣.
Algebraic properties

(i) det(Ξ(x, y)) = det(x)2 det(y),

(ii) Ξ(x,Ξ(x, y)) = det(x)2y.

Analytic properties

(i) ‖Ξ(x, y)‖ � ‖x‖2‖∆y‖+ ‖y‖‖∆y‖2,

(ii) ‖∆Ξ(x, y))‖ �
(
‖x‖‖∆y‖+ ‖y‖‖∆x‖

)
‖∆x‖.



Application

We find

‖Ξ(yi , yi+1)‖ � ‖yi−2‖ and ‖∆Ξ(yi , yi+1)‖ � ‖yi−2‖−1,

and then

| det(yi−2, yi−1,Ξ(yi , yi+1))| � ‖yi−4‖−1 → 0,

| det(yi−3, yi−2,Ξ(yi , yi+1))| � ‖yi−3‖−1 → 0.

Thus, for each large enough i ,

det(yi−2, yi−1,Ξ(yi , yi+1)) = 0 and det(yi−3, yi−2,Ξ(yi , yi+1)) = 0,

and so Ξ(yi , yi+1) ∝ yi−2. As Ξ(yi , yi+1) 6= 0, we find

Ξ(yi , yi−2) ∝ Ξ(yi ,Ξ(yi , yi+1)) ∝ yi+1,

which determines the primitive point yi+1 as a function of yi−2 and yi up
to multiplication by ±1.



Solution to the inverse problem

Choose linearly independent y1, y2, y3 ∈ Z3 with det(yi ) = 1 for j = 1, 2, 3.
Then the sequence (yi )i≥1 given recursively by

yi+1 = Ξ(yi , yi−2) for each i ≥ 3

belongs to Z3. For each i ≥ 1, it has det(yi ) = 1 and (yi , yi+1, yi+2) is a
linearly independent triple.

For an appropriate choice of y1, y2, y3, the image of yi in P2(R) converges
to the class of (1, ξ, ξ2) for some ξ ∈ R with [Q(ξ) : Q] > 2 and
λ̂2(ξ) = 1/γ.



VI. Approximation to (1, ξ, ξ2, ξ3)

Let λ = λ3 = 0.4245 . . . = the positive root of T 2 − γ3T + γ.

Hypothesis

Let ξ ∈ R with [Q(ξ) : Q] > 3. Set u = (1, ξ, ξ2, ξ3) and suppose that
there exists c > 0 such that the inequalities

‖x‖ ≤ X and ‖x ∧ u‖ ≤ cX−λ

admit a non-zero solution x ∈ Z3 for each large enough X .

We want to show that this leads to a contradiction. The proof can be
adapted to shows that λ̂3(ξ) ≤ λ3 − ε for some small explicit ε (not
computed).



First main tool : the map C

For each point x = (x0, x1, x2, x3) ∈ R4, we define

x− = (x0, x1, x2), x+ = (x1, x2, x3) and ∆x = x+ − ξx−.

Then, ‖∆x‖ � ‖x ∧ u‖.

For any x, y, z ∈ R4,

C (x, y) :=
(

det(x−, x+, y−), det(x−, x+, y+)
)
∈ R2 satisfies

‖C (x, y)‖ � ‖x‖‖∆x‖‖∆y‖+ ‖y‖‖∆x‖2

‖∆C (x, y)‖ � ‖x‖‖∆x‖‖∆y‖.

w := C (x, y)−z+ − C (x, y)+z− ∈ R3 satisfies

‖w‖ � ‖C (x, y)‖‖∆z‖+ ‖z‖‖∆C (x, y)‖
‖∆w‖ � ‖C (x, y)‖‖∆z‖.



Non-vanishing results
Let (xi )i≥1 denote a sequence of minimal points for ξ in Z4.

For each sufficiently large i ,

Davenport and Schmidt 1969 : Vi := 〈x−i , x
+
i 〉R ⊆ R3 has

dimension 2 (uses λ > 1/3),
R. 2008 : Vi 6= Vi+1 (uses λ >

√
2− 1 ∼= 0.4142),

thus

C (xi , xi+1) 6= 0 and C (xi+1, xi ) 6= 0.

In particular, this gives 1 ≤ ‖C (xi , xi−1)‖ which yields

‖xi+1‖ � ‖xi‖θ where θ =
1− λ
λ

.

In terms of a dual 4-system P∗ that approximates L∗u, we find

2P∗1 (q) + P∗2 (q) ≥ 2q +O(1).
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1− λ
λ
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In terms of a dual 4-system P∗ that approximates L∗u, we find

2P∗1 (q) + P∗2 (q) ≥ 2q +O(1).



First reduction

Using the above, we can argue in two ways

we can work with minimal points only using Schmidt’s height
inequalities for subspaces spanned by consecutive minimal points

or we can use a dual 4-system P∗ with ‖L∗u − P∗‖ <∞.

Then, there exist an unbounded sequence (yi )i≥1 of primitive points of Z4

such that, for each large enough i ,

| det(y2i−2, y2i−1, y2i , y2i+1)| � 1 and det(y2i−3, y2i−2, y2i−1, y2i ) = 0,

‖C (y2i , y2i−1)‖ � 1,

‖y2i‖ � ‖y2i−1‖γ/θ and ‖y2i+1‖ � ‖y2i‖θ,

‖∆y2i−1‖ � ‖y2i‖−λ and ‖∆y2i‖ � ‖y2i+1‖−λ.



