Parametric geometry of numbers and simultaneous approximation to geometric progressions

Damien Roy

Université d'Ottawa

Diophantine Approximation, Fractal Geometry and Related topics

> Université Gustave Eiffel

$$
\text { June 3-7, } 2024
$$

https://mysite.science.uottawa.ca/droy//talks.html

I. Uniform rational approximation

Let \mathbf{u} be a non-zero point of \mathbb{R}^{n+1} for some integer $n \geq 1$. We define $\widehat{\lambda}(\mathbf{u})$ to be the supremum of the real numbers $\lambda>0$ for which the inequalities

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq X^{-\lambda}
$$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each sufficiently large X.

- $\hat{\lambda}(\mathbf{u}) \geq 1 / n$ by a theorem of Dirichlet.
- $\widehat{\lambda}(\mathbf{u} A)=\widehat{\lambda}(\mathbf{u})$ for each $A \in \mathrm{GL}_{n+1}(\mathbb{Q})$.

I. Uniform rational approximation

Let \mathbf{u} be a non-zero point of \mathbb{R}^{n+1} for some integer $n \geq 1$. We define $\widehat{\lambda}(\mathbf{u})$ to be the supremum of the real numbers $\lambda>0$ for which the inequalities

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq X^{-\lambda}
$$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each sufficiently large X .

- $\hat{\lambda}(\mathbf{u}) \geq 1 / n$ by a theorem of Dirichlet.
- $\widehat{\lambda}(\mathbf{u} A)=\widehat{\lambda}(\mathbf{u})$ for each $A \in \mathrm{GL}_{n+1}(\mathbb{Q})$.

For $\xi \in \mathbb{R}$, we set $\widehat{\lambda}_{n}(\xi)=\widehat{\lambda}\left(1, \xi, \ldots, \xi^{n}\right)$.

- $\widehat{\lambda}_{n}(\xi)=1 / n$ for almost all $\xi \in \mathbb{R}$ and each $\xi \in \overline{\mathbb{Q}}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>n$.
- $\hat{\lambda}_{n}(g \cdot \xi)=\widehat{\lambda}(\xi)$ for each $g \in \mathrm{GL}_{2}(\mathbb{Q})$.

Some estimates

Let $\xi \in \mathbb{R} \backslash \overline{\mathbb{Q}} . \quad$ Set $\gamma=(1+\sqrt{5}) / 2 \cong 1.618$.

1) Davenport \& Schmidt (1969): $\hat{\lambda}_{n}(\xi) \leq \begin{cases}1 / \gamma \cong 0.618 & \text { if } n=2, \\ 1 / 2 & \text { if } n=3, \\ 1 /\lfloor n / 2\rfloor & \text { if } n \geq 4 .\end{cases}$
2) Laurent (2003): $\widehat{\lambda}_{n}(\xi) \leq 1 /\lceil n / 2\rceil$ if $n \geq 3$.
3) R. (2003): $\widehat{\lambda}_{2}(\xi)=1 / \gamma$ for an infinite countable set of ξ.
4) R. (2008): $\widehat{\lambda}_{3}(\xi) \leq \lambda_{3} \cong 0.4245$ the positive root of $T^{2}-\gamma^{3} T+\gamma$.

Goals of the talk:

- similarities between 3) and 4),
- hints for the proof that λ_{3} in 4) can be improved,
- relevance of parametric geometry of numbers.

II. Two families of convex bodies

Let $\mathbf{u} \in \mathbb{R}^{n}$ with \mathbb{Q}-linearly independent coordinates. For each $q \geq 0$, set

$$
\begin{aligned}
& \mathcal{C}_{\mathbf{u}}(q)=\left\{\mathbf{x} \in \mathbb{R}^{n} ;\|\mathbf{x}\| \leq 1 \quad \text { and } \quad|\mathbf{x} \cdot \mathbf{u}| \leq e^{-q}\right\} \\
& \mathcal{C}_{\mathbf{u}}^{*}(q)=\left\{\mathbf{x} \in \mathbb{R}^{n} ;\|\mathbf{x}\| \leq 1 \quad \text { and } \quad|\mathbf{x} \wedge \mathbf{u}| \leq e^{-q}\right\}
\end{aligned}
$$

and, for each $j=1, \ldots, n$, define
$L_{\mathbf{u}, j}(q)=$ smallest $L \geq 0$ such that $e^{L} \mathcal{C}_{\mathbf{u}}(q)$ contains at least j linearly independent points of \mathbb{Z}^{n},
$L_{\mathbf{u}, j}^{*}(q)=$ smallest $L \geq 0$ such that $e^{L} \mathcal{C}_{\mathbf{u}}^{*}(q)$ contains at least j linearly independent points of \mathbb{Z}^{n}.

Finally define $\mathbf{L}_{\mathbf{u}}:[0, \infty) \rightarrow \mathbb{R}^{n}$ and $\mathbf{L}_{\mathbf{u}}^{*}:[0, \infty) \rightarrow \mathbb{R}^{n}$ by

$$
\mathbf{L}_{\mathbf{u}}(q)=\left(L_{\mathbf{u}, 1}(q), \ldots, L_{\mathbf{u}, n}(q)\right) \quad \text { and } \quad \mathbf{L}_{\mathbf{u}}^{*}(q)=\left(L_{\mathbf{u}, 1}^{*}(q), \ldots, L_{\mathbf{u}, n}^{*}(q)\right)
$$

II. Two families of convex bodies

Let $\mathbf{u} \in \mathbb{R}^{n}$ with \mathbb{Q}-linearly independent coordinates. For each $q \geq 0$, set

$$
\begin{aligned}
& \mathcal{C}_{\mathbf{u}}(q)=\left\{\mathbf{x} \in \mathbb{R}^{n} ;\|\mathbf{x}\| \leq 1 \quad \text { and } \quad|\mathbf{x} \cdot \mathbf{u}| \leq e^{-q}\right\} \\
& \mathcal{C}_{\mathbf{u}}^{*}(q)=\left\{\mathbf{x} \in \mathbb{R}^{n} ;\|\mathbf{x}\| \leq 1 \quad \text { and } \quad|\mathbf{x} \wedge \mathbf{u}| \leq e^{-q}\right\}
\end{aligned}
$$

and, for each $j=1, \ldots, n$, define
$L_{\mathbf{u}, j}(q)=$ smallest $L \geq 0$ such that $e^{L} \mathcal{C}_{\mathbf{u}}(q)$ contains at least j linearly independent points of \mathbb{Z}^{n},
$L_{\mathbf{u}, j}^{*}(q)=$ smallest $L \geq 0$ such that $e^{L} \mathcal{C}_{\mathbf{u}}^{*}(q)$ contains at least j linearly independent points of \mathbb{Z}^{n}.

Finally define $\mathbf{L}_{\mathbf{u}}:[0, \infty) \rightarrow \mathbb{R}^{n}$ and $\mathbf{L}_{\mathbf{u}}^{*}:[0, \infty) \rightarrow \mathbb{R}^{n}$ by

$$
\mathbf{L}_{\mathbf{u}}(q)=\left(L_{\mathbf{u}, 1}(q), \ldots, L_{\mathbf{u}, n}(q)\right) \quad \text { and } \quad \mathbf{L}_{\mathbf{u}}^{*}(q)=\left(L_{\mathbf{u}, 1}^{*}(q), \ldots, L_{\mathbf{u}, n}^{*}(q)\right)
$$

Mahler's duality :

$$
L_{\mathbf{u}, j}(q)+L_{\mathbf{u}, n+1-j}^{*}(q)=q+\mathcal{O}(1) \text { for } j=1, \ldots, n .
$$

The trajectory of a point

The trajectory of a non-zero point $\mathbf{x} \in \mathbb{Z}^{n}$ relative to the family $\mathcal{C}_{\mathbf{u}}^{*}(q)$ is the map $L_{\mathbf{u}}^{*}(\mathbf{x}, \cdot):[0, \infty) \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
L_{\mathbf{u}}^{*}(\mathbf{x}, q) & =\text { smallest } L \text { such that } \mathbf{x} \in e^{L} \mathcal{C}_{\mathbf{u}}^{*}(q) \\
& =\max \{\log \|\mathbf{x}\|, q+\log \|\mathbf{x} \wedge \mathbf{u}\|\} .
\end{aligned}
$$

It is continuous and piecewise linear with slope 0 then 1.

