Recent progress on Diophantine approximation in small degree

Damien Roy

University of Ottawa

June 2, 2010

Diophantine approximation and analytic number theory : a tribute to Cam Stewart BIRS, May 30 – June 4, 2010

4 3 5 4 3 5

Let

$$\gamma := rac{1+\sqrt{5}}{2} = 1 + rac{1}{\gamma} = 1.618\dots$$

Theorem (Davenport and Schmidt, 1969)

Let $\xi \in \mathbb{R}$ s. t. $1, \xi, \xi^2$ are \mathbb{Q} -linearly independent. There exists a constant $c = c(\xi) > 0$ s. t.

$$|x_0| \leq X$$
, $|x_0\xi - x_1| \leq cX^{-1/\gamma}$, $|x_0\xi^2 - x_2| \leq cX^{-1/\gamma}$

has no non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for arbitrarily large values of X.

Theorem (Davenport and Schmidt, 1969)

Let $\xi \in \mathbb{R}$ s. t. $1, \xi, \xi^2$ are \mathbb{Q} -linearly independent. There exists a constant $c = c(\xi) > 0$ s. t.

$$|x_0| \le X$$
, $|x_0\xi - x_1| \le cX^{-1/\gamma}$, $|x_0\xi^2 - x_2| \le cX^{-1/\gamma}$

has no non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for arbitrarily large values of X.

By Jarník's transference principle, this is equivalent to

Corollary

There exists a constant $c = c(\xi) > 0$ s. t.

$$|x_0 + x_1\xi + x_2\xi^2| \le cX^{-\gamma^2}, \quad |x_1| \le X, \quad |x_2| \le X$$

has no non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for arbitrarily large values of X.

There are infinitely many algebraic integers α of degree \leq 3 over \mathbb{Q} s. t. $|\xi - \alpha| \ll H(\alpha)^{-\gamma^2}$.

伺 と く ヨ と く ヨ と

There are infinitely many algebraic integers α of degree ≤ 3 over \mathbb{Q} s. t. $|\xi - \alpha| \ll H(\alpha)^{-\gamma^2}$.

• Bugeaud-Teulié (2000): may require deg(α) = 3.

伺 と く ヨ と く ヨ と … ヨ

There are infinitely many algebraic integers α of degree ≤ 3 over \mathbb{Q} s. t. $|\xi - \alpha| \ll H(\alpha)^{-\gamma^2}$.

- Bugeaud-Teulié (2000): may require $deg(\alpha) = 3$.
- Teulié (2001): also true with algebraic units of degree 4 and norm 1

伺 と く ヨ と く ヨ と

There are infinitely many algebraic integers α of degree ≤ 3 over \mathbb{Q} s. t. $|\xi - \alpha| \ll H(\alpha)^{-\gamma^2}$.

- Bugeaud-Teulié (2000): may require deg(α) = 3.
- Teulié (2001): also true with algebraic units of degree 4 and norm 1
- Teulié (2002): p-adic versions

There are infinitely many algebraic integers α of degree ≤ 3 over \mathbb{Q} s. t. $|\xi - \alpha| \ll H(\alpha)^{-\gamma^2}$.

- Bugeaud-Teulié (2000): may require deg(α) = 3.
- Teulié (2001): also true with algebraic units of degree 4 and norm 1
- Teulié (2002): *p*-adic versions
- $\bullet~$ Bel : replaces ${\mathbb Q}$ by a number field

There are infinitely many algebraic integers α of degree ≤ 3 over \mathbb{Q} s. t. $|\xi - \alpha| \ll H(\alpha)^{-\gamma^2}$.

- Bugeaud-Teulié (2000): may require deg(α) = 3.
- Teulié (2001): also true with algebraic units of degree 4 and norm 1
- Teulié (2002): p-adic versions
- $\bullet~$ Bel : replaces ${\mathbb Q}$ by a number field

Corollary (Bugeaud & Laurent, 2005)

Let $\theta \in \mathbb{R}$. There are ∞ -many $Q \in \mathbb{Z}[T]_{\leq 2}$ s. t.

 $|\theta - Q(\xi)| \ll \|Q\|^{-\gamma}.$

伺 ト イ ヨ ト イ ヨ ト

There exists $\xi \in \mathbb{R}$ with $1, \xi, \xi^2 \mathbb{Q}$ -lin. indep. s. t., for an appropriate constant $c = c(\xi) > 0$, the system

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq cX^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq cX^{-1/\gamma}$$

has a non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for each $X \ge 1$.

