Parametric geometry of numbers and simultaneous approximation to geometric progressions

Damien Roy

Université d'Ottawa

Diophantine Approximation, Fractal Geometry and Related topics Université Gustave Eiffel June 3–7, 2024

https://mysite.science.uottawa.ca/droy//talks.html

I. Uniform rational approximation

Let **u** be a non-zero point of \mathbb{R}^{n+1} for some integer $n \ge 1$. We define $\widehat{\lambda}(\mathbf{u})$ to be the supremum of the real numbers $\lambda > 0$ for which the inequalities

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq X^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each sufficiently large X.

- $\widehat{\lambda}(\mathbf{u}) \ge 1/n$ by a theorem of Dirichlet.
- $\widehat{\lambda}(\mathbf{u}A) = \widehat{\lambda}(\mathbf{u})$ for each $A \in GL_{n+1}(\mathbb{Q})$.

I. Uniform rational approximation

Let **u** be a non-zero point of \mathbb{R}^{n+1} for some integer $n \ge 1$. We define $\widehat{\lambda}(\mathbf{u})$ to be the supremum of the real numbers $\lambda > 0$ for which the inequalities

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq X^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each sufficiently large X.

For $\xi \in \mathbb{R}$, we set $\widehat{\lambda}_n(\xi) = \widehat{\lambda}(1, \xi, \dots, \xi^n)$.

• $\widehat{\lambda}_n(\xi) = 1/n$ for almost all $\xi \in \mathbb{R}$ and each $\xi \in \overline{\mathbb{Q}}$ with $[\mathbb{Q}(\xi) : \mathbb{Q}] > n$. • $\widehat{\lambda}_n(g.\xi) = \widehat{\lambda}(\xi)$ for each $g \in GL_2(\mathbb{Q})$.

Some estimates

Let $\xi \in \mathbb{R} \setminus \overline{\mathbb{Q}}$. Set $\gamma = (1 + \sqrt{5})/2 \cong 1.618$.

1) Davenport & Schmidt (1969):
$$\hat{\lambda}_n(\xi) \le \begin{cases} 1/\gamma \cong 0.618 & \text{if } n = 2, \\ 1/2 & \text{if } n = 3, \\ 1/\lfloor n/2 \rfloor & \text{if } n \ge 4. \end{cases}$$

Goals of the talk:

- similarities between 3) and 4),
- hints for the proof that λ_3 in 4) can be improved,
- relevance of parametric geometry of numbers.

II. Two families of convex bodies

Let $\mathbf{u} \in \mathbb{R}^n$ with \mathbb{Q} -linearly independent coordinates. For each $q \ge 0$, set

$$egin{aligned} \mathcal{C}_{\mathbf{u}}(q) &= \{\mathbf{x} \in \mathbb{R}^n \, ; \, \|\mathbf{x}\| \leq 1 \quad ext{and} \quad |\mathbf{x} \cdot \mathbf{u}| \leq e^{-q} \}, \ \mathcal{C}^*_{\mathbf{u}}(q) &= \{\mathbf{x} \in \mathbb{R}^n \, ; \, \|\mathbf{x}\| \leq 1 \quad ext{and} \quad |\mathbf{x} \wedge \mathbf{u}| \leq e^{-q} \}, \end{aligned}$$

and, for each $j = 1, \ldots, n$, define

$$\begin{split} L_{\mathbf{u},j}(q) &= \text{smallest } L \geq 0 \text{ such that } e^L \mathcal{C}_{\mathbf{u}}(q) \text{ contains at least} \\ & j \text{ linearly independent points of } \mathbb{Z}^n, \\ L_{\mathbf{u},j}^*(q) &= \text{smallest } L \geq 0 \text{ such that } e^L \mathcal{C}_{\mathbf{u}}^*(q) \text{ contains at least} \\ & j \text{ linearly independent points of } \mathbb{Z}^n. \end{split}$$

Finally define $L_u \colon [0,\infty) \to \mathbb{R}^n$ and $L_u^* \colon [0,\infty) \to \mathbb{R}^n$ by

 $\mathsf{L}_{\mathsf{u}}(q) = (L_{\mathsf{u},1}(q), \dots, L_{\mathsf{u},n}(q)) \quad \text{and} \quad \mathsf{L}_{\mathsf{u}}^*(q) = (L_{\mathsf{u},1}^*(q), \dots, L_{\mathsf{u},n}^*(q)).$

II. Two families of convex bodies

Let $\mathbf{u} \in \mathbb{R}^n$ with \mathbb{Q} -linearly independent coordinates. For each $q \ge 0$, set

$$egin{aligned} \mathcal{C}_{\mathbf{u}}(q) &= \{\mathbf{x} \in \mathbb{R}^n \, ; \, \|\mathbf{x}\| \leq 1 \quad ext{and} \quad |\mathbf{x} \cdot \mathbf{u}| \leq e^{-q} \}, \ \mathcal{C}^*_{\mathbf{u}}(q) &= \{\mathbf{x} \in \mathbb{R}^n \, ; \, \|\mathbf{x}\| \leq 1 \quad ext{and} \quad |\mathbf{x} \wedge \mathbf{u}| \leq e^{-q} \}, \end{aligned}$$

and, for each $j = 1, \ldots, n$, define

$$L_{\mathbf{u},j}(q) = \text{smallest } L \ge 0 \text{ such that } e^L C_{\mathbf{u}}(q) \text{ contains at least}$$

 $j \text{ linearly independent points of } \mathbb{Z}^n,$
 $L_{\mathbf{u},j}^*(q) = \text{smallest } L \ge 0 \text{ such that } e^L C_{\mathbf{u}}^*(q) \text{ contains at least}$
 $j \text{ linearly independent points of } \mathbb{Z}^n.$

Finally define $L_u \colon [0,\infty) \to \mathbb{R}^n$ and $L_u^* \colon [0,\infty) \to \mathbb{R}^n$ by

$$\mathbf{L}_{\mathbf{u}}(q) = (L_{\mathbf{u},1}(q), \dots, L_{\mathbf{u},n}(q)) \quad \text{and} \quad \mathbf{L}_{\mathbf{u}}^*(q) = (L_{\mathbf{u},1}^*(q), \dots, L_{\mathbf{u},n}^*(q)).$$

Mahler's duality : $L_{\mathbf{u},j}(q) + L^*_{\mathbf{u},n+1-j}(q) = q + \mathcal{O}(1)$ for $j = 1, \dots, n$.