The first minimum

Finitely many non-zero points $\mathbf{x} \in \mathbb{Z}^{n}$ have their trajectory cross the domain $0 \leq L \leq L_{0}$: they all have $\log \|\mathbf{x}\| \leq L_{0}$.

The first minimum

Finitely many non-zero points $\mathbf{x} \in \mathbb{Z}^{n}$ have their trajectory cross the domain $0 \leq L \leq L_{0}$: they all have $\log \|\mathbf{x}\| \leq L_{0}$. Thus,

$$
L_{\mathbf{u}, 1}^{*}(q)=\min \left\{L_{\mathbf{u}}^{*}(\mathbf{x}, q) ; \mathbf{x} \in \mathbb{Z}^{n} \backslash\{0\}\right\}
$$

is a continuous piecewise linear function of $q \geq 0$ with slopes 0 and 1 , and it is realized by a sequence $\left(\mathbf{x}_{i}\right)_{i \geq 1}$ of integer points called "minimal points".

Link with the exponent $\widehat{\lambda}(\mathbf{u})$

Fix $\lambda>0$. The following conditions are equivalent:

- There exists a constant $c>0$ such that the conditions

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}
$$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n}$ for any sufficiently large X.

- We have $\left\|\mathbf{x}_{i} \wedge \mathbf{u}\right\| \ll\left\|\mathbf{x}_{i+1}\right\|^{-\lambda}$ for each $i \geq 1$.
- We have $L_{\mathbf{u}, 1}^{*}(q) \leq \frac{q}{1+\lambda}+\mathcal{O}(1)$ as $q \rightarrow \infty$.

Link with the exponent $\widehat{\lambda}(\mathbf{u})$

Fix $\lambda>0$. The following conditions are equivalent:

- There exists a constant $c>0$ such that the conditions

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}
$$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n}$ for any sufficiently large X.

- We have $\left\|\mathbf{x}_{i} \wedge \mathbf{u}\right\| \ll\left\|\mathbf{x}_{i+1}\right\|^{-\lambda}$ for each $i \geq 1$.
- We have $L_{\mathbf{u}, 1}^{*}(q) \leq \frac{q}{1+\lambda}+\mathcal{O}(1)$ as $q \rightarrow \infty$.

Corollary (Schmidt and Summerer (2013))

For any non-zero $\mathbf{u} \in \mathbb{R}^{n}$, we have

$$
\widehat{\lambda}(\mathbf{u})=\frac{1}{\bar{\varphi}(\mathbf{u})}-1 \quad \text { where } \quad \bar{\varphi}(\mathbf{u})=\limsup _{q \rightarrow \infty} \frac{L_{\mathbf{u}, 1}^{*}(q)}{q} .
$$

III. The n-systems

Let $q_{0} \geq 0$. An n-system on $\left[q_{0}, \infty\right)$ is a map $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ from $\left[q_{0}, \infty\right)$ to \mathbb{R}^{n} with the following properties.
(S1) Each P_{j} is continuous and piecewise linear with slopes 0 and 1 .
(S2) We have $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq q_{0}$.
(S3) For each $j=1, \ldots, n-1$ and each $q>q_{0}$ at which $P_{1}+\cdots+P_{j}$ decreases slope from 1 to 0 , we have $P_{j}(q)=P_{j+1}(q)$.

III. The n-systems

Let $q_{0} \geq 0$. An n-system on $\left[q_{0}, \infty\right)$ is a map $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ from $\left[q_{0}, \infty\right)$ to \mathbb{R}^{n} with the following properties.
(S1) Each P_{j} is continuous and piecewise linear with slopes 0 and 1.
(S2) We have $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq q_{0}$.
(S3) For each $j=1, \ldots, n-1$ and each $q>q_{0}$ at which $P_{1}+\cdots+P_{j}$ decreases slope from 1 to 0 , we have $P_{j}(q)=P_{j+1}(q)$.

The switch points of such a map \mathbf{P} are q_{0} and all points $q>q_{0}$ at which at least one of the sums $P_{1}+\cdots+P_{j}$ with $1 \leq j<n$ increases slope from 0 to 1 .

III. The n-systems

Let $q_{0} \geq 0$. An n-system on $\left[q_{0}, \infty\right)$ is a map $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ from $\left[q_{0}, \infty\right)$ to \mathbb{R}^{n} with the following properties.
(S1) Each P_{j} is continuous and piecewise linear with slopes 0 and 1.
(S2) We have $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$ for each $q \geq q_{0}$.
(S3) For each $j=1, \ldots, n-1$ and each $q>q_{0}$ at which $P_{1}+\cdots+P_{j}$ decreases slope from 1 to 0 , we have $P_{j}(q)=P_{j+1}(q)$.

The switch points of such a map \mathbf{P} are q_{0} and all points $q>q_{0}$ at which at least one of the sums $P_{1}+\cdots+P_{j}$ with $1 \leq j<n$ increases slope from 0 to 1.

Let $\delta>0$. We say that \mathbf{P} is rigid of mesh $\delta>0$ if $P_{1}(q), \ldots, P_{n}(q)$ are distinct positive multiples of δ for each switch point q of \mathbf{P}.

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a rigid n-system

The combined graph of an n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$ over an interval is the union of the graphs of P_{1}, \ldots, P_{n} over that interval. If \mathbf{P} is rigid and $r<s$ are consecutive switch points of \mathbf{P}, then it combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

Characterization of the minima up to bounded functions

Theorem (R. 2015)

For each nonzero $\mathbf{u} \in \mathbb{R}^{n}$ and each $\delta>0$, there exists a rigid n-system $\mathbf{P}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ of mesh δ such that $\mathbf{L}_{\mathbf{u}}-\mathbf{P}$ is bounded on $\left[q_{0}, \infty\right)$. Conversely, given any n-system $\mathbf{P}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$, there exists a nonzero $\mathbf{u} \in \mathbb{R}^{n}$ such that $\mathbf{L}_{\mathbf{u}}-\mathbf{P}$ is bounded on $\left[q_{0}, \infty\right)$.

- Schmidt and Summerer prove the first assertion with a larger class of functions \mathbf{P} called (n, γ)-systems, where γ is an auxiliary parameter.

Dual n-systems

Let $q_{0} \geq 0$. A dual n-system on $\left[q_{0}, \infty\right)$ is a map $\mathbf{P}^{*}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ given by

$$
\mathbf{P}^{*}(q)=\left(q-P_{n}(q), \ldots, q-P_{1}(q)\right) \quad\left(q \geq q_{0}\right)
$$

for some n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right):\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$.

Dual n-systems

Let $q_{0} \geq 0$. A dual n-system on $\left[q_{0}, \infty\right)$ is a map $\mathbf{P}^{*}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ given by

$$
\mathbf{P}^{*}(q)=\left(q-P_{n}(q), \ldots, q-P_{1}(q)\right) \quad\left(q \geq q_{0}\right)
$$

for some n-system $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right):\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$.