Consequence on L∗

There is a self-similar dual 4-system P∗ with ratio γ such that L∗ − P∗ is
bounded. Its combined graph is the following.

q2i−1 q2i q2i+1

= γq2i−1

q2i+2

= γq2i

y2i−1

y2i

y2i+1

y2i+2
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Second main tool : the maps Ψ±

For each sign ε among {−,+}, we define Ψε : (R4)3 → R4 by

Ψε(x, y, z) = C (y, z)εx + E (y, z, x)εy − C (y, x)εz

where E (y, z, x) is the unique 3-linear map, symmetric in its first two
arguments, such that E (y, y, x) = 2C (y, x).

General estimates imply that the integer

det(y2i−2, y2i−1, y2i ,Ψε(y2i , y2i+1, y2i+2))

vanishes for any sign ε if i is large enough. Then algebraic considerations
show the existence of non-zero rational numbers ci and ti with bounded
numerator and denominator such that

1) C (y2i+1, y2i+2) = tiC (y2i , y2i+1),

2) C (y2i+2, y2i+1) = ci tiC (y2i , y2i−1),

3) det(C (y2i+2, y2i ),C (y2i , y2i−1) = c2
i det(C (y2i−1, y2i ), C (y2i , y2i−1)).



Final contradiction
• The condition 2), namely

C (y2i+2, y2i+1) = ci tiC (y2i , y2i−1),

implies that each C (y2i , y2i−1) with i large enough is a bounded integer
multiple of some fixed primitive integer point of Z2.

• The condition 3), namely

det(C (y2i+2, y2i ),C (y2i , y2i−1) = c2
i det(C (y2i−1, y2i ), C (y2i , y2i−1)),

implies that

‖C (y2i−1, y2i )‖ � ‖C (y2i+2, y2i )‖ � ‖y2i‖γ(1−λθγ)=0.1113...

which is much better than the standard estimate

‖C (y2i−1, y2i )‖ � ‖y2i‖1−2λ=0.1509....

With some additional work, this leads to a contradiction.
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Similarities with the case n = 2

Although the upper bound λ̂3(ξ) ≤ λ3 = 0.424506 . . . can be improved,
the analysis of the two cases have similarities.

Both yield that L∗u is approximated by a self-similar dual n-system P∗

with ratio γ, the golden ratio.

In both cases, we have a subsequence (yi )i≥1 of the sequence of
minimal points which realizes the successive minima of C∗u(q).

There are bounded quantities namely det(yi ) for n = 2, and
C (y2i , y2−1) for n = 3.

There is also a polynomial map Ξ: (R4)3 → R4 with similar
properties, given by

Ξ(x, y, z) = C (z, x)−Ψ+(y, x, z)− C (z, x)+Ψ−(y, x, z)

= − det(E (x, z, y),C (z, x))x− det(C (x, z),C (z, x))y

+ det(C (x, y),C (z, x))z.



Properties of Ξ

We can recover z from Ξ(x, y, z) via the formula

Ξ(x, z,Ξ(x, y, z)) = det(C (Ξ(x, y, z), x),C (x,Ξ(x, y, z))) z.

We also have a factorization for the determinant on the right.

C (Ξ(x, y, z), x) = det(C (z, x),C (z, y)) det(C (x, y),C (x, z))C (x, z),

C (x,Ξ(x, y, z)) = det(C (x, y),C (x, z))C (z, x),

So, det(C (Ξ(x, y, z), x),C (x,Ξ(x, y, z)))
= det(C (z, x),C (z, y)) det(C (x, y),C (x, z))2 det(C (x, z),C (z, x))

Assuming that λ ∼= 0.4245, general estimates imply that

det(y2i−6, y2i−5, y2i−4,Ξ(y2i , y2i+1, y2i+2)) = 0

for each large enough i , a polynomial relation of degree 10 in 24 variables.
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VII. Relevant dual 4-systems

Suppose that
λ̂3(ξ) >

√
2− 1 ∼= 0.4142

for some ξ ∈ R with [Q(ξ) : Q] > 3. We set

u = (1, ξ, ξ2, ξ3)

and choose a dual 4-system P∗ for which L∗u − P∗ is bounded. Then,

lim
q→∞

P∗3 (q)− P∗1 (q) =∞ and lim
q→∞

P∗4 (q)− P∗2 (q) =∞.

Moreover, if P∗2 (r) = P∗3 (r) and P∗3 (s) = P∗4 (s) for some r < s, then we
have P∗1 (t) = P∗2 (t) for some t with r < t < s.
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Consequence of the last assertion
Suppose that t0 < t1 are consecutive points at which P∗1 and P∗2 coincide.
Suppose also that there is a point r between t0 and t1 where P∗3 and P∗4
coincide. Then the combined graph of P∗ over [t0, t1] takes the form

t0 t1r



Thank you !

https://tex.stackexchange.com/questions/337529/how-to-randomly-fill-an-area-with-daisies-in-tikz