The trajectory of a point

The *trajectory* of a non-zero point $\mathbf{x} \in \mathbb{Z}^n$ relative to the family $\mathcal{C}^*_{\mathbf{u}}(q)$ is the map $L^*_{\mathbf{u}}(\mathbf{x}, \cdot) \colon [0, \infty) \to \mathbb{R}$ given by

$$egin{aligned} & L_{\mathbf{u}}^*(\mathbf{x},q) = ext{smallest } L ext{ such that } \mathbf{x} \in e^L \mathcal{C}^*_{\mathbf{u}}(q) \ &= ext{max} \{ \log \|\mathbf{x}\|, \, q + \log \|\mathbf{x} \wedge \mathbf{u}\| \}. \end{aligned}$$

It is continuous and piecewise linear with slope 0 then 1.

The first minimum

Finitely many non-zero points $\mathbf{x} \in \mathbb{Z}^n$ have their trajectory cross the domain $0 \le L \le L_0$: they all have $\log \|\mathbf{x}\| \le L_0$.

The first minimum

Finitely many non-zero points $\mathbf{x} \in \mathbb{Z}^n$ have their trajectory cross the domain $0 \le L \le L_0$: they all have $\log \|\mathbf{x}\| \le L_0$. Thus,

$$L^*_{\mathbf{u},\mathbf{1}}(q) = \min\{L^*_{\mathbf{u}}(\mathbf{x},q)\,;\,\mathbf{x}\in\mathbb{Z}^n\setminus\{0\}\}$$

is a continuous piecewise linear function of $q \ge 0$ with slopes 0 and 1, and it is realized by a sequence $(\mathbf{x}_i)_{i\ge 1}$ of integer points called "minimal points".

Link with the exponent $\widehat{\lambda}(\mathbf{u})$

Fix $\lambda > 0$. The following conditions are equivalent:

• There exists a constant c > 0 such that the conditions

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq cX^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^n$ for any sufficiently large X.

• We have $\|\mathbf{x}_i \wedge \mathbf{u}\| \ll \|\mathbf{x}_{i+1}\|^{-\lambda}$ for each $i \ge 1$.

$$ullet$$
 We have $L^*_{\mathbf{u},1}(q) \leq rac{q}{1+\lambda} + \mathcal{O}(1)$ as $q o \infty.$

Link with the exponent $\widehat{\lambda}(\mathbf{u})$

Fix $\lambda > 0$. The following conditions are equivalent:

• There exists a constant c > 0 such that the conditions

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^n$ for any sufficiently large X.

• We have $\|\mathbf{x}_i \wedge \mathbf{u}\| \ll \|\mathbf{x}_{i+1}\|^{-\lambda}$ for each $i \ge 1$.

• We have
$$L^*_{\mathbf{u},1}(q) \leq rac{q}{1+\lambda} + \mathcal{O}(1)$$
 as $q o \infty.$

Corollary (Schmidt and Summerer (2013))

For any non-zero $\mathbf{u} \in \mathbb{R}^n$, we have

$$\widehat{\lambda}(\mathbf{u}) = rac{1}{ar{arphi}(\mathbf{u})} - 1 \quad \textit{where} \quad ar{arphi}(\mathbf{u}) = \limsup_{q o \infty} rac{L^*_{\mathbf{u},1}(q)}{q}.$$

III. The n-systems

Let $q_0 \ge 0$. An *n*-system on $[q_0, \infty)$ is a map $\mathbf{P} = (P_1, \ldots, P_n)$ from $[q_0, \infty)$ to \mathbb{R}^n with the following properties.

(S1) Each P_j is continuous and piecewise linear with slopes 0 and 1.

- (S2) We have $0 \le P_1(q) \le \cdots \le P_n(q)$ and $P_1(q) + \cdots + P_n(q) = q$ for each $q \ge q_0$.
- (S3) For each j = 1, ..., n-1 and each $q > q_0$ at which $P_1 + \cdots + P_j$ decreases slope from 1 to 0, we have $P_j(q) = P_{j+1}(q)$.

III. The n-systems

Let $q_0 \ge 0$. An *n*-system on $[q_0, \infty)$ is a map $\mathbf{P} = (P_1, \ldots, P_n)$ from $[q_0, \infty)$ to \mathbb{R}^n with the following properties.

(S1) Each P_j is continuous and piecewise linear with slopes 0 and 1.

- (S2) We have $0 \le P_1(q) \le \cdots \le P_n(q)$ and $P_1(q) + \cdots + P_n(q) = q$ for each $q \ge q_0$.
- (S3) For each j = 1, ..., n-1 and each $q > q_0$ at which $P_1 + \cdots + P_j$ decreases slope from 1 to 0, we have $P_j(q) = P_{j+1}(q)$.

The **switch points** of such a map **P** are q_0 and all points $q > q_0$ at which at least one of the sums $P_1 + \cdots + P_j$ with $1 \le j < n$ increases slope from 0 to 1.

III. The n-systems

Let $q_0 \ge 0$. An *n*-system on $[q_0, \infty)$ is a map $\mathbf{P} = (P_1, \ldots, P_n)$ from $[q_0, \infty)$ to \mathbb{R}^n with the following properties.

(S1) Each P_j is continuous and piecewise linear with slopes 0 and 1.

- (S2) We have $0 \le P_1(q) \le \cdots \le P_n(q)$ and $P_1(q) + \cdots + P_n(q) = q$ for each $q \ge q_0$.
- (S3) For each j = 1, ..., n-1 and each $q > q_0$ at which $P_1 + \cdots + P_j$ decreases slope from 1 to 0, we have $P_j(q) = P_{j+1}(q)$.

The **switch points** of such a map **P** are q_0 and all points $q > q_0$ at which at least one of the sums $P_1 + \cdots + P_j$ with $1 \le j < n$ increases slope from 0 to 1.

Let $\delta > 0$. We say that **P** is **rigid of mesh** $\delta > 0$ if $P_1(q), \ldots, P_n(q)$ are distinct positive multiples of δ for each switch point q of **P**.

Characterization of the minima up to bounded functions

Theorem (R. 2015)

For each nonzero $\mathbf{u} \in \mathbb{R}^n$ and each $\delta > 0$, there exists a rigid n-system $\mathbf{P} \colon [q_0, \infty) \to \mathbb{R}^n$ of mesh δ such that $\mathbf{L}_{\mathbf{u}} - \mathbf{P}$ is bounded on $[q_0, \infty)$. Conversely, given any n-system $\mathbf{P} \colon [q_0, \infty) \to \mathbb{R}^n$, there exists a nonzero $\mathbf{u} \in \mathbb{R}^n$ such that $\mathbf{L}_{\mathbf{u}} - \mathbf{P}$ is bounded on $[q_0, \infty)$.