Equivalently, this is a map $\mathbf{P}^{*}=\left(P_{1}^{*}, \ldots, P_{n}^{*}\right):\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ with the following properties.
(S1) Each P_{j}^{*} is continuous and piecewise linear with slopes 0 and 1.
(S2) We have $0 \leq P_{1}^{*}(q) \leq \cdots \leq P_{n}^{*}(q)$ and
$P_{1}^{*}(q)+\cdots+P_{n}^{*}(q)=(n-1) q$ for each $q \geq q 0$.
(S3) For each $j=1, \ldots, n-1$ and each $q>q_{0}$ at which $P_{1}^{*}+\cdots+P_{j}^{*}$ decreases slope from j to $j-1$, we have $P_{j}^{*}(q)=P_{j+1}^{*}(q)$.

Its switch points are q_{0} and the points $q>q_{0}$ at which at least one of the sums $P_{1}^{*}+\cdots+P_{j}^{*}$ with $1 \leq j<n$ increases slopes from $j-1$ to j.

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

The combined graph of a dual rigid n-system

 If \mathbf{P}^{*} is a rigid dual n-system and $r<s$ are consecutive switch points of \mathbf{P}^{*}, then its combined graph has the following form over a neighborhood of $[r, s]$ (here $n=6$).

Characterization of the minima up to bounded functions

Corollary

For each nonzero $\mathbf{u} \in \mathbb{R}^{n}$ and each $\delta>0$, there exists a dual rigid n-system $\mathbf{P}^{*}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ of mesh δ such that $\mathbf{L}_{\mathbf{u}}^{*}-\mathbf{P}^{*}$ is bounded on $\left[q_{0}, \infty\right)$. Conversely, given any dual n-system $\mathbf{P}^{*}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$, there exists a nonzero $\mathbf{u} \in \mathbb{R}^{n}$ such that $\mathbf{L}_{\mathbf{u}}^{*}-\mathbf{P}^{*}$ is bounded on $\left[q_{0}, \infty\right)$.

Combined graph of a dual 2-system

Combined graph of a dual 3-system

There is a repetitive pattern :

The generic pattern

The generic pattern

When P_{3}^{*} has slope $1,\left(P_{1}^{*}, P_{2}^{*}\right)$ behaves like a dual 2-system.

The generic pattern

When P_{1}^{*} has slope $1,\left(P_{2}^{*}, P_{3}^{*}\right)$ behaves like a dual 2-system.

The generic pattern

When P_{1}^{*} and P_{3}^{*} have slope $1,\left(P_{2}^{*}\right)$ behaves like a dual 1 -system.

Dual 4-systems

Dual 4-systems
When P_{4}^{*} has slope $1,\left(P_{1}^{*}, P_{2}^{*}, P_{3}^{*}\right)$ behaves like a dual 3 -system.

Dual 4-systems
When P_{1}^{*} has slope $1,\left(P_{2}^{*}, P_{3}^{*}, P_{4}^{*}\right)$ behaves like a dual 3 -system.

Dual 4-systems
When P_{1}^{*} and P_{4}^{*} have slope 1, $\left(P_{2}^{*}, P_{3}^{*}\right)$ behaves like a dual 2 -system.

No repetitive pattern for dual 4-systems

Transitions when P_{1}^{*} and P_{4}^{*} have slope 1 may be qualitatively very different

Self-similar dual systems

They are the dual n-systems $\mathbf{P}^{*}:\left[q_{0}, \infty\right) \rightarrow \mathbb{R}^{n}$ which, for some $\rho>1$, satisfy

$$
\mathbf{P}^{*}(\rho q)=\rho \mathbf{P}^{*}(q) \text { for each } q \geq q_{0}
$$

Example for $n=3$:

IV. The trajectory of a subspace

Let $1 \leq k<n$ be integers and let $\mathbf{u} \in \mathbb{R}^{n} \backslash\{0\}$. Mahler's k-th compound of

$$
\mathcal{C}_{\mathbf{u}}^{*}(q)=\left\{\mathbf{x} \in \mathbb{R}^{n} ; \log \|\mathbf{x}\| \leq 1 \text { and } \log \|\mathbf{x} \wedge \mathbf{u}\| \leq-q\right\}
$$

is comparable to

$$
\left(\mathcal{C}_{\mathbf{u}}^{*}\right)^{(k)}(q)=\left\{X \in \Lambda^{k} \mathbb{R}^{n} ; \log \|X\| \leq-(k-1) q \text { and } \log \|X \wedge \mathbf{u}\| \leq-k q\right\}
$$

The trajectory of a non-zero $X \in \bigwedge^{k} \mathbb{R}^{n}$ is

$$
L_{\mathbf{u}}^{*}(X, q)=\max \{\log \|X\|+(k-1) q, \log \|X \wedge \mathbf{u}\|+k q\} .
$$

The trajectory of a k-dimensional subspace V of \mathbb{R}^{n} defined over \mathbb{Q} is

$$
L_{\mathbf{u}}^{*}(V, q)=L\left(\mathbf{x}_{1} \wedge \cdots \wedge \mathbf{x}_{k}, q\right)
$$

where $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ is any basis of $V \cap \mathbb{Z}^{n}$.

A glimpse at Mahler's theory

Suppose that I is a sub-interval of $[0, \infty)$ such that

$$
L_{\mathbf{u}, k}^{*}(q)<L_{\mathbf{u}, k+1}^{*}(q) \quad \text { for each } q \in I
$$

Then, the subspace V of \mathbb{R}^{n} generated by the first k minima of $\mathcal{C}_{\mathbf{u}}^{*}(q)$ in \mathbb{Z}^{n} is independent of $q \in I$, and we have

$$
L_{\mathbf{u}}^{*}(V, q) \simeq L_{\mathbf{u}, 1}^{*}(q)+\cdots+L_{\mathbf{u}, k}^{*}(q) \text { for each } q \in I .
$$

A glimpse at Mahler's theory

Suppose that I is a sub-interval of $[0, \infty)$ such that

$$
L_{\mathbf{u}, k}^{*}(q)<L_{\mathbf{u}, k+1}^{*}(q) \quad \text { for each } q \in I .
$$

Then, the subspace V of \mathbb{R}^{n} generated by the first k minima of $\mathcal{C}_{\mathbf{u}}^{*}(q)$ in \mathbb{Z}^{n} is independent of $q \in I$, and we have

$$
L_{\mathbf{u}}^{*}(V, q) \simeq L_{\mathbf{u}, 1}^{*}(q)+\cdots+L_{\mathbf{u}, k}^{*}(q) \text { for each } q \in I
$$

Consequence. Let $\mathbf{P}^{*}=\left(P_{1}^{*}, \ldots, P_{n}^{*}\right)$ is a dual n-system on $\left[q_{0}, \infty\right)$ for which $c:=\left\|\mathbf{P}^{*}-\mathbf{L}_{\mathbf{u}}^{*}\right\|_{\infty}<\infty$. Suppose that I is a subinterval of $\left[q_{0}, \infty\right)$ such that

$$
P_{k}^{*}(q)<P_{k+1}^{*}(q)-2 c \quad \text { for each } q \in I
$$

for each $q \geq q_{0}$. Then, the subspace V of \mathbb{R}^{n} generated by the points $\mathbf{x} \in \mathbb{Z}^{n}$ with $L_{\mathbf{u}}^{*}(\mathbf{x}, q)<P_{k+1}^{*}(q)-c$ for some $q \in I$ has dimension k and

$$
L_{\mathbf{u}}^{*}(V, q) \simeq P_{1}^{*}(q)+\cdots+P_{k}^{*}(q) \text { for each } q \in I
$$

Illustration for planes in 3-space

V. Approximation to $\left(1, \xi, \xi^{2}\right)$

Hypothesis

Let $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>2$. Set $\mathbf{u}=\left(1, \xi, \xi^{2}\right)$ and suppose that there exist $\lambda>1 / 2$ and $c>0$ such that the inequalities

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}
$$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{3}$ for each large enough X.