伺 ト く ヨ ト く ヨ ト

There exists $\xi \in \mathbb{R}$ with $1, \xi, \xi^2$ Q-lin. indep. s. t., for an appropriate constant $c = c(\xi) > 0$, the system

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq cX^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq cX^{-1/\gamma}$$

has a non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for each $X \ge 1$.

• Such a number ξ is called *extremal*.

There exists $\xi \in \mathbb{R}$ with $1, \xi, \xi^2$ Q-lin. indep. s. t., for an appropriate constant $c = c(\xi) > 0$, the system

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq cX^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq cX^{-1/\gamma}$$

has a non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for each $X \ge 1$.

- Such a number ξ is called *extremal*.
- Their set is a countable subset of $\mathbb{R} \setminus \overline{\mathbb{Q}}$.

There exists $\xi \in \mathbb{R}$ with $1, \xi, \xi^2 \mathbb{Q}$ -lin. indep. s. t., for an appropriate constant $c = c(\xi) > 0$, the system

$$|x_0| \leq X, \quad |x_0\xi - x_1| \leq cX^{-1/\gamma}, \quad |x_0\xi^2 - x_2| \leq cX^{-1/\gamma}$$

has a non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ for each $X \ge 1$.

- Such a number ξ is called *extremal*.
- Their set is a countable subset of $\mathbb{R} \setminus \overline{\mathbb{Q}}$.
- In the p-adic case:

Zelo, Bel: the exponent is optimal

Is there an analog of the notion of extremal number?

• $\xi = [0, 1, 2, 1, 1, 2, 1, 1, 2, 2, ...]$ is extremal.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

•
$$\xi = [0, 1, 2, 1, 1, 2, 1, 1, 2, 2, ...]$$
 is extremal.
• if ξ is extremal, then $\frac{a\xi + b}{c\xi + d}$ is also extremal for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q}).$

・ロト ・日・・日・・日・・ つくぐ

- $\xi = [0, 1, 2, 1, 1, 2, 1, 1, 2, 2, ...]$ is extremal. • if ξ is extremal, then $\frac{a\xi + b}{c\xi + d}$ is also extremal for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q}).$
- Bugeaud-Laurent (2005): Other examples of numbers ξ with $\hat{\omega}_{sim}(1,\xi,\xi^2) > 1/2$ by looking at Sturmian continued fractions.

- $\xi = [0, 1, 2, 1, 1, 2, 1, 1, 2, 2, ...]$ is extremal. • if ξ is extremal, then $\frac{a\xi + b}{c\xi + d}$ is also extremal for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q}).$
- Bugeaud-Laurent (2005): Other examples of numbers ξ with $\hat{\omega}_{sim}(1,\xi,\xi^2) > 1/2$ by looking at Sturmian continued fractions.
- Fischler (2005, 2006): link with the density of palindromes in infinite words and a complicated exponent

- $\xi = [0, 1, 2, 1, 1, 2, 1, 1, 2, 2, ...]$ is extremal. • if ξ is extremal, then $\frac{a\xi + b}{c\xi + d}$ is also extremal for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q}).$
- Bugeaud-Laurent (2005): Other examples of numbers ξ with $\hat{\omega}_{sim}(1,\xi,\xi^2) > 1/2$ by looking at Sturmian continued fractions.
- Fischler (2005, 2006): link with the density of palindromes in infinite words and a complicated exponent

Definition

Identify any
$$\mathbf{x} = (x_0, x_1, x_2)$$
 with $\begin{pmatrix} x_0 & x_1 \\ x_1 & x_2 \end{pmatrix}$, and set

$$det(\mathbf{x}) = x_0 x_2 - x_1^2.$$

A real number ξ is extremal

⇐⇒ there exists a sequence of primitive points $(\mathbf{x}_i)_{i\geq 1}$ in \mathbb{Z}^3 and a matrix $M \in Mat_{2\times 2}(\mathbb{Z})$ with ${}^tM \neq \pm M$ such that, upon putting $X_i = \|\mathbf{x}_i\|$, we have