• Schmidt and Summerer prove the first assertion with a larger class of functions **P** called (n, γ) -systems, where γ is an auxiliary parameter.

Dual *n*-systems

Let $q_0 \ge 0$. A **dual** *n*-system on $[q_0, \infty)$ is a map $\mathbf{P}^* : [q_0, \infty) \to \mathbb{R}^n$ given by

$${f P}^*(q) = (q - P_n(q), \dots, q - P_1(q)) \quad (q \ge q_0)$$

for some *n*-system $\mathbf{P} = (P_1, \dots, P_n) \colon [q_0, \infty) \to \mathbb{R}^n$.

Dual *n*-systems

Let $q_0 \ge 0$. A **dual** *n*-system on $[q_0, \infty)$ is a map $\mathbf{P}^* \colon [q_0, \infty) \to \mathbb{R}^n$ given by

$$\mathbf{P}^*(q) = (q - P_n(q), \ldots, q - P_1(q)) \quad (q \ge q_0)$$

for some *n*-system $\mathbf{P} = (P_1, \ldots, P_n) \colon [q_0, \infty) \to \mathbb{R}^n$.

Equivalently, this is a map $\mathbf{P}^* = (P_1^*, \dots, P_n^*) \colon [q_0, \infty) \to \mathbb{R}^n$ with the following properties.

(S1) Each P_i^* is continuous and piecewise linear with slopes 0 and 1.

(S2) We have
$$0 \le P_1^*(q) \le \cdots \le P_n^*(q)$$
 and $P_1^*(q) + \cdots + P_n^*(q) = (n-1)q$ for each $q \ge q_0$.

(S3) For each j = 1, ..., n-1 and each $q > q_0$ at which $P_1^* + \cdots + P_j^*$ decreases slope from j to j-1, we have $P_i^*(q) = P_{j+1}^*(q)$.

Its **switch points** are q_0 and the points $q > q_0$ at which at least one of the sums $P_1^* + \cdots + P_j^*$ with $1 \le j < n$ increases slopes from j - 1 to j.

Characterization of the minima up to bounded functions

Corollary

For each nonzero $\mathbf{u} \in \mathbb{R}^n$ and each $\delta > 0$, there exists a dual rigid *n*-system $\mathbf{P}^* : [q_0, \infty) \to \mathbb{R}^n$ of mesh δ such that $\mathbf{L}^*_{\mathbf{u}} - \mathbf{P}^*$ is bounded on $[q_0, \infty)$. Conversely, given any dual *n*-system $\mathbf{P}^* : [q_0, \infty) \to \mathbb{R}^n$, there exists a nonzero $\mathbf{u} \in \mathbb{R}^n$ such that $\mathbf{L}^*_{\mathbf{u}} - \mathbf{P}^*$ is bounded on $[q_0, \infty)$.

Combined graph of a dual 2-system

Combined graph of a dual 3-system

There is a repetitive pattern :

The generic pattern

The generic pattern

When P_3^* has slope 1, (P_1^*, P_2^*) behaves like a dual 2-system.

The generic pattern

When P_1^* has slope 1, (P_2^*, P_3^*) behaves like a dual 2-system.

The generic pattern

When P_1^* and P_3^* have slope 1, (P_2^*) behaves like a dual 1-system.

When P_4^* has slope 1, (P_1^*, P_2^*, P_3^*) behaves like a dual 3-system.

When P_1^* has slope 1, (P_2^*, P_3^*, P_4^*) behaves like a dual 3-system.

When P_1^* and P_4^* have slope 1, (P_2^*, P_3^*) behaves like a dual 2-system.

No repetitive pattern for dual 4-systems

Transitions when P_1^\ast and P_4^\ast have slope 1 may be qualitatively very different

Self-similar dual systems

They are the dual *n*-systems \mathbf{P}^* : $[q_0, \infty) \to \mathbb{R}^n$ which, for some $\rho > 1$, satisfy

$$\mathbf{P}^*(
ho q) =
ho \mathbf{P}^*(q)$$
 for each $q \geq q_0$

Example for n = 3:

IV. The trajectory of a subspace

Let $1 \le k < n$ be integers and let $\mathbf{u} \in \mathbb{R}^n \setminus \{0\}$. Mahler's *k*-th compound of $\mathcal{C}^*(q) = \{\mathbf{x} \in \mathbb{R}^n : \log \|\mathbf{x}\| \le 1 \text{ and } \log \|\mathbf{x} \land \mathbf{u}\| \le -q\}$

$${\mathcal C}^*_{\mathbf u}(q) = \left\{ {\mathbf x} \in {\mathbb R}^n \, ; \, \log \| {\mathbf x} \| \leq 1 \, ext{and} \, \log \| {\mathbf x} \wedge {\mathbf u} \| \leq -q
ight\}$$

is comparable to

$$(\mathcal{C}^*_{\mathbf{u}})^{(k)}(q) = \Big\{ X \in \bigwedge^k \mathbb{R}^n \, ; \, \log \|X\| \leq -(k-1)q \, \, ext{and} \, \, \log \|X \wedge \mathbf{u}\| \leq -kq \Big\}.$$

The *trajectory* of a non-zero $X \in \bigwedge^k \mathbb{R}^n$ is

$$L^*_{\mathbf{u}}(X,q) = \max\{\log \|X\| + (k-1)q, \log \|X \wedge \mathbf{u}\| + kq\}.$$

The *trajectory* of a *k*-dimensional subspace *V* of \mathbb{R}^n defined over \mathbb{Q} is

$$L^*_{\mathbf{u}}(V,q) = L(\mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_k,q)$$

where $(\mathbf{x}_1, \ldots, \mathbf{x}_k)$ is any basis of $V \cap \mathbb{Z}^n$.

A glimpse at Mahler's theory

Suppose that I is a sub-interval of $[0,\infty)$ such that

$$L^*_{\mathbf{u},k}(q) < L^*_{\mathbf{u},k+1}(q)$$
 for each $q \in I$.