Fix a dual 3-system $\mathbf{P}^{*}=\left(P_{1}^{*}, P_{2}^{*}, P_{3}^{*}\right)$ such that $\mathbf{L}_{\mathbf{u}}^{*}-\mathbf{P}^{*}$ is bounded. The last hypothesis becomes

$$
P_{1}^{*}(q) \leq \frac{q}{1+\lambda}+\mathcal{O}(1)
$$

as $q \rightarrow \infty$.

Exploiting the nature of the point

For each point $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}^{3}$, we define

$$
\mathbf{x}^{-}=\left(x_{0}, x_{1}\right), \quad \mathbf{x}^{+}=\left(x_{1}, x_{2}\right) \quad \text { and } \quad \Delta \mathbf{x}=\mathbf{x}^{+}-\xi \mathbf{x}^{-} .
$$

Then, $\quad\|\mathbf{x} \wedge \mathbf{u}\| \asymp\|\Delta \mathbf{x}\|$.

Theorem (Davenport and Schmidt, 1969)

For any minimal point $\mathbf{x} \in \mathbb{Z}^{3}$ with $\|\mathbf{x}\|$ large enough, we have

$$
\operatorname{det}(\mathbf{x}):=\operatorname{det}\left(\mathbf{x}^{-}, \mathbf{x}^{+}\right) \neq 0
$$

Then, $\quad 1 \leq\left|\operatorname{det}\left(\mathbf{x}^{-}, \mathbf{x}^{+}\right)\right|=\left|\operatorname{det}\left(\mathbf{x}^{-}, \Delta \mathbf{x}\right)\right| \ll\|\mathbf{x}\|\|\Delta \mathbf{x}\|$,
and so, $\quad 0 \leq \log \|\mathbf{x}\|+\log \|\mathbf{x} \wedge \mathbf{u}\|+\mathcal{O}(1)$.

Consequence on P_{1}^{*}

We have $P_{1}^{*}(q) \geq q / 2+\mathcal{O}(1)$ as $q \rightarrow \infty$.

Proof. We may assume that P_{1}^{*} changes slope from 0 to 1 at q.

Consequence on P_{1}^{*}

We have $P_{1}^{*}(q) \geq q / 2+\mathcal{O}(1)$ as $q \rightarrow \infty$.
Proof. We may assume that P_{1}^{*} changes slope from 0 to 1 at q. We have

$$
P_{2}^{*}(q) \geq\left(P_{1}^{*}(q)+P_{2}^{*}(q)\right) / 2 \geq q / 2
$$

since $P_{1}^{*}+P_{2}^{*}$ has slope 1 or 2 . So, we may assume that $P_{2}^{*}(q)-P_{1}^{*}(q)$ is large.

Consequence on P_{1}^{*}

We have $P_{1}^{*}(q) \geq q / 2+\mathcal{O}(1)$ as $q \rightarrow \infty$.
Proof. We may assume that P_{1}^{*} changes slope from 0 to 1 at q. We have

$$
P_{2}^{*}(q) \geq\left(P_{1}^{*}(q)+P_{2}^{*}(q)\right) / 2 \geq q / 2
$$

since $P_{1}^{*}+P_{2}^{*}$ has slope 1 or 2 . So, we may assume that $P_{2}^{*}(q)-P_{1}^{*}(q)$ is large.

Choose a minimal point $\mathbf{x} \in \mathbb{Z}^{3}$ such that $L_{\mathbf{u}, 1}^{*}(q)=L_{\mathbf{u}}^{*}(\mathbf{x}, q)$.

Consequence on P_{1}^{*}

We have $P_{1}^{*}(q) \geq q / 2+\mathcal{O}(1)$ as $q \rightarrow \infty$.
Proof. We may assume that P_{1}^{*} changes slope from 0 to 1 at q. We have

$$
P_{2}^{*}(q) \geq\left(P_{1}^{*}(q)+P_{2}^{*}(q)\right) / 2 \geq q / 2
$$

since $P_{1}^{*}+P_{2}^{*}$ has slope 1 or 2 . So, we may assume that $P_{2}^{*}(q)-P_{1}^{*}(q)$ is large.

Choose a minimal point $\mathbf{x} \in \mathbb{Z}^{3}$ such that $L_{\mathbf{u}, 1}^{*}(q)=L_{\mathbf{u}}^{*}(\mathbf{x}, q)$.

Consequence on P_{1}^{*}

We have $P_{1}^{*}(q) \geq q / 2+\mathcal{O}(1)$ as $q \rightarrow \infty$.

Proof. We may assume that P_{1}^{*} changes slope from 0 to 1 at q. We have

$$
P_{2}^{*}(q) \geq\left(P_{1}^{*}(q)+P_{2}^{*}(q)\right) / 2 \geq q / 2
$$

since $P_{1}^{*}+P_{2}^{*}$ has slope 1 or 2 . So, we may assume that $P_{2}^{*}(q)-P_{1}^{*}(q)$ is large.

Choose a minimal point $\mathbf{x} \in \mathbb{Z}^{3}$ such that $L_{\mathbf{u}, 1}^{*}(q)=L_{\mathbf{u}}^{*}(\mathbf{x}, q)$. Then, we have $\log \|\mathbf{x}\| \simeq P_{1}^{*}(q), \quad \log \|\mathbf{x} \wedge \mathbf{u}\| \simeq P_{1}^{*}(q)-q$,

Thus, $\quad 0 \leq \log \|\mathbf{x}\|+\log \|\mathbf{x} \wedge \mathbf{u}\|+\mathcal{O}(1)$

$$
\leq P_{1}^{*}(q)+\left(P_{1}^{*}(q)-q\right)+\mathcal{O}(1)
$$

Summary of the constraints

We have
$[\mathbb{Q}(\xi): \mathbb{Q}]>2 \Longleftrightarrow \mathbf{u}=\left(1, \xi, \xi^{2}\right)$ has \mathbb{Q}-linearly independent coordinates
$\Longleftrightarrow \quad P_{3}^{*}$ changes slope infinitely often

Moreover

$$
\frac{q}{2}+\mathcal{O}(1) \leq P_{1}^{*}(q) \leq \frac{q}{1+\lambda}+\mathcal{O}(1)
$$

One can show that these conditions imply
Theorem (Davenport and Schmidt, 1969)

$$
\lambda \leq 1 / \gamma \cong 0.618
$$

Application to a generic pattern

Application to a generic pattern

Application to a generic pattern

Application to a generic pattern

Application to a generic pattern

$$
\begin{aligned}
& P_{1}^{*}(t) \lesssim t /(1+\lambda) \\
& P_{1}^{*}\left(t^{\prime}\right) \lesssim t^{\prime} /(1+\lambda) \\
& P_{1}^{*}(q) \gtrsim q / 2 \\
& P_{1}^{*}(q) \geq P_{1}^{*}(t) \\
& P_{3}^{*}(q) \leq P_{1}^{*}\left(t^{\prime}\right) \\
& t^{\prime}-P_{1}^{*}\left(t^{\prime}\right)=q-P_{1}^{*}(q)
\end{aligned}
$$

