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Theorem (Davenport and Schmidt, 1969)

Let £ € R s. t. 1,£,€2 are Q-linearly independent. There exists a
constant ¢ = c(§) > 0 s. t.

Ixo| < X, |x0€ —x1| < XV %82 — x| < XY

has no non-zero solution x = (xg, x1,x2) € Z3 for arbitrarily large
values of X.
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Theorem (Davenport and Schmidt, 1969)

Let £ € R s. t. 1,£,€2 are Q-linearly independent. There exists a
constant ¢ = c(§) > 0 s. t.

Ixol < X, |x0f —x1| < X7V |x0€% — x| < XY

has no non-zero solution x = (xo, x1,x2) € Z3 for arbitrarily large
values of X.

A

By Jarnik’s transference principle, this is equivalent to

Corollary

There exists a constant ¢ = c(§) > 0 s. t.
o +x€ + 382 <X, x| <X, [ <X

has no non-zero solution x = (xo,x1,x2) € Z3 for arbitrarily large
values of X.

v
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Corollary (D.& S., 1969)

There are infinitely many algebraic integers . of degree < 3 over Q
st € —a] < H(a)™.
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Corollary (D.& S., 1969)

There are infinitely many algebraic integers . of degree < 3 over Q
st € —a] < H(a)™.

e Bugeaud-Teulié (2000): may require deg(a) = 3.
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Corollary (D.& S., 1969)

There are infinitely many algebraic integers . of degree < 3 over Q
st € —a] < H(a)™.

e Bugeaud-Teulié (2000): may require deg(a) = 3.
@ Teulié (2001): also true with algebraic units of degree 4 and
norm 1
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Corollary (D.& S., 1969)

There are infinitely many algebraic integers . of degree < 3 over Q
st € —a] < H(a)™.

Bugeaud-Teulié (2000): may require deg(a) = 3.
Teulié (2001): also true with algebraic units of degree 4 and
norm 1

Teulié (2002): p-adic versions
Bel : replaces Q by a number field
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Corollary (D.& S., 1969)
There are infinitely many algebraic integers . of degree < 3 over Q
st € —a] < H(a)™.

e Bugeaud-Teulié (2000): may require deg(a) = 3.

@ Teulié (2001): also true with algebraic units of degree 4 and
norm 1

e Teulié (2002): p-adic versions

@ Bel : replaces Q by a number field

Corollary (Bugeaud & Laurent, 2005)

Let 6 € R. There are co-many Q € Z[T]<2 s. t.

16— Q)| < |QI™.
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Theorem (2003)

There exists £ € R with 1,&,£% Q-lin. indep. s. t., for an
appropriate constant ¢ = c(&) > 0, the system

ol < X, |x0f — x| < X7, [x8% — x| < XM

has a non-zero solution x = (xg, x1,%2) € Z3 for each X > 1.
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Theorem (2003)

There exists £ € R with 1,&,£% Q-lin. indep. s. t., for an
appropriate constant ¢ = c(&) > 0, the system

ol < X, |x0f — x| < X7, [x8% — x| < XM

has a non-zero solution x = (xg, x1,%2) € Z3 for each X > 1.

@ Such a number ¢ is called extremal.
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Theorem (2003)

There exists £ € R with 1,&,£% Q-lin. indep. s. t., for an
appropriate constant ¢ = c(&) > 0, the system

ol < X, |x0f — x| < X7, [x8% — x| < XM

has a non-zero solution x = (xg, x1,%2) € Z3 for each X > 1.

@ Such a number ¢ is called extremal.
o Their set is a countable subset of R \ Q.
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Theorem (2003)

There exists £ € R with 1,&,£% Q-lin. indep. s. t., for an
appropriate constant ¢ = c(&) > 0, the system

ol < X, |x0f — x| < X7, [x8% — x| < XM

has a non-zero solution x = (xg, x1,%2) € Z3 for each X > 1.

@ Such a number ¢ is called extremal.
@ Their set is a countable subset of R\ Q.
@ In the p-adic case:

Zelo, Bel: the exponent is optimal

Is there an analog of the notion of extremal number?
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e ¢=1[0,1,2,1,1,2,1,1,2,2,...] is extremal.

Damien Roy Some recent progress on Diophantine approximation in small deg



Example
e ¢=1[0,1,2,1,1,2,1,1,2,2,...] is extremal.

o if £ is extremal, then SERD

cE+d
(i Z) € GL2(Q).

is also extremal for any
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e ¢=1[0,1,2,1,1,2,1,1,2,2,...] is extremal.