Then, the subspace V of \mathbb{R}^n generated by the first k minima of $C^*_{\mathbf{u}}(q)$ in \mathbb{Z}^n is independent of $q \in I$, and we have

$$L^*_{\mathbf{u}}(V,q)\simeq L^*_{\mathbf{u},1}(q)+\cdots+L^*_{\mathbf{u},k}(q) \quad ext{for each } q\in I.$$

A glimpse at Mahler's theory

Suppose that I is a sub-interval of $[0,\infty)$ such that

$$L^*_{\mathbf{u},k}(q) < L^*_{\mathbf{u},k+1}(q)$$
 for each $q \in I$.

Then, the subspace V of \mathbb{R}^n generated by the first k minima of $C^*_{\mathbf{u}}(q)$ in \mathbb{Z}^n is independent of $q \in I$, and we have

$$L^*_{\mathbf{u}}(V,q)\simeq L^*_{\mathbf{u},1}(q)+\cdots+L^*_{\mathbf{u},k}(q) \quad ext{for each } q\in I.$$

Consequence. Let $\mathbf{P}^* = (P_1^*, \dots, P_n^*)$ is a dual *n*-system on $[q_0, \infty)$ for which $c := \|\mathbf{P}^* - \mathbf{L}_{\mathbf{u}}^*\|_{\infty} < \infty$. Suppose that *I* is a subinterval of $[q_0, \infty)$ such that

$$P_k^*(q) < P_{k+1}^*(q) - 2c$$
 for each $q \in I$.

for each $q \ge q_0$. Then, the subspace V of \mathbb{R}^n generated by the points $\mathbf{x} \in \mathbb{Z}^n$ with $L^*_{\mathbf{u}}(\mathbf{x}, q) < P^*_{k+1}(q) - c$ for some $q \in I$ has dimension k and

$$L^*_{\mathbf{u}}(V,q)\simeq P^*_1(q)+\cdots+P^*_k(q) \quad ext{for each } q\in I.$$

V. Approximation to $(1, \xi, \xi^2)$

Hypothesis

Let $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi) : \mathbb{Q}] > 2$. Set $\mathbf{u} = (1, \xi, \xi^2)$ and suppose that there exist $\lambda > 1/2$ and c > 0 such that the inequalities

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^3$ for each large enough X.

Fix a dual 3-system $\mathbf{P}^* = (P_1^*, P_2^*, P_3^*)$ such that $\mathbf{L}_{\mathbf{u}}^* - \mathbf{P}^*$ is bounded. The last hypothesis becomes

$$\mathcal{P}_1^*(q) \leq rac{q}{1+\lambda} + \mathcal{O}(1)$$

as $q \to \infty$.

Exploiting the nature of the point

For each point
$$\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$$
, we define
 $\mathbf{x}^- = (x_0, x_1), \quad \mathbf{x}^+ = (x_1, x_2) \text{ and } \Delta \mathbf{x} = \mathbf{x}^+ - \xi \mathbf{x}^-.$
Then, $\|\mathbf{x} \wedge \mathbf{u}\| \asymp \|\Delta \mathbf{x}\|.$

Theorem (Davenport and Schmidt, 1969) For any minimal point $\mathbf{x} \in \mathbb{Z}^3$ with $\|\mathbf{x}\|$ large enough, we have $\det(\mathbf{x}) := \det(\mathbf{x}^-, \mathbf{x}^+) \neq 0.$ Then, $1 \le |\det(\mathbf{x}^-, \mathbf{x}^+)| = |\det(\mathbf{x}^-, \Delta \mathbf{x})| \ll \|\mathbf{x}\| \|\Delta \mathbf{x}\|,$ and so, $0 \le \log \|\mathbf{x}\| + \log \|\mathbf{x} \wedge \mathbf{u}\| + \mathcal{O}(1).$

We have $P_1^*(q) \geq q/2 + \mathcal{O}(1)$ as $q \to \infty$.

Proof. We may assume that P_1^* changes slope from 0 to 1 at q.

We have
$$P_1^*(q) \geq q/2 + \mathcal{O}(1)$$
 as $q o \infty$.

Proof. We may assume that P_1^* changes slope from 0 to 1 at q. We have

$$P_2^*(q) \ge (P_1^*(q) + P_2^*(q))/2 \ge q/2$$

since $P_1^* + P_2^*$ has slope 1 or 2. So, we may assume that $P_2^*(q) - P_1^*(q)$ is large.

We have
$$P_1^*(q) \geq q/2 + \mathcal{O}(1)$$
 as $q o \infty$.

Proof. We may assume that P_1^* changes slope from 0 to 1 at q. We have

$$P_2^*(q) \geq (P_1^*(q) + P_2^*(q))/2 \geq q/2$$

since $P_1^* + P_2^*$ has slope 1 or 2. So, we may assume that $P_2^*(q) - P_1^*(q)$ is large.

Choose a minimal point $\mathbf{x} \in \mathbb{Z}^3$ such that $L^*_{\mathbf{u},1}(q) = L^*_{\mathbf{u}}(\mathbf{x},q).$

We have
$$P_1^*(q) \geq q/2 + \mathcal{O}(1)$$
 as $q o \infty$.

Proof. We may assume that P_1^* changes slope from 0 to 1 at q. We have

$$P_2^*(q) \geq (P_1^*(q) + P_2^*(q))/2 \geq q/2$$

since $P_1^* + P_2^*$ has slope 1 or 2. So, we may assume that $P_2^*(q) - P_1^*(q)$ is large.

Choose a minimal point $\mathbf{x} \in \mathbb{Z}^3$ such that $L^*_{\mathbf{u},1}(q) = L^*_{\mathbf{u}}(\mathbf{x},q).$

We have
$$\ P_1^*(q) \geq q/2 + \mathcal{O}(1)$$
 as $q o \infty.$

Proof. We may assume that P_1^* changes slope from 0 to 1 at q. We have

$$P_2^*(q) \ge (P_1^*(q) + P_2^*(q))/2 \ge q/2$$

since $P_1^* + P_2^*$ has slope 1 or 2. So, we may assume that $P_2^*(q) - P_1^*(q)$ is large.