Application to a generic pattern

$$
\begin{aligned}
& P_{1}^{*}(t) \lesssim t /(1+\lambda) \\
& P_{1}^{*}\left(t^{\prime}\right) \lesssim t^{\prime} /(1+\lambda) \\
& P_{1}^{*}(q) \gtrsim q / 2 \\
& P_{1}^{*}(q) \geq P_{1}^{*}(t) \\
& P_{3}^{*}(q) \leq P_{1}^{*}\left(t^{\prime}\right) \\
& t^{\prime}-P_{1}^{*}\left(t^{\prime}\right)=q-P_{1}^{*}(q) \\
& 2 P_{1}^{*}(t)-t \\
& \quad=P_{1}^{*}(q)+P_{2}^{*}(q)-q
\end{aligned}
$$

Application to a generic pattern

$$
\begin{aligned}
& P_{1}^{*}(t) \lesssim t /(1+\lambda) \\
& P_{1}^{*}\left(t^{\prime}\right) \lesssim t^{\prime} /(1+\lambda) \\
& P_{1}^{*}(q) \gtrsim q / 2 \\
& P_{1}^{*}(q) \geq P_{1}^{*}(t) \\
& P_{3}^{*}(q) \leq P_{1}^{*}\left(t^{\prime}\right) \\
& t^{\prime}-P_{1}^{*}\left(t^{\prime}\right)=q-P_{1}^{*}(q) \\
& 2 P_{1}^{*}(t)-t \\
& \quad=P_{1}^{*}(q)+P_{2}^{*}(q)-q \\
& 2 q=\sum_{i=1}^{3} P_{i}^{*}(q)
\end{aligned}
$$

Application to a generic pattern

Limit case

- Solving the above inequalities yields $\lambda \leq 1 / \gamma$.
- If $\lambda=1 / \gamma$, all inequalities are equalities up to a bounded difference:

A particular minimal point

As $P_{2}^{*}(q)-P_{1}^{*}(q) \rightarrow \infty$, there is a unique primitive pair $\pm \mathbf{y} \in \mathbb{Z}^{3}$ with

$$
\log \|\mathbf{y}\| \simeq q / 2 \quad \text { and } \quad \log \|\mathbf{y} \wedge \mathbf{u}\| \simeq-q / 2
$$

and thus $|\operatorname{det}(\mathbf{y})| \asymp 1$.

A particular minimal point

As $P_{2}^{*}(q)-P_{1}^{*}(q) \rightarrow \infty$, there is a unique primitive pair $\pm \mathbf{y} \in \mathbb{Z}^{3}$ with

$$
\log \|\mathbf{y}\| \simeq q / 2 \quad \text { and } \quad \log \|\mathbf{y} \wedge \mathbf{u}\| \simeq-q / 2
$$

and thus $|\operatorname{det}(\mathbf{y})| \asymp 1$.

The sequence of these points

We get real numbers $q_{i}>0$ in \mathbb{R} and primitive points $\mathbf{y}_{i} \in \mathbb{Z}^{4}$ with

$$
q_{i+1} \simeq \gamma q_{i}, \quad \log \left\|\mathbf{y}_{i}\right\| \simeq q_{i} / 2, \quad \log \left\|\mathbf{y}_{i} \wedge \mathbf{u}\right\| \simeq-q_{i} / 2
$$

We may choose \mathbf{P}^{*} self similar with ratio γ, so that $q_{i+1}=\gamma q_{i}$ for each $i \geq 1$.

The sequence of these points

We get real numbers $q_{i}>0$ in \mathbb{R} and primitive points $\mathbf{y}_{i} \in \mathbb{Z}^{4}$ with

$$
q_{i+1} \simeq \gamma q_{i}, \quad \log \left\|\mathbf{y}_{i}\right\| \simeq q_{i} / 2, \quad \log \left\|\mathbf{y}_{i} \wedge \mathbf{u}\right\| \simeq-q_{i} / 2
$$

We may choose \mathbf{P}^{*} self similar with ratio γ, so that $q_{i+1}=\gamma q_{i}$ for each $i \geq 1$.

The sequence of these points

We get real numbers $q_{i}>0$ in \mathbb{R} and primitive points $\mathbf{y}_{i} \in \mathbb{Z}^{4}$ with

$$
q_{i+1} \simeq \gamma q_{i}, \quad \log \left\|\mathbf{y}_{i}\right\| \simeq q_{i} / 2, \quad \log \left\|\mathbf{y}_{i} \wedge \mathbf{u}\right\| \simeq-q_{i} / 2
$$

We may choose \mathbf{P}^{*} self similar with ratio γ, so that $q_{i+1}=\gamma q_{i}$ for each $i \geq 1$.

The sequence of these points

We get real numbers $q_{i}>0$ in \mathbb{R} and primitive points $\mathbf{y}_{i} \in \mathbb{Z}^{4}$ with

$$
q_{i+1} \simeq \gamma q_{i}, \quad \log \left\|\mathbf{y}_{i}\right\| \simeq q_{i} / 2, \quad \log \left\|\mathbf{y}_{i} \wedge \mathbf{u}\right\| \simeq-q_{i} / 2
$$

We may choose \mathbf{P}^{*} self similar with ratio γ, so that $q_{i+1}=\gamma q_{i}$ for each $i \geq 1$.

The sequence of these points

We get real numbers $q_{i}>0$ in \mathbb{R} and primitive points $\mathbf{y}_{i} \in \mathbb{Z}^{4}$ with

$$
q_{i+1} \simeq \gamma q_{i}, \quad \log \left\|\mathbf{y}_{i}\right\| \simeq q_{i} / 2, \quad \log \left\|\mathbf{y}_{i} \wedge \mathbf{u}\right\| \simeq-q_{i} / 2
$$

We may choose \mathbf{P}^{*} self similar with ratio γ, so that $q_{i+1}=\gamma q_{i}$ for each $i \geq 1$.

Linear independence of three consecutive points

Claim. The points $\mathbf{y}_{i-1}, \mathbf{y}_{i}, \mathbf{y}_{i+1}$ are linearly independent if $i \gg 1$.
Step 1. The trajectory of a non-zero $x \in \mathbb{Z}^{3}$ changes slope at

$$
q(\mathbf{x})=\log \frac{\|\mathbf{x}\|}{\|\mathbf{x} \wedge \mathbf{u}\|}
$$

Thus, if $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^{3}$ are linearly independent, then $q(\mathbf{x})=q(\mathbf{y})$.
Since $L_{\mathbf{u}}^{*}\left(\mathbf{y}_{i}, q\right)$ changes slope around q_{i} and $q_{i+1}-q_{i} \rightarrow \infty$, the points \mathbf{y}_{i} and \mathbf{y}_{i+1} are linearly independent if $i \gg 1$.

Step 2

The trajectory of $\left\langle\mathbf{y}_{i-1}, \mathbf{y}_{i}\right\rangle_{\mathbb{R}}$ changes slope around q_{i}.

Step 2

The trajectory of $\left\langle\mathbf{y}_{i-1}, \mathbf{y}_{i}\right\rangle_{\mathbb{R}}$ changes slope around q_{i}. \Longrightarrow That of $\left\langle\mathbf{y}_{i}, \mathbf{y}_{i+1}\right\rangle_{\mathbb{R}}$ changes slope around q_{i+1}.

Step 2

The trajectory of $\left\langle\mathbf{y}_{i-1}, \mathbf{y}_{i}\right\rangle_{\mathbb{R}}$ changes slope around q_{i}.
\Longrightarrow That of $\left\langle\mathbf{y}_{i}, \mathbf{y}_{i+1}\right\rangle_{\mathbb{R}}$ changes slope around q_{i+1}.
$\Longrightarrow\left\langle\mathbf{y}_{i-1}, \mathbf{y}_{i}\right\rangle_{\mathbb{R}} \neq\left\langle\mathbf{y}_{i}, \mathbf{y}_{i+1}\right\rangle_{\mathbb{R}}$ if $i \gg 1$.