伺 ト く ヨ ト く ヨ ト

A real number ξ is extremal

⇐⇒ there exists a sequence of primitive points $(\mathbf{x}_i)_{i\geq 1}$ in \mathbb{Z}^3 and a matrix $M \in Mat_{2\times 2}(\mathbb{Z})$ with ${}^tM \neq \pm M$ such that, upon putting $X_i = \|\mathbf{x}_i\|$, we have

1)
$$\mathbf{x}_{i+2} \propto \mathbf{x}_{i+1} M_{i+1} \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^t M & \text{else,} \end{cases}$

伺 ト く ヨ ト く ヨ ト

A real number ξ is extremal

⇐⇒ there exists a sequence of primitive points $(\mathbf{x}_i)_{i\geq 1}$ in \mathbb{Z}^3 and a matrix $M \in Mat_{2\times 2}(\mathbb{Z})$ with ${}^tM \neq \pm M$ such that, upon putting $X_i = \|\mathbf{x}_i\|$, we have

1)
$$\mathbf{x}_{i+2} \propto \mathbf{x}_{i+1} M_{i+1} \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^tM & \text{else,} \end{cases}$

2) $X_{i+1} \asymp X_i^{\gamma}$ and $\lim_{i \to \infty} X_i = \infty$, 3) $\|(\xi, -1)\mathbf{x}_i\| \asymp X_i^{-1}$,

伺 と く ヨ と く ヨ と …

A real number ξ is extremal

⇐⇒ there exists a sequence of primitive points $(\mathbf{x}_i)_{i\geq 1}$ in \mathbb{Z}^3 and a matrix $M \in Mat_{2\times 2}(\mathbb{Z})$ with ${}^tM \neq \pm M$ such that, upon putting $X_i = \|\mathbf{x}_i\|$, we have

1)
$$\mathbf{x}_{i+2} \propto \mathbf{x}_{i+1} M_{i+1} \mathbf{x}_i$$
 where $M_i = \begin{cases} M & \text{if } i \text{ is even,} \\ {}^tM & \text{else,} \end{cases}$

2)
$$X_{i+1} \asymp X_i^{\gamma}$$
 and $\lim_{i \to \infty} X_i = \infty$,
3) $\|(\xi, -1)\mathbf{x}_i\| \asymp X_i^{-1}$,

4)
$$1 \leq |\det(\mathbf{x}_i)| \ll 1$$
.

伺 ト く ヨ ト く ヨ ト

An example for W. Schmidt's talk

• Consider the related parametric family of convex bodies

 $K(q): |x_0| \leq e^{2q}, \quad |x_0\xi - x_1| \leq e^{-q}, \quad |x_0\xi^2 - x_2| \leq e^{-q}.$

◎ ▶ ▲ ∃ ▶ ▲ ∃ ▶ → 目 → のへで

An example for W. Schmidt's talk

• Consider the related parametric family of convex bodies
$$\begin{split} &\mathcal{K}(q):|x_0| \leq e^{2q}, \quad |x_0\xi - x_1| \leq e^{-q}, \quad |x_0\xi^2 - x_2| \leq e^{-q}. \end{split}$$
• For each $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$, we have $\begin{aligned} &\lambda_{\mathbf{x}}(q) := \inf\{\lambda > 0; \ \mathbf{x} \in \lambda \mathcal{K}(q)\} \\ &= \max\{e^{-2q}|x_0|, e^q|x_0\xi - x_1|, e^q|x_0\xi^2 - x_2|\} \end{split}$

and so

$$L_{\mathbf{x}_i}(q) := \log \lambda_{\mathbf{x}_i}(q) = \max\{-2q + \log X_i, q - \log X_i\} + \mathcal{O}(1).$$

An example for W. Schmidt's talk

• Consider the related parametric family of convex bodies
$$\begin{split} \mathcal{K}(q): |x_0| &\leq e^{2q}, \quad |x_0\xi - x_1| \leq e^{-q}, \quad |x_0\xi^2 - x_2| \leq e^{-q}. \end{split}$$
• For each $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$, we have $\begin{aligned} \lambda_{\mathbf{x}}(q) &:= \inf\{\lambda > 0 \, ; \, \mathbf{x} \in \lambda \mathcal{K}(q)\} \\ &= \max\{e^{-2q}|x_0|, e^q|x_0\xi - x_1|, e^q|x_0\xi^2 - x_2|\} \end{split}$

and so

$$L_{\mathbf{x}_i}(q) := \log \lambda_{\mathbf{x}_i}(q) = \max\{-2q + \log X_i, q - \log X_i\} + \mathcal{O}(1).$$