Choose a minimal point $\mathbf{x} \in \mathbb{Z}^3$ such that $L^*_{\mathbf{u},1}(q) = L^*_{\mathbf{u}}(\mathbf{x},q)$. Then, we have

$$\log \|\mathbf{x}\| \simeq P_1^*(q), \ \ \log \|\mathbf{x} \wedge \mathbf{u}\| \simeq P_1^*(q) - q,$$

Thus, $0 \leq \log \|\mathbf{x}\| + \log \|\mathbf{x} \wedge \mathbf{u}\| + \mathcal{O}(1)$ $\leq P_1^*(q) + (P_1^*(q) - q) + \mathcal{O}(1).$

Summary of the constraints

We have

 $[\mathbb{Q}(\xi):\mathbb{Q}]>2 \iff u=(1,\xi,\xi^2)$ has \mathbb{Q} -linearly independent coordinates

$$\iff |P_3^* \text{ changes slope infinitely often}|$$

Moreover

$$rac{q}{2}+\mathcal{O}(1)\leq P_1^*(q)\leq rac{q}{1+\lambda}+\mathcal{O}(1)$$

One can show that these conditions imply

Theorem (Davenport and Schmidt, 1969) $\lambda \leq 1/\gamma \cong 0.618$

Limit case

- Solving the above inequalities yields $\lambda \leq 1/\gamma.$
- If $\lambda = 1/\gamma$, all inequalities are equalities up to a bounded difference:

A particular minimal point

As $P_2^*(q) - P_1^*(q) \to \infty$, there is a unique primitive pair $\pm \mathbf{y} \in \mathbb{Z}^3$ with $\log \|\mathbf{y}\| \simeq q/2$ and $\log \|\mathbf{y} \wedge \mathbf{u}\| \simeq -q/2$

A particular minimal point

As $P_2^*(q) - P_1^*(q) \to \infty$, there is a unique primitive pair $\pm \mathbf{y} \in \mathbb{Z}^3$ with $\log \|\mathbf{y}\| \simeq q/2$ and $\log \|\mathbf{y} \wedge \mathbf{u}\| \simeq -q/2$

and thus $|\det(\mathbf{y})| \approx 1$.

The sequence of these points

We get real numbers $q_i > 0$ in \mathbb{R} and primitive points $\mathbf{y}_i \in \mathbb{Z}^4$ with

$$q_{i+1} \simeq \gamma q_i, \quad \log \|\mathbf{y}_i\| \simeq q_i/2, \quad \log \|\mathbf{y}_i \wedge \mathbf{u}\| \simeq -q_i/2.$$

We may choose \mathbf{P}^* self similar with ratio γ , so that $q_{i+1} = \gamma q_i$ for each $i \ge 1$.

The sequence of these points

We get real numbers $q_i > 0$ in \mathbb{R} and primitive points $\mathbf{y}_i \in \mathbb{Z}^4$ with

The sequence of these points

We get real numbers $q_i > 0$ in \mathbb{R} and primitive points $\mathbf{y}_i \in \mathbb{Z}^4$ with

The sequence of these points

We get real numbers $q_i > 0$ in \mathbb{R} and primitive points $\mathbf{y}_i \in \mathbb{Z}^4$ with

The sequence of these points

We get real numbers $q_i > 0$ in \mathbb{R} and primitive points $\mathbf{y}_i \in \mathbb{Z}^4$ with

Linear independence of three consecutive points

Claim. The points $\mathbf{y}_{i-1}, \mathbf{y}_i, \mathbf{y}_{i+1}$ are linearly independent if $i \gg 1$.

Step 1. The trajectory of a non-zero $\textbf{x} \in \mathbb{Z}^3$ changes slope at

$$q(\mathbf{x}) = \log rac{\|\mathbf{x}\|}{\|\mathbf{x} \wedge \mathbf{u}\|}.$$

Thus, if $\mathbf{x},\mathbf{y}\in\mathbb{Z}^3$ are linearly independent, then $q(\mathbf{x})=q(\mathbf{y}).$

Since $L_{\mathbf{u}}^*(\mathbf{y}_i, q)$ changes slope around q_i and $q_{i+1} - q_i \to \infty$, the points \mathbf{y}_i and \mathbf{y}_{i+1} are linearly independent if $i \gg 1$.

Step 2

The trajectory of $\langle \mathbf{y}_{i-1}, \mathbf{y}_i \rangle_{\mathbb{R}}$ changes slope around q_i .

Step 2

The trajectory of $\langle \mathbf{y}_{i-1}, \mathbf{y}_i \rangle_{\mathbb{R}}$ changes slope around q_i . \implies That of $\langle \mathbf{y}_i, \mathbf{y}_{i+1} \rangle_{\mathbb{R}}$ changes slope around q_{i+1} .

Step 2

- The trajectory of $\langle \mathbf{y}_{i-1}, \mathbf{y}_i \rangle_{\mathbb{R}}$ changes slope around q_i .
- \implies That of $\langle \mathbf{y}_i, \mathbf{y}_{i+1} \rangle_{\mathbb{R}}$ changes slope around q_{i+1} .
- $\implies \langle \mathbf{y}_{i-1}, \mathbf{y}_i \rangle_{\mathbb{R}} \neq \langle \mathbf{y}_i, \mathbf{y}_{i+1} \rangle_{\mathbb{R}} \text{ if } i \gg 1.$

Summary

Set $\mathbf{u} = (1, \xi, \xi^2)$ for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi) : \mathbb{Q}] > 2$. Suppose that, for some c > 0,

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-1/\gamma}$

admits a non-zero solution $\mathbf{x} \in \mathbb{Z}^3$ for each large enough X.

Then, there exist an unbounded sequence $(\mathbf{y}_i)_{i\geq 1}$ of primitive points of \mathbb{Z}^3 such that, for each large enough *i*,

- $\|\mathbf{y}_{i+1}\| \asymp \|\mathbf{y}_i\|^{\gamma}$ and $\|\Delta \mathbf{y}_i\| \asymp \|\mathbf{y}_i \wedge \mathbf{u}\| \asymp \|\mathbf{y}_i\|^{-1}$,
- $|\det(\mathbf{y}_i)| \asymp 1$,
- $\mathbf{y}_{i-1}, \mathbf{y}_i, \mathbf{y}_{i+1}$ are linearly independent.

The polynomial map Ξ

We define a polynomial map $\Xi:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}^3$ by

$$\Xi(\mathbf{x},\mathbf{y}) = (\det(\mathbf{x}^-,\mathbf{y}^+) - \det(\mathbf{x}^+,\mathbf{y}^-))\mathbf{x} - \det(\mathbf{x})\mathbf{y}.$$

where
$$det(\mathbf{x}) := det(\mathbf{x}^-, \mathbf{x}^+) = \begin{vmatrix} x_0 & x_1 \\ x_1 & x_2 \end{vmatrix}$$
.

Algebraic properties

(i) det(
$$\Xi(\mathbf{x}, \mathbf{y})$$
) = det(\mathbf{x})² det(\mathbf{y}),
(ii) $\Xi(\mathbf{x}, \Xi(\mathbf{x}, \mathbf{y}))$ = det(\mathbf{x})² \mathbf{y} .