. aé+b
o if £ is extremal, then ct1d
a b

@ Bugeaud-Laurent (2005): Other examples of numbers & with
Gsim(1,€,€2) > 1/2 by looking at Sturmian continued
fractions.

is also extremal for any
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e ¢=1[0,1,2,1,1,2,1,1,2,2,...] is extremal.
aé+b
cE+d

o if £ is extremal, then
a b

@ Bugeaud-Laurent (2005): Other examples of numbers & with
Gsim(1,€,€2) > 1/2 by looking at Sturmian continued
fractions.

e Fischler (2005, 2006): link with the density of palindromes in
infinite words and a complicated exponent

is also extremal for any
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e ¢=1[0,1,2,1,1,2,1,1,2,2,...] is extremal.
aé+b
cE+d

o if £ is extremal, then

(i Z) € GL2(Q).

@ Bugeaud-Laurent (2005): Other examples of numbers & with
Gsim(1,€,€2) > 1/2 by looking at Sturmian continued
fractions.

e Fischler (2005, 2006): link with the density of palindromes in
infinite words and a complicated exponent

is also extremal for any

Definition

Identify any x = (xo, x1, x2) with (XO Xl), and set
X1 X2

det(x) = xox2 — x2.
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Caracterization

Theorem (R. 2004)

A real number £ is extremal

<= there exists a sequence of primitive points (X;)j>1 in 73 and a
matrix M € Matpx2(Z) with *M # +M such that, upon
putting X; = ||x;||, we have
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Caracterization

Theorem (R. 2004)

A real number £ is extremal

<= there exists a sequence of primitive points (X;)j>1 in 73 and a
matrix M € Matpx2(Z) with *M # +M such that, upon
putting X; = ||x;||, we have

M ifi is even,

1) Xjy2 o Xj41Mip1x; where M; = {tM .
else,
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Caracterization

Theorem (R. 2004)
A real number £ is extremal

<= there exists a sequence of primitive points (X;)j>1 in 73 and a
matrix M € Matpx2(Z) with *M # +M such that, upon
putting X; = ||x;||, we have

M if i is even,
M else,

2) Xiy1 =< X! and limj_ Xj = o0,

3) II(&, = Dxill = X7,

1) Xj42 X X,'_|_1M,'_|_1X,' where M,' = {
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Caracterization

Theorem (R. 2004)
A real number £ is extremal

<= there exists a sequence of primitive points (X;)j>1 in 73 and a
matrix M € Matpx2(Z) with *M # +M such that, upon
, we have

putting X; = ||x;

M ifii ,
1) Xj4o X Xi+1Mi+]_X,' where Mi _ IT 1 IS even
EM  else,
2) Xiy1 < X,7 and lim;_ s X; = oo,
3) 1€, —1)x| < lel,
4) 1 < [det(x;)| < 1.
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An example for W. Schmidt's talk

o Consider the related parametric family of convex bodies

K(g): x| <€, |xé—xi|<e 9 [x& —x|<e
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An example for W. Schmidt's talk

o Consider the related parametric family of convex bodies
K(q) : |x0] < €%, |xof —x1| < e 9, |x€% —xp| < e 9.
e For each x = (xp, x1,x2) € Z3\ {0}, we have
Mx(q) == inf{A > 0; x € AK(q)}
= max{e_quxo\, exo€ — x1l, eq\x0§2 — x2|}
and so

Ly, (q) := log \x;(q) = max{—2q + log Xj, g — log X;} + O(1).
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An example for W. Schmidt’s talk

o Consider the related parametric family of convex bodies
K(q): ol <€, [ —xi| <e 9, [x8® — x| <e79.
e For each x = (xp, x1,x2) € Z3\ {0}, we have
Mx(q) == inf{A > 0; x € AK(q)}
= max{e %9|x, e%|x0f — x1/, €9|x0E% — xo|}

and so

Ly, (q) := log \x;(q) = max{—2q + log Xj, g — log X;} + O(1).
@ Moreover, if % log Xi < g < %IogX;H, then

e e X

)\Xi—l(q) = E? )\Xi(q) - Yi’ )\Xi+1(q) - e2q

with product < 1. So e9/X;_1, €9/X; and X; 1/e%7 are
bounded multiples of the successive minima of K(q).
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Theorem (2004)
Let £ € R be extremal. There exists t > 0 such that

& — Z‘ > q 2(1+logq)~t for all g €Q, g>1.
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Theorem (2004)
Let £ € R be extremal. There exists t > 0 such that

° |£— g > q 2(1+logq)~t for all g €Q qg>1.
@ There is a sequence of quadratic numbers (c;)i>1 in R such
that

€ — aj| < H(ai)) 2" and H(ajz1) = H(a;)".