• Moreover, if $rac{2}{3}\log X_i \leq q < rac{2}{3}\log X_{i+1}$, then

$$\lambda_{\mathtt{x}_{i-1}}(q) symp rac{e^q}{X_{i-1}}, \quad \lambda_{\mathtt{x}_i}(q) symp rac{e^q}{X_i}, \quad \lambda_{\mathtt{x}_{i+1}}(q) symp rac{X_{i+1}}{e^{2q}}$$

with product ≈ 1 . So e^q/X_{i-1} , e^q/X_i and X_{i+1}/e^{2q} are bounded multiples of the successive minima of K(q).

Let
$$\xi \in \mathbb{R}$$
 be extremal. There exists $t \ge 0$ such that
• $\left| \xi - \frac{p}{q} \right| \gg q^{-2} (1 + \log q)^{-t}$ for all $\frac{p}{q} \in \mathbb{Q}$, $q \ge 1$

Let $\xi \in \mathbb{R}$ be extremal. There exists $t \geq 0$ such that

•
$$\left|\xi-\frac{p}{q}\right|\gg q^{-2}(1+\log q)^{-t} \text{ for all } \frac{p}{q}\in\mathbb{Q},\ q\geq 1$$

There is a sequence of quadratic numbers (α_i)_{i≥1} in ℝ such that

$$|\xi - \alpha_i| \ll H(\alpha_i)^{-2\gamma^2}$$
 and $H(\alpha_{i+1}) \asymp H(\alpha_i)^{\gamma}$.

Any other quadratic α has $|\xi - \alpha| \gg H(\alpha)^{-4}$.

伺 ト く ヨ ト く ヨ ト

Let $\xi \in \mathbb{R}$ be extremal. There exists $t \geq 0$ such that

•
$$\left|\xi-\frac{p}{q}\right|\gg q^{-2}(1+\log q)^{-t} \text{ for all } \frac{p}{q}\in\mathbb{Q},\ q\geq 1$$

There is a sequence of quadratic numbers (α_i)_{i≥1} in ℝ such that

$$|\xi - \alpha_i| \ll H(\alpha_i)^{-2\gamma^2}$$
 and $H(\alpha_{i+1}) \asymp H(\alpha_i)^{\gamma}$.

Any other quadratic α has $|\xi - \alpha| \gg H(\alpha)^{-4}$.

Theorem (Adamczewski & Bugeaud (to appear))

For any integer d \geq 1 and any algebraic number α of degree \leq d, we have

$$|\xi - \alpha| \ge H(\alpha)^{-\exp\{c(\log 3d)^2(\log \log 3d)^2\}}$$

伺 ト イ ヨ ト イ ヨ ト

Definition

$$u(\xi) := \limsup_{q o \infty} q \|q\xi\|$$
 (Lagrange constant of ξ)

A B + A B +

э

Definition

$$u(\xi):= {\sf lim}\,{\sf sup}_{q
ightarrow\infty}\,q\|q\xi\|\,\,({\sf Lagrange\,\,constant\,\,of}\,\,\xi)$$

Theorem (Markoff, 1880)

• $u(\mathbb{R}) \cap (1/3,\infty)$ is a discrete set bounded above by $1/\gamma$

A B + A B +

Definition

$$u(\xi):= \limsup_{q o\infty} q \|q\xi\| ext{ (Lagrange constant of } \xi)$$

Theorem (Markoff, 1880)

• $u(\mathbb{R}) \cap (1/3,\infty)$ is a discrete set bounded above by $1/\gamma$

•
$$\nu(\alpha) > 1/3 \implies [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$$

A B + A B +

Definition

$$u(\xi):= \limsup_{q o\infty} q \|q\xi\| ext{ (Lagrange constant of } \xi)$$

Theorem (Markoff, 1880)

• $u(\mathbb{R}) \cap (1/3,\infty)$ is a discrete set bounded above by $1/\gamma$

•
$$\nu(\alpha) > 1/3 \implies [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$$

Theorem

Let ξ be extremal and let $(\alpha_i)_{i\geq 1}$ its associated sequence of best quadratic approximations.