Analytic properties

(i)
$$\|\Xi(\mathbf{x}, \mathbf{y})\| \ll \|\mathbf{x}\|^2 \|\Delta \mathbf{y}\| + \|\mathbf{y}\| \|\Delta \mathbf{y}\|^2$$
,
(ii) $\|\Delta \Xi(\mathbf{x}, \mathbf{y})\| \ll (\|\mathbf{x}\| \|\Delta \mathbf{y}\| + \|\mathbf{y}\| \|\Delta \mathbf{x}\|) \|\Delta \mathbf{x}\|$

Application

We find

• $\|\Xi(\mathbf{y}_i, \mathbf{y}_{i+1})\| \ll \|\mathbf{y}_{i-2}\|$ and $\|\Delta \Xi(\mathbf{y}_i, \mathbf{y}_{i+1})\| \ll \|\mathbf{y}_{i-2}\|^{-1}$, and then

- $|\det(\mathbf{y}_{i-2}, \mathbf{y}_{i-1}, \Xi(\mathbf{y}_i, \mathbf{y}_{i+1}))| \ll \|\mathbf{y}_{i-4}\|^{-1} \to 0$,
- $|\det(\mathbf{y}_{i-3},\mathbf{y}_{i-2},\Xi(\mathbf{y}_i,\mathbf{y}_{i+1}))| \ll \|\mathbf{y}_{i-3}\|^{-1} \rightarrow 0.$

Thus, for each large enough i,

 $det(\mathbf{y}_{i-2}, \mathbf{y}_{i-1}, \Xi(\mathbf{y}_i, \mathbf{y}_{i+1})) = 0 \quad \text{and} \quad det(\mathbf{y}_{i-3}, \mathbf{y}_{i-2}, \Xi(\mathbf{y}_i, \mathbf{y}_{i+1})) = 0,$ and so $\Xi(\mathbf{y}_i, \mathbf{y}_{i+1}) \propto \mathbf{y}_{i-2}$. As $\Xi(\mathbf{y}_i, \mathbf{y}_{i+1}) \neq 0$, we find

$$\Xi(\mathbf{y}_i, \mathbf{y}_{i-2}) \propto \Xi(\mathbf{y}_i, \Xi(\mathbf{y}_i, \mathbf{y}_{i+1})) \propto \mathbf{y}_{i+1},$$

which determines the primitive point \mathbf{y}_{i+1} as a function of \mathbf{y}_{i-2} and \mathbf{y}_i up to multiplication by ± 1 .

Solution to the inverse problem

Choose linearly independent $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3 \in \mathbb{Z}^3$ with $det(\mathbf{y}_i) = 1$ for j = 1, 2, 3. Then the sequence $(\mathbf{y}_i)_{i \geq 1}$ given recursively by

$$\mathbf{y}_{i+1} = \Xi(\mathbf{y}_i, \mathbf{y}_{i-2})$$
 for each $i \ge 3$

belongs to \mathbb{Z}^3 . For each $i \ge 1$, it has det $(\mathbf{y}_i) = 1$ and $(\mathbf{y}_i, \mathbf{y}_{i+1}, \mathbf{y}_{i+2})$ is a linearly independent triple.

For an appropriate choice of $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$, the image of \mathbf{y}_i in $\mathbb{P}^2(\mathbb{R})$ converges to the class of $(1, \xi, \xi^2)$ for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi) : \mathbb{Q}] > 2$ and $\widehat{\lambda}_2(\xi) = 1/\gamma$.

VI. Approximation to $(1, \xi, \xi^2, \xi^3)$

Let $\lambda = \lambda_3 = 0.4245... =$ the positive root of $T^2 - \gamma^3 T + \gamma$.

Hypothesis

Let $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi) : \mathbb{Q}] > 3$. Set $\mathbf{u} = (1, \xi, \xi^2, \xi^3)$ and suppose that there exists c > 0 such that the inequalities

$$\|\mathbf{x}\| \leq X$$
 and $\|\mathbf{x} \wedge \mathbf{u}\| \leq c X^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^3$ for each large enough X.

We want to show that this leads to a contradiction. The proof can be adapted to shows that $\hat{\lambda}_3(\xi) \leq \lambda_3 - \epsilon$ for some small explicit ϵ (not computed).

First main tool : the map C

For each point $\mathbf{x} = (x_0, x_1, x_2, x_3) \in \mathbb{R}^4$, we define $\mathbf{x}^- = (x_0, x_1, x_2), \quad \mathbf{x}^+ = (x_1, x_2, x_3) \text{ and } \Delta \mathbf{x} = \mathbf{x}^+ - \xi \mathbf{x}^-.$ Then, $\|\Delta \mathbf{x}\| \simeq \|\mathbf{x} \wedge \mathbf{u}\|.$

For any
$$\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^4$$
,
• $C(\mathbf{x}, \mathbf{y}) := (\det(\mathbf{x}^-, \mathbf{x}^+, \mathbf{y}^-), \det(\mathbf{x}^-, \mathbf{x}^+, \mathbf{y}^+)) \in \mathbb{R}^2$ satisfies
 $\|C(\mathbf{x}, \mathbf{y})\| \ll \|\mathbf{x}\| \|\Delta \mathbf{x}\| \|\Delta \mathbf{y}\| + \|\mathbf{y}\| \|\Delta \mathbf{x}\|^2$
 $\|\Delta C(\mathbf{x}, \mathbf{y})\| \ll \|\mathbf{x}\| \|\Delta \mathbf{x}\| \|\Delta \mathbf{y}\|.$
• $\mathbf{w} := C(\mathbf{x}, \mathbf{y})^- \mathbf{z}^+ - C(\mathbf{x}, \mathbf{y})^+ \mathbf{z}^- \in \mathbb{R}^3$ satisfies
 $\|\mathbf{w}\| \ll \|C(\mathbf{x}, \mathbf{y})\| \|\Delta \mathbf{z}\| + \|\mathbf{z}\| \|\Delta C(\mathbf{x}, \mathbf{y})\|$
 $\|\Delta \mathbf{w}\| \ll \|C(\mathbf{x}, \mathbf{y})\| \|\Delta \mathbf{z}\|.$

Non-vanishing results

Let $(\mathbf{x}_i)_{i\geq 1}$ denote a sequence of minimal points for ξ in \mathbb{Z}^4 .