Summary

Set $\mathbf{u}=\left(1, \xi, \xi^{2}\right)$ for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>2$. Suppose that, for some $c>0$,

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-1 / \gamma}
$$

admits a non-zero solution $\mathbf{x} \in \mathbb{Z}^{3}$ for each large enough X.

Then, there exist an unbounded sequence $\left(\mathbf{y}_{i}\right)_{i \geq 1}$ of primitive points of \mathbb{Z}^{3} such that, for each large enough i,

- $\left\|\mathbf{y}_{i+1}\right\| \asymp\left\|\mathbf{y}_{i}\right\|^{\gamma}$ and $\left\|\Delta \mathbf{y}_{i}\right\| \asymp\left\|\mathbf{y}_{i} \wedge \mathbf{u}\right\| \asymp\left\|\mathbf{y}_{i}\right\|^{-1}$,
- $\left|\operatorname{det}\left(\mathbf{y}_{i}\right)\right| \asymp 1$,
- $\mathbf{y}_{i-1}, \mathbf{y}_{i}, \mathbf{y}_{i+1}$ are linearly independent.

The polynomial map 三
We define a polynomial map $\equiv: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
\equiv(\mathbf{x}, \mathbf{y})=\left(\operatorname{det}\left(\mathbf{x}^{-}, \mathbf{y}^{+}\right)-\operatorname{det}\left(\mathbf{x}^{+}, \mathbf{y}^{-}\right)\right) \mathbf{x}-\operatorname{det}(\mathbf{x}) \mathbf{y} .
$$

where $\operatorname{det}(\mathbf{x}):=\operatorname{det}\left(\mathbf{x}^{-}, \mathbf{x}^{+}\right)=\left|\begin{array}{ll}x_{0} & x_{1} \\ x_{1} & x_{2}\end{array}\right|$.
Algebraic properties
(i) $\operatorname{det}(\equiv(\mathbf{x}, \mathbf{y}))=\operatorname{det}(\mathbf{x})^{2} \operatorname{det}(\mathbf{y})$,
(ii) $\equiv(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}))=\operatorname{det}(\mathbf{x})^{2} \mathbf{y}$.

Analytic properties
(i) $\|\equiv(\mathbf{x}, \mathbf{y})\| \ll\|\mathbf{x}\|^{2}\|\Delta \mathbf{y}\|+\|\mathbf{y}\|\|\Delta \mathbf{y}\|^{2}$,
(ii) $\| \Delta \equiv(\mathbf{x}, \mathbf{y}))\|\ll(\|\mathbf{x}\|\|\Delta \mathbf{y}\|+\|\mathbf{y}\|\|\Delta \mathbf{x}\|)\| \Delta \mathbf{x} \|$.

Application

We find

- $\left\|\equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right\| \ll\left\|\mathbf{y}_{i-2}\right\| \quad$ and $\quad\left\|\Delta \equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right\| \ll\left\|\mathbf{y}_{i-2}\right\|^{-1}$,
and then
- $\left|\operatorname{det}\left(\mathbf{y}_{i-2}, \mathbf{y}_{i-1}, \equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right)\right| \ll\left\|\mathbf{y}_{i-4}\right\|^{-1} \rightarrow 0$,
- $\mid \operatorname{det}\left(\mathbf{y}_{i-3}, \mathbf{y}_{i-2}\right.$, $\left.\overline{\text { (}}\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right) \mid \ll\left\|\mathbf{y}_{i-3}\right\|^{-1} \rightarrow 0$.

Thus, for each large enough i,

$$
\operatorname{det}\left(\mathbf{y}_{i-2}, \mathbf{y}_{i-1}, \equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right)=0 \quad \text { and } \quad \operatorname{det}\left(\mathbf{y}_{i-3}, \mathbf{y}_{i-2}, \equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right)=0,
$$

and so $\equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right) \propto \mathbf{y}_{i-2}$. As $\equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right) \neq 0$, we find

$$
\equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i-2}\right) \propto \equiv\left(\mathbf{y}_{i}, \equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}\right)\right) \propto \mathbf{y}_{i+1}
$$

which determines the primitive point \mathbf{y}_{i+1} as a function of \mathbf{y}_{i-2} and \mathbf{y}_{i} up to multiplication by ± 1.

Solution to the inverse problem

Choose linearly independent $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3} \in \mathbb{Z}^{3}$ with $\operatorname{det}\left(\mathbf{y}_{i}\right)=1$ for $j=1,2,3$. Then the sequence $\left(\mathbf{y}_{i}\right)_{i \geq 1}$ given recursively by

$$
\mathbf{y}_{i+1}=\equiv\left(\mathbf{y}_{i}, \mathbf{y}_{i-2}\right) \text { for each } i \geq 3
$$

belongs to \mathbb{Z}^{3}. For each $i \geq 1$, it has $\operatorname{det}\left(\mathbf{y}_{i}\right)=1$ and $\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}\right)$ is a linearly independent triple.

For an appropriate choice of $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}$, the image of \mathbf{y}_{i} in $\mathbb{P}^{2}(\mathbb{R})$ converges to the class of $\left(1, \xi, \xi^{2}\right)$ for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>2$ and $\widehat{\lambda}_{2}(\xi)=1 / \gamma$.

VI. Approximation to $\left(1, \xi, \xi^{2}, \xi^{3}\right)$

$$
\text { Let } \lambda=\lambda_{3}=0.4245 \ldots=\text { the positive root of } T^{2}-\gamma^{3} T+\gamma \text {. }
$$

Hypothesis

Let $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>3$. Set $\mathbf{u}=\left(1, \xi, \xi^{2}, \xi^{3}\right)$ and suppose that there exists $c>0$ such that the inequalities

$$
\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}
$$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{3}$ for each large enough X.

We want to show that this leads to a contradiction. The proof can be adapted to shows that $\widehat{\lambda}_{3}(\xi) \leq \lambda_{3}-\epsilon$ for some small explicit ϵ (not computed).

First main tool : the map C
For each point $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{4}$, we define

$$
\mathbf{x}^{-}=\left(x_{0}, x_{1}, x_{2}\right), \quad \mathbf{x}^{+}=\left(x_{1}, x_{2}, x_{3}\right) \quad \text { and } \quad \Delta \mathbf{x}=\mathbf{x}^{+}-\xi \mathbf{x}^{-} .
$$

Then, $\quad\|\Delta \mathbf{x}\| \asymp\|\mathbf{x} \wedge \mathbf{u}\|$.