ξ' := lim_{k→∞} α_{2k} and ξ'' := lim_{k→∞} α_{2k+1} are extremal numbers in the GL₂(ℚ)-equivalence class of ξ.

Definition

$$u(\xi):= \limsup_{q o\infty} q \|q\xi\| ext{ (Lagrange constant of } \xi)$$

Theorem (Markoff, 1880)

• $u(\mathbb{R}) \cap (1/3,\infty)$ is a discrete set bounded above by $1/\gamma$

•
$$\nu(\alpha) > 1/3 \implies [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$$

Theorem

Let ξ be extremal and let $(\alpha_i)_{i\geq 1}$ its associated sequence of best quadratic approximations.

ξ' := lim_{k→∞} α_{2k} and ξ'' := lim_{k→∞} α_{2k+1} are extremal numbers in the GL₂(ℚ)-equivalence class of ξ.

•
$$\nu(\xi) = \nu(\xi') = \nu(\xi'')$$

Definition

$$u(\xi):= \limsup_{q o\infty} q \|q\xi\| ext{ (Lagrange constant of } \xi)$$

Theorem (Markoff, 1880)

• $u(\mathbb{R}) \cap (1/3,\infty)$ is a discrete set bounded above by $1/\gamma$

•
$$\nu(\alpha) > 1/3 \implies [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$$

Theorem

Let ξ be extremal and let $(\alpha_i)_{i\geq 1}$ its associated sequence of best quadratic approximations.

ξ' := lim_{k→∞} α_{2k} and ξ'' := lim_{k→∞} α_{2k+1} are extremal numbers in the GL₂(ℚ)-equivalence class of ξ.

•
$$\nu(\xi) = \nu(\xi') = \nu(\xi'')$$

• $\nu(\xi) = 1/3 \iff \nu(\alpha_i) > 1/3$ for each sufficiently large *i*.

Approximation to Markoff extremal numbers (with D. Zelo)

Fix an extremal number ξ with conjugates $\xi \pm 3$.

Theorem

Let $d \in \{3,4,5\}$ and let $R \in \mathbb{Z}[T]$ be polynomial of degree d. For any $Q \in \mathbb{Z}[T]_{\leq 2}$, we have $|R(\xi) - Q(\xi)| \gg ||Q||^{-\gamma}$.

Approximation to Markoff extremal numbers (with D. Zelo)

Fix an extremal number ξ with conjugates $\xi \pm 3$.

Theorem

Let $d \in \{3,4,5\}$ and let $R \in \mathbb{Z}[T]$ be polynomial of degree d. For any $Q \in \mathbb{Z}[T]_{\leq 2}$, we have $|R(\xi) - Q(\xi)| \gg ||Q||^{-\gamma}$.

Corollary

For any root α of a polynomial of the form $T^d + aT^2 + bT + c \in \mathbb{Z}[T]$, we have $|\xi - \alpha| \gg H(\alpha)^{-\gamma - 1}$.

伺 ト く ヨ ト く ヨ ト

Approximation to Markoff extremal numbers (with D. Zelo)

Fix an extremal number ξ with conjugates $\xi \pm 3$.

Theorem

Let $d \in \{3,4,5\}$ and let $R \in \mathbb{Z}[T]$ be polynomial of degree d. For any $Q \in \mathbb{Z}[T]_{\leq 2}$, we have $|R(\xi) - Q(\xi)| \gg ||Q||^{-\gamma}$.

Corollary

For any root α of a polynomial of the form $T^d + aT^2 + bT + c \in \mathbb{Z}[T]$, we have $|\xi - \alpha| \gg H(\alpha)^{-\gamma - 1}$.

Theorem

There are infinitely many α which are roots of a polynomial of the form $2T^6 + aT^2 + bT + c \in \mathbb{Z}[T]$ and satisfy

$$|\xi - \alpha| \ll H(\alpha)^{-\gamma - 1} (\log \log H(\alpha))^{-1}.$$

(人間) ト く ヨ ト く ヨ ト

On a question of Cam Stewart (with S. Lozier)

Theorem

Let $\xi \in \mathbb{R}$ such that $\underline{\xi} = (1, \xi, \xi^3)$ is \mathbb{Q} -linearly independent. Then, we have

 $\hat{\omega}_{sim}(\underline{\xi}) \leq 0.7115\ldots$

(*) *) *) *)