For each sufficiently large *i*,

- Davenport and Schmidt 1969 : V_i := ⟨x_i⁻, x_i⁺⟩_ℝ ⊆ ℝ³ has dimension 2 (uses λ > 1/3),
- **R. 2008 :** $V_i \neq V_{i+1}$ (uses $\lambda > \sqrt{2} 1 \cong 0.4142$),

thus

$$C(\mathbf{x}_i, \mathbf{x}_{i+1}) \neq 0$$
 and $C(\mathbf{x}_{i+1}, \mathbf{x}_i) \neq 0$.

Non-vanishing results

Let $(\mathbf{x}_i)_{i\geq 1}$ denote a sequence of minimal points for ξ in \mathbb{Z}^4 .

For each sufficiently large *i*,

- Davenport and Schmidt 1969 : V_i := ⟨x_i⁻, x_i⁺⟩_ℝ ⊆ ℝ³ has dimension 2 (uses λ > 1/3),
- **R. 2008 :** $V_i \neq V_{i+1}$ (uses $\lambda > \sqrt{2} 1 \cong 0.4142$),

thus

$$C(\mathbf{x}_i, \mathbf{x}_{i+1}) \neq 0$$
 and $C(\mathbf{x}_{i+1}, \mathbf{x}_i) \neq 0$.

In particular, this gives $1 \le \|C(\mathbf{x}_i, \mathbf{x}_{i-1})\|$ which yields

$$\|\mathbf{x}_{i+1}\| \ll \|\mathbf{x}_i\|^{ heta}$$
 where $heta = rac{1-\lambda}{\lambda}$.

In terms of a dual 4-system \mathbf{P}^* that approximates $\mathbf{L}^*_{\mathbf{u}}$, we find

$$2P_1^*(q) + P_2^*(q) \ge 2q + \mathcal{O}(1).$$

First reduction

Using the above, we can argue in two ways

- we can work with minimal points only using Schmidt's height inequalities for subspaces spanned by consecutive minimal points
- or we can use a dual 4-system \mathbf{P}^* with $\|\mathbf{L}_{\mathbf{u}}^* \mathbf{P}^*\| < \infty$.

Then, there exist an unbounded sequence $(\mathbf{y}_i)_{i\geq 1}$ of primitive points of \mathbb{Z}^4 such that, for each large enough *i*,

- $|\det(\mathbf{y}_{2i-2}, \mathbf{y}_{2i-1}, \mathbf{y}_{2i}, \mathbf{y}_{2i+1})| \asymp 1$ and $\det(\mathbf{y}_{2i-3}, \mathbf{y}_{2i-2}, \mathbf{y}_{2i-1}, \mathbf{y}_{2i}) = 0$,
- $\|C(\mathbf{y}_{2i}, \mathbf{y}_{2i-1})\| \asymp 1$,
- $\|\mathbf{y}_{2i}\| \asymp \|\mathbf{y}_{2i-1}\|^{\gamma/\theta}$ and $\|\mathbf{y}_{2i+1}\| \asymp \|\mathbf{y}_{2i}\|^{\theta}$,
- $\|\Delta \mathbf{y}_{2i-1}\| \asymp \|\mathbf{y}_{2i}\|^{-\lambda}$ and $\|\Delta \mathbf{y}_{2i}\| \asymp \|\mathbf{y}_{2i+1}\|^{-\lambda}$.

Second main tool : the maps Ψ_\pm

For each sign ϵ among $\{-,+\}$, we define $\Psi_{\epsilon} \colon (\mathbb{R}^4)^3 \to \mathbb{R}^4$ by

$$\Psi_{\epsilon}(\mathbf{x},\mathbf{y},\mathbf{z}) = C(\mathbf{y},\mathbf{z})^{\epsilon}\mathbf{x} + E(\mathbf{y},\mathbf{z},\mathbf{x})^{\epsilon}\mathbf{y} - C(\mathbf{y},\mathbf{x})^{\epsilon}\mathbf{z}$$

where $E(\mathbf{y}, \mathbf{z}, \mathbf{x})$ is the unique 3-linear map, symmetric in its first two arguments, such that $E(\mathbf{y}, \mathbf{y}, \mathbf{x}) = 2C(\mathbf{y}, \mathbf{x})$.

General estimates imply that the integer

$$\det(\mathbf{y}_{2i-2}, \mathbf{y}_{2i-1}, \mathbf{y}_{2i}, \Psi_{\epsilon}(\mathbf{y}_{2i}, \mathbf{y}_{2i+1}, \mathbf{y}_{2i+2}))$$

vanishes for any sign ϵ if *i* is large enough. Then algebraic considerations show the existence of non-zero rational numbers c_i and t_i with bounded numerator and denominator such that

1)
$$C(\mathbf{y}_{2i+1}, \mathbf{y}_{2i+2}) = t_i C(\mathbf{y}_{2i}, \mathbf{y}_{2i+1}),$$

2)
$$C(\mathbf{y}_{2i+2},\mathbf{y}_{2i+1}) = c_i t_i C(\mathbf{y}_{2i},\mathbf{y}_{2i-1}),$$

3) $\det(C(\mathbf{y}_{2i+2},\mathbf{y}_{2i}), C(\mathbf{y}_{2i},\mathbf{y}_{2i-1}) = c_i^2 \det(C(\mathbf{y}_{2i-1},\mathbf{y}_{2i}), C(\mathbf{y}_{2i},\mathbf{y}_{2i-1})).$

Final contradiction

• The condition 2), namely

$$C(\mathbf{y}_{2i+2},\mathbf{y}_{2i+1})=c_it_iC(\mathbf{y}_{2i},\mathbf{y}_{2i-1}),$$

implies that each $C(\mathbf{y}_{2i}, \mathbf{y}_{2i-1})$ with *i* large enough is a bounded integer multiple of some fixed primitive integer point of \mathbb{Z}^2 .

Final contradiction

• The condition 2), namely

$$C(\mathbf{y}_{2i+2},\mathbf{y}_{2i+1})=c_it_iC(\mathbf{y}_{2i},\mathbf{y}_{2i-1}),$$

implies that each $C(\mathbf{y}_{2i}, \mathbf{y}_{2i-1})$ with *i* large enough is a bounded integer multiple of some fixed primitive integer point of \mathbb{Z}^2 .