For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{4}$,

- $C(\mathbf{x}, \mathbf{y}):=\left(\operatorname{det}\left(\mathbf{x}^{-}, \mathbf{x}^{+}, \mathbf{y}^{-}\right), \operatorname{det}\left(\mathbf{x}^{-}, \mathbf{x}^{+}, \mathbf{y}^{+}\right)\right) \in \mathbb{R}^{2}$ satisfies

$$
\begin{aligned}
\|C(\mathbf{x}, \mathbf{y})\| & \ll\|\mathbf{x}\|\|\Delta \mathbf{x}\|\|\Delta \mathbf{y}\|+\|\mathbf{y}\|\|\Delta \mathbf{x}\|^{2} \\
\|\Delta C(\mathbf{x}, \mathbf{y})\| & \ll\|\mathbf{x}\|\|\Delta \mathbf{x}\|\|\Delta \mathbf{y}\| .
\end{aligned}
$$

- $\mathbf{w}:=C(\mathbf{x}, \mathbf{y})^{-} \mathbf{z}^{+}-C(\mathbf{x}, \mathbf{y})^{+} \mathbf{z}^{-} \in \mathbb{R}^{3}$ satisfies

$$
\begin{aligned}
\|\mathbf{w}\| & \ll\|C(\mathbf{x}, \mathbf{y})\|\|\Delta \mathbf{z}\|+\|\mathbf{z}\|\|\Delta C(\mathbf{x}, \mathbf{y})\| \\
\|\Delta \mathbf{w}\| & \ll\|C(\mathbf{x}, \mathbf{y})\|\|\Delta \mathbf{z}\|
\end{aligned}
$$

Non-vanishing results

Let $\left(\mathbf{x}_{i}\right)_{i \geq 1}$ denote a sequence of minimal points for ξ in \mathbb{Z}^{4}.
For each sufficiently large i,

- Davenport and Schmidt $1969: V_{i}:=\left\langle\mathbf{x}_{i}^{-}, \mathbf{x}_{i}^{+}\right\rangle_{\mathbb{R}} \subseteq \mathbb{R}^{3}$ has dimension 2 (uses $\lambda>1 / 3$),
- R. 2008: $\quad V_{i} \neq V_{i+1}$ (uses $\lambda>\sqrt{2}-1 \cong 0.4142$), thus

$$
C\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right) \neq 0 \quad \text { and } \quad C\left(\mathbf{x}_{i+1}, \mathbf{x}_{i}\right) \neq 0
$$

Non-vanishing results

Let $\left(\mathbf{x}_{i}\right)_{i \geq 1}$ denote a sequence of minimal points for ξ in \mathbb{Z}^{4}.
For each sufficiently large i,

- Davenport and Schmidt $1969: V_{i}:=\left\langle\mathbf{x}_{i}^{-}, \mathbf{x}_{i}^{+}\right\rangle_{\mathbb{R}} \subseteq \mathbb{R}^{3}$ has dimension 2 (uses $\lambda>1 / 3$),
- R. 2008: $\quad V_{i} \neq V_{i+1}$ (uses $\lambda>\sqrt{2}-1 \cong 0.4142$),
thus

$$
C\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right) \neq 0 \quad \text { and } \quad C\left(\mathbf{x}_{i+1}, \mathbf{x}_{i}\right) \neq 0
$$

In particular, this gives $1 \leq\left\|C\left(\mathbf{x}_{i}, \mathbf{x}_{i-1}\right)\right\|$ which yields

$$
\left\|\mathbf{x}_{i+1}\right\| \ll\left\|\mathbf{x}_{i}\right\|^{\theta} \text { where } \theta=\frac{1-\lambda}{\lambda}
$$

In terms of a dual 4-system \mathbf{P}^{*} that approximates $\mathbf{L}_{\mathbf{u}}^{*}$, we find

$$
2 P_{1}^{*}(q)+P_{2}^{*}(q) \geq 2 q+\mathcal{O}(1)
$$

First reduction

Using the above, we can argue in two ways

- we can work with minimal points only using Schmidt's height inequalities for subspaces spanned by consecutive minimal points
- or we can use a dual 4-system \mathbf{P}^{*} with $\left\|\mathbf{L}_{\mathbf{u}}^{*}-\mathbf{P}^{*}\right\|<\infty$.

Then, there exist an unbounded sequence $\left(\mathbf{y}_{i}\right)_{i \geq 1}$ of primitive points of \mathbb{Z}^{4} such that, for each large enough i,

- $\left|\operatorname{det}\left(\mathbf{y}_{2 i-2}, \mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}, \mathbf{y}_{2 i+1}\right)\right| \asymp 1$ and $\operatorname{det}\left(\mathbf{y}_{2 i-3}, \mathbf{y}_{2 i-2}, \mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}\right)=0$,
- $\left\|C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)\right\| \asymp 1$,
- $\left\|\mathbf{y}_{2 i}\right\| \asymp\left\|\mathbf{y}_{2 i-1}\right\|^{\gamma / \theta}$ and $\left\|\mathbf{y}_{2 i+1}\right\| \asymp\left\|\mathbf{y}_{2 i}\right\|^{\theta}$,
- $\left\|\Delta \mathbf{y}_{2 i-1}\right\| \asymp\left\|\mathbf{y}_{2 i}\right\|^{-\lambda}$ and $\left\|\Delta \mathbf{y}_{2 i}\right\| \asymp\left\|\mathbf{y}_{2 i+1}\right\|^{-\lambda}$.

Consequence on L*

There is a self-similar dual 4 -system \mathbf{P}^{*} with ratio γ such that $\mathbf{L}^{*}-\mathbf{P}^{*}$ is bounded. Its combined graph is the following.

Consequence on L*

There is a self-similar dual 4 -system \mathbf{P}^{*} with ratio γ such that $\mathbf{L}^{*}-\mathbf{P}^{*}$ is bounded. Its combined graph is the following.

Consequence on L*

There is a self-similar dual 4 -system \mathbf{P}^{*} with ratio γ such that $\mathbf{L}^{*}-\mathbf{P}^{*}$ is bounded. Its combined graph is the following.

Consequence on L*

There is a self-similar dual 4 -system \mathbf{P}^{*} with ratio γ such that $\mathbf{L}^{*}-\mathbf{P}^{*}$ is bounded. Its combined graph is the following.

Consequence on L*

There is a self-similar dual 4 -system \mathbf{P}^{*} with ratio γ such that $\mathbf{L}^{*}-\mathbf{P}^{*}$ is bounded. Its combined graph is the following.

Second main tool : the maps $\Psi_{ \pm}$

For each sign ϵ among $\{-,+\}$, we define $\Psi_{\epsilon}:\left(\mathbb{R}^{4}\right)^{3} \rightarrow \mathbb{R}^{4}$ by

$$
\Psi_{\epsilon}(\mathbf{x}, \mathbf{y}, \mathbf{z})=C(\mathbf{y}, \mathbf{z})^{\epsilon} \mathbf{x}+E(\mathbf{y}, \mathbf{z}, \mathbf{x})^{\epsilon} \mathbf{y}-C(\mathbf{y}, \mathbf{x})^{\epsilon} \mathbf{z}
$$

where $E(\mathbf{y}, \mathbf{z}, \mathbf{x})$ is the unique 3-linear map, symmetric in its first two arguments, such that $E(\mathbf{y}, \mathbf{y}, \mathbf{x})=2 C(\mathbf{y}, \mathbf{x})$.

General estimates imply that the integer

$$
\operatorname{det}\left(\mathbf{y}_{2 i-2}, \mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}, \Psi_{\epsilon}\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i+1}, \mathbf{y}_{2 i+2}\right)\right)
$$

vanishes for any sign ϵ if i is large enough. Then algebraic considerations show the existence of non-zero rational numbers c_{i} and t_{i} with bounded numerator and denominator such that

1) $C\left(\mathbf{y}_{2 i+1}, \mathbf{y}_{2 i+2}\right)=t_{i} C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i+1}\right)$,
2) $C\left(\mathbf{y}_{2 i+2}, \mathbf{y}_{2 i+1}\right)=c_{i} t_{i} C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)$,
3) $\operatorname{det}\left(C\left(\mathbf{y}_{2 i+2}, \mathbf{y}_{2 i}\right), C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)=c_{i}^{2} \operatorname{det}\left(C\left(\mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}\right), C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)\right)\right.$.

Final contradiction

- The condition 2), namely

$$
C\left(\mathbf{y}_{2 i+2}, \mathbf{y}_{2 i+1}\right)=c_{i} t_{i} C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)
$$

implies that each $C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)$ with i large enough is a bounded integer multiple of some fixed primitive integer point of \mathbb{Z}^{2}.