Any other quadratic o has |¢ — | > H(a)™*.
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Theorem (2004)
Let £ € R be extremal. There exists t > 0 such that

° |£— g > q 2(1+logq)~t for all g €Q qg>1.
@ There is a sequence of quadratic numbers (c;)i>1 in R such
that

€ — aj| < H(ai)) 2" and H(ajz1) = H(a;)".

Any other quadratic o has |¢ — | > H(a)™*.

Theorem (Adamczewski & Bugeaud (to appear))

For any integer d > 1 and any algebraic number o of degree < d,

we have
€ — a] > H(a)™Plelos3d)"(l1oglog 34)%}
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Markoff extremal numbers

Definition

v(€) == limsup,_, qllg€|| (Lagrange constant of &)
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Markoff extremal numbers

Definition

v(€) == limsup,_, qllg€|| (Lagrange constant of &)

Theorem (Markoff, 1880)

e v(R)N(1/3,00) is a discrete set bounded above by 1/~

Damien Roy Some recent progress on Diophantine approximation in small deg



Markoff extremal numbers

Definition

v(€) == limsup,_, qllg€|| (Lagrange constant of &)

Theorem (Markoff, 1880)

e v(R)N(1/3,00) is a discrete set bounded above by 1/~
o v(a)>1/3 = [Qlo): Q=2
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Markoff extremal numbers

Definition
v(€) == limsup,_, qllg€|| (Lagrange constant of &)

Theorem (Markoff, 1880)

e v(R)N(1/3,00) is a discrete set bounded above by 1/~
o v(a)>1/3 = [Qlo): Q=2

Let & be extremal and let («j)i>1 its associated sequence of best
quadratic approximations.

0 & = limy_ oo a2k and & := limy_ o ok41 are extremal
k—o0 Q2k +
numbers in the GL>(Q)-equivalence class of .
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Markoff extremal numbers

Definition
v(€) == limsup,_, qllg€|| (Lagrange constant of &)

Theorem (Markoff, 1880)
e v(R)N(1/3,00) is a discrete set bounded above by 1/~
o v(a)>1/3 = [Qlo): Q=2

Let & be extremal and let («j)i>1 its associated sequence of best
quadratic approximations.

0 & = limy_ oo a2k and & := limy_ o ok41 are extremal
k—o0 Q2k +
numbers in the GL>(Q)-equivalence class of .

o v(&) = v(¢) =v(¢")
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Markoff extremal numbers

Definition
v(€) == limsup,_, qllg€|| (Lagrange constant of &)

Theorem (Markoff, 1880)
e v(R)N(1/3,00) is a discrete set bounded above by 1/~
o v(a)>1/3 = [Qlo): Q=2

Let & be extremal and let («j)i>1 its associated sequence of best
quadratic approximations.

0 & = limy_ oo a2k and & := limy_ o ok41 are extremal
k—o0 Q2k +
numbers in the GL>(Q)-equivalence class of .

o v(&) = v(¢) =v(¢")
o (&) =1/3 <= v(«aj) > 1/3 for each sufficiently large i.
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Approximation to Markoff extremal numbers (with D. Zelo)

Fix an extremal number ¢ with conjugates & £ 3.

Let d € {3,4,5} and let R € Z[T] be polynomial of degree d. For
any Q € Z[T]<a, we have [R(£) — Q(§)| > [ Q™.
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Approximation to Markoff extremal numbers (with D. Zelo)

Fix an extremal number ¢ with conjugates & £ 3.

Let d € {3,4,5} and let R € Z[T] be polynomial of degree d. For
any Q € Z[T]<a, we have [R(£) — Q(§)| > [ Q™.

| \

Corollary

For any root o of a polynomial of the form
T9+aT?2 +bT + c € Z[T], we have |¢ — a| > H(a) 7L

A\
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Approximation to Markoff extremal numbers (with D. Zelo)

Fix an extremal number ¢ with conjugates & £ 3.

Let d € {3,4,5} and let R € Z[T] be polynomial of degree d. For
any Q € Z[T]<2, we have |[R(§) — Q(&)] > || Q|-

v
Corollary

For any root o of a polynomial of the form
T9+aT?2 +bT + c € Z[T], we have |¢ — a| > H(a) 7L

There are infinitely many o which are roots of a polynomial of the
form 2T® 4+ aT? + bT + ¢ € Z|T] and satisfy

€ — o] < H(a) 7 L(loglog H(a)) ™.

v
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On a question of Cam Stewart (with S. Lozier)

Let ¢ € R such that £ = (1,£,&3) is Q-linearly independent. Then,
we have

Bsim(€) < 0.7115 ...
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