• The condition 3), namely

$$\det(C(\mathbf{y}_{2i+2},\mathbf{y}_{2i}),C(\mathbf{y}_{2i},\mathbf{y}_{2i-1})=c_i^2\det(C(\mathbf{y}_{2i-1},\mathbf{y}_{2i}),\ C(\mathbf{y}_{2i},\mathbf{y}_{2i-1})),$$

implies that

$$\|C(\mathbf{y}_{2i-1},\mathbf{y}_{2i})\| \ll \|C(\mathbf{y}_{2i+2},\mathbf{y}_{2i})\| \ll \|\mathbf{y}_{2i}\|^{\gamma(1-\lambda\theta\gamma)=0.1113...}$$

which is much better than the standard estimate

$$\|C(\mathbf{y}_{2i-1},\mathbf{y}_{2i})\| \ll \|\mathbf{y}_{2i}\|^{1-2\lambda=0.1509...}$$

With some additional work, this leads to a contradiction.

Similarities with the case n = 2

Although the upper bound $\widehat{\lambda}_3(\xi) \leq \lambda_3 = 0.424506...$ can be improved, the analysis of the two cases have similarities.

- Both yield that L^{*}_u is approximated by a self-similar dual *n*-system P^{*} with ratio γ, the golden ratio.
- In both cases, we have a subsequence (y_i)_{i≥1} of the sequence of minimal points which realizes the successive minima of C^{*}_u(q).
- There are bounded quantities namely det(y_i) for n = 2, and C(y_{2i}, y₂₋₁) for n = 3.
- There is also a polynomial map $\Xi\colon (\mathbb{R}^4)^3\to \mathbb{R}^4$ with similar properties, given by

$$\begin{aligned} \Xi(\mathbf{x},\mathbf{y},\mathbf{z}) &= C(\mathbf{z},\mathbf{x})^{-}\Psi_{+}(\mathbf{y},\mathbf{x},\mathbf{z}) - C(\mathbf{z},\mathbf{x})^{+}\Psi_{-}(\mathbf{y},\mathbf{x},\mathbf{z}) \\ &= -\det(E(\mathbf{x},\mathbf{z},\mathbf{y}),C(\mathbf{z},\mathbf{x}))\mathbf{x} - \det(C(\mathbf{x},\mathbf{z}),C(\mathbf{z},\mathbf{x}))\mathbf{y} \\ &+ \det(C(\mathbf{x},\mathbf{y}),C(\mathbf{z},\mathbf{x}))\mathbf{z}. \end{aligned}$$

Properties of Ξ

We can recover z from $\Xi(x, y, z)$ via the formula

$$\Xi(\mathbf{x}, \mathbf{z}, \Xi(\mathbf{x}, \mathbf{y}, \mathbf{z})) = \det(C(\Xi(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \Xi(\mathbf{x}, \mathbf{y}, \mathbf{z}))) \mathbf{z}.$$

We also have a factorization for the determinant on the right.

•
$$C(\Xi(\mathbf{x},\mathbf{y},\mathbf{z}),\mathbf{x}) = \det(C(\mathbf{z},\mathbf{x}),C(\mathbf{z},\mathbf{y}))\det(C(\mathbf{x},\mathbf{y}),C(\mathbf{x},\mathbf{z}))C(\mathbf{x},\mathbf{z}),$$

•
$$C(\mathbf{x}, \Xi(\mathbf{x}, \mathbf{y}, \mathbf{z})) = \det(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z}))C(\mathbf{z}, \mathbf{x}),$$

So,
$$\det(C(\Xi(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \Xi(\mathbf{x}, \mathbf{y}, \mathbf{z})))$$

= $\det(C(\mathbf{z}, \mathbf{x}), C(\mathbf{z}, \mathbf{y})) \det(C(\mathbf{x}, \mathbf{y}), C(\mathbf{x}, \mathbf{z}))^2 \det(C(\mathbf{x}, \mathbf{z}), C(\mathbf{z}, \mathbf{x}))$

Properties of Ξ

We can recover z from $\Xi(x, y, z)$ via the formula

$$\Xi(\mathbf{x}, \mathbf{z}, \Xi(\mathbf{x}, \mathbf{y}, \mathbf{z})) = \det(C(\Xi(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}), C(\mathbf{x}, \Xi(\mathbf{x}, \mathbf{y}, \mathbf{z}))) \mathbf{z}.$$

We also have a factorization for the determinant on the right.

Assuming that $\lambda \cong 0.4245$, general estimates imply that

$$\det(\mathbf{y}_{2i-6}, \mathbf{y}_{2i-5}, \mathbf{y}_{2i-4}, \Xi(\mathbf{y}_{2i}, \mathbf{y}_{2i+1}, \mathbf{y}_{2i+2})) = 0$$

for each large enough *i*, a polynomial relation of degree 10 in 24 variables.

VII. Relevant dual 4-systems

Suppose that

$$\widehat{\lambda}_3(\xi)>\sqrt{2}-1\cong 0.4142$$
 for some $\xi\in\mathbb{R}$ with $[\mathbb{Q}(\xi):\mathbb{Q}]>3.$ We set

$$\mathbf{u}=(1,\xi,\xi^2,\xi^3)$$

and choose a dual 4-system P^* for which $\boldsymbol{L}_u^*-P^*$ is bounded. Then,

$$\lim_{q\to\infty} P_3^*(q) - P_1^*(q) = \infty \quad \text{and} \quad \lim_{q\to\infty} P_4^*(q) - P_2^*(q) = \infty.$$

VII. Relevant dual 4-systems

Suppose that

$$\widehat{\lambda}_3(\xi) > \sqrt{2} - 1 \cong 0.4142$$

for some $\xi \in \mathbb{R}$ with $[\mathbb{Q}(\xi) : \mathbb{Q}] > 3$. We set
 $\mathbf{u} = (1, \xi, \xi^2, \xi^3)$

and choose a dual 4-system \mathbf{P}^* for which $\mathbf{L}^*_{\mathbf{u}} - \mathbf{P}^*$ is bounded. Then,

$$\lim_{q\to\infty} P_3^*(q) - P_1^*(q) = \infty \quad \text{and} \quad \lim_{q\to\infty} P_4^*(q) - P_2^*(q) = \infty.$$

Moreover, if $P_2^*(r) = P_3^*(r)$ and $P_3^*(s) = P_4^*(s)$ for some r < s, then we have $P_1^*(t) = P_2^*(t)$ for some t with r < t < s.

Consequence of the last assertion

Suppose that $t_0 < t_1$ are consecutive points at which P_1^* and P_2^* coincide. Suppose also that there is a point *r* between t_0 and t_1 where P_3^* and P_4^* coincide. Then the combined graph of \mathbf{P}^* over $[t_0, t_1]$ takes the form