Final contradiction

- The condition 2), namely

$$
C\left(\mathbf{y}_{2 i+2}, \mathbf{y}_{2 i+1}\right)=c_{i} t_{i} C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)
$$

implies that each $C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)$ with i large enough is a bounded integer multiple of some fixed primitive integer point of \mathbb{Z}^{2}.

- The condition 3), namely

$$
\operatorname{det}\left(C\left(\mathbf{y}_{2 i+2}, \mathbf{y}_{2 i}\right), C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)=c_{i}^{2} \operatorname{det}\left(C\left(\mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}\right), C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i-1}\right)\right)\right.
$$

implies that

$$
\left\|C\left(\mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}\right)\right\| \ll\left\|C\left(\mathbf{y}_{2 i+2}, \mathbf{y}_{2 i}\right)\right\| \ll\left\|\mathbf{y}_{2 i}\right\|^{\gamma(1-\lambda \theta \gamma)=0.1113 \ldots}
$$

which is much better than the standard estimate

$$
\left\|C\left(\mathbf{y}_{2 i-1}, \mathbf{y}_{2 i}\right)\right\| \ll\left\|\mathbf{y}_{2 i}\right\|^{1-2 \lambda=0.1509 \ldots}
$$

With some additional work, this leads to a contradiction.

Similarities with the case $n=2$

Although the upper bound $\widehat{\lambda}_{3}(\xi) \leq \lambda_{3}=0.424506 \ldots$ can be improved, the analysis of the two cases have similarities.

- Both yield that $\mathbf{L}_{\mathbf{u}}^{*}$ is approximated by a self-similar dual n-system \mathbf{P}^{*} with ratio γ, the golden ratio.
- In both cases, we have a subsequence $\left(\mathbf{y}_{i}\right)_{i \geq 1}$ of the sequence of minimal points which realizes the successive minima of $\mathcal{C}_{\mathbf{u}}^{*}(q)$.
- There are bounded quantities namely $\operatorname{det}\left(\mathbf{y}_{i}\right)$ for $n=2$, and $C\left(\mathbf{y}_{2 i}, \mathbf{y}_{2-1}\right)$ for $n=3$.
- There is also a polynomial map $\equiv:\left(\mathbb{R}^{4}\right)^{3} \rightarrow \mathbb{R}^{4}$ with similar properties, given by

$$
\begin{aligned}
\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z})= & C(\mathbf{z}, \mathbf{x})^{-} \Psi_{+}(\mathbf{y}, \mathbf{x}, \mathbf{z})-C(\mathbf{z}, \mathbf{x})^{+} \Psi_{-}(\mathbf{y}, \mathbf{x}, \mathbf{z}) \\
= & -\operatorname{det}(E(\mathbf{x}, \mathbf{z}, \mathbf{y}), C(\mathbf{z}, \mathbf{x})) \mathbf{x}
\end{aligned} \begin{aligned}
&-\operatorname{det}(C(\mathbf{x}, \mathbf{z}), C(\mathbf{z}, \mathbf{x})) \mathbf{y} \\
&+\operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{z}, \mathbf{x})) \mathbf{z} .
\end{aligned}
$$

Properties of Ξ

We can recover \mathbf{z} from $\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z})$ via the formula

$$
\equiv(\mathbf{x}, \mathbf{z}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}))=\operatorname{det}(C(\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}))) \mathbf{z} \text {. }
$$

We also have a factorization for the determinant on the right.

- $C(\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x})=\operatorname{det}(C(\mathbf{z}, \mathbf{x}), C(\mathbf{z}, \mathbf{y})) \operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z})) C(\mathbf{x}, \mathbf{z})$,
- $C(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}))=\operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z})) C(\mathbf{z}, \mathbf{x})$,

So, $\operatorname{det}(C(\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z})))$

$$
=\operatorname{det}(C(\mathbf{z}, \mathbf{x}), C(\mathbf{z}, \mathbf{y})) \operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z}))^{2} \operatorname{det}(C(\mathbf{x}, \mathbf{z}), C(\mathbf{z}, \mathbf{x}))
$$

Properties of $\overline{ }$

We can recover \mathbf{z} from $\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z})$ via the formula

$$
\equiv(\mathbf{x}, \mathbf{z}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}))=\operatorname{det}(C(\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}))) \mathbf{z} \text {. }
$$

We also have a factorization for the determinant on the right.

- $C(\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x})=\operatorname{det}(C(\mathbf{z}, \mathbf{x}), C(\mathbf{z}, \mathbf{y})) \operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z})) C(\mathbf{x}, \mathbf{z})$,
- $C(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}))=\operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z})) C(\mathbf{z}, \mathbf{x})$,

So, $\operatorname{det}(C(\equiv(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \equiv(\mathbf{x}, \mathbf{y}, \mathbf{z})))$

$$
=\operatorname{det}(C(\mathbf{z}, \mathbf{x}), C(\mathbf{z}, \mathbf{y})) \operatorname{det}(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z}))^{2} \operatorname{det}(C(\mathbf{x}, \mathbf{z}), C(\mathbf{z}, \mathbf{x}))
$$

Assuming that $\lambda \cong 0.4245$, general estimates imply that

$$
\operatorname{det}\left(\mathbf{y}_{2 i-6}, \mathbf{y}_{2 i-5}, \mathbf{y}_{2 i-4}, \equiv\left(\mathbf{y}_{2 i}, \mathbf{y}_{2 i+1}, \mathbf{y}_{2 i+2}\right)\right)=0
$$

for each large enough i, a polynomial relation of degree 10 in 24 variables.

VII. Relevant dual 4-systems

Suppose that

$$
\widehat{\lambda}_{3}(\xi)>\sqrt{2}-1 \cong 0.4142
$$

for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>3$. We set

$$
\mathbf{u}=\left(1, \xi, \xi^{2}, \xi^{3}\right)
$$

and choose a dual 4-system \mathbf{P}^{*} for which $\mathbf{L}_{\mathbf{u}}^{*}-\mathbf{P}^{*}$ is bounded. Then,

$$
\lim _{q \rightarrow \infty} P_{3}^{*}(q)-P_{1}^{*}(q)=\infty \quad \text { and } \quad \lim _{q \rightarrow \infty} P_{4}^{*}(q)-P_{2}^{*}(q)=\infty
$$

VII. Relevant dual 4-systems

Suppose that

$$
\widehat{\lambda}_{3}(\xi)>\sqrt{2}-1 \cong 0.4142
$$

for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi): \mathbb{Q}]>3$. We set

$$
\mathbf{u}=\left(1, \xi, \xi^{2}, \xi^{3}\right)
$$

and choose a dual 4-system \mathbf{P}^{*} for which $\mathbf{L}_{\mathbf{u}}^{*}-\mathbf{P}^{*}$ is bounded. Then,

$$
\lim _{q \rightarrow \infty} P_{3}^{*}(q)-P_{1}^{*}(q)=\infty \quad \text { and } \quad \lim _{q \rightarrow \infty} P_{4}^{*}(q)-P_{2}^{*}(q)=\infty
$$

Moreover, if $P_{2}^{*}(r)=P_{3}^{*}(r)$ and $P_{3}^{*}(s)=P_{4}^{*}(s)$ for some $r<s$, then we have $P_{1}^{*}(t)=P_{2}^{*}(t)$ for some t with $r<t<s$.

Consequence of the last assertion

Suppose that $t_{0}<t_{1}$ are consecutive points at which P_{1}^{*} and P_{2}^{*} coincide. Suppose also that there is a point r between t_{0} and t_{1} where P_{3}^{*} and P_{4}^{*} coincide. Then the combined graph of \mathbf{P}^{*} over $\left[t_{0}, t_{1}\right]$ takes the form

