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1.1. Geometry of numbers

e A (Minkowski) convex body in R" is a compact convex
neighborhood C of 0 in R” with C = —C.

e For j=1,...,n, its j-th minimum, denoted \;(C) is the smallest
A > 0 such that AC contains at least j linearly independent elements
of Z".

[0<M(C) <+ < M(0)]
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e A (Minkowski) convex body in R" is a compact convex
neighborhood C of 0 in R” with C = —C.

e For j=1,...,n, its j-th minimum, denoted \;(C) is the smallest
A > 0 such that AC contains at least j linearly independent elements
of Z".

[0<M(C) <+ < M(0)]

Minkowski's second convex body theorem (1889)

% < M(C) - Mn(C)vol(C) < 27

[If vol(C) > 27, then A1(C) <1 and so CNZ" # {0}. |




1.2. Mahler’s dual and compound bodies
Mabhler (1939): Define the dual of C by

C*'={xeR"; |x-y|<1forallyeC}.

Then )\,‘(C*)A,H_l_,'(C) =1 (1 < I < n).




1.2. Mahler’s dual and compound bodies
Mabhler (1939): Define the dual of C by

C*'={xeR"; |x-y|<1forallyeC}.

Then | Ni(C)An1i(C) =< 1| (1<i<n).

Mahler (1955): For k =1,...,n, define the k-th compound of C by
) = convex hull of {X1 A~ AXg; X1,...,%Xk €C}

in AKR” ~ RN where N = (1)- Then
) Al(C(")) = )\1(C) cee )\k_l(C))\k(C)
0 2(CHW) < \(C) -+ Ak—1(C)Ak41(C)

(In general \;(C(K) is comparable to the j-th smallest product
)\,'I(C)---)\,'k(C) with 1 <ip <---<ix <n)
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of R” (i.e u; - l.lj-< = (5,‘J).




1.3. Parallelepipeds

Let {u1,...,u,} be a basis of R”. Then

]ul . X‘ < 1
P has vol(P) = 2"|det(uy,...,u,)|.
lu, - x| <1
Its pseudo-dual P* is Its k-th pseudo-compound P is
the set of all & € A*R” satisfying
luj - x| <1
P* - ’(u,-l/\~--/\u,-k)~a‘§1
[ = for each choice of indices
where {u, ..., ut} is the dual basis LSl €SS
of R” (i.e u; - I.lj-< = (5,‘J).




W. Schmidt, 1983:

“The classical theorems of the Geometry of Numbers
deal with one convex set and one lattice at a time,
while in Diophantine Approximation one deals with
parametrized families of lattices [or convex bodies].”



2.1. Simultaneous rational approximation

Dirichlet (1842). Let u = (1,&,...,£,) € R". For each integer Q > 1,
a) there exist xi,...,x, € Z not all zero such that
x| < Q"1 and [xi€o — x|, ..., [xi€n — xa| < Q7L
b) there exist y1,...,y, € Z not all zero such that
Yal, -5 lyal S Q and |y1 + yabo + -+ + ynbal < Q1771
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Proof.

Each set of inequalities define a convex body in R” of volume 2. 0J
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2.2. Four exponents of rational approximation

Let u=(1,%,...,&) € R".
a) Define A(u) = supremum of all A > 0 such that
il <Q and  [xi& —xaf,. .., [xi€n — xa| < Q7N
has a nonzero solution (xi, ..., x,) € Z" for arbitrarily large Q.
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X(u) = same but for all sufficiently large values of Q.
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2.2. Four exponents of rational approximation

Let u=(1,%,...,&) € R".
a) Define A(u) = supremum of all A > 0 such that
il <Q and  [xi& —xaf,. .., [xi€n — xa| < Q7N
has a nonzero solution (xi, ..., x,) € Z" for arbitrarily large Q.

X(u) = same but for all sufficiently large values of Q.

b) Define 7(u) = supremum of all 7 > 0 such that

yol, o s lyal S @ and  |y1 +y2lo + -+ ynlnl S Q7T
has a nonzero solution (yi,...,yn) € Z" for arbitrarily large Q.

7(u) = same but for all sufficiently large values of Q.

N 1 R
Dirichlet: | A(u) > A(u) > —— and 7(u) >7(u)>n—-1
n




2.3. Case of dimension n = 3

Let 1,&2,&3 € R be linearly independent over Q. Put u = (1,&2,£3).
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2.3. Case of dimension n = 3

Let 1,&2,&3 € R be linearly independent over Q. Put u = (1,&2,£3).

Dirichlet (1842): % < Au) and 2 < 7(u)
. . 7(u) 7(u) -1
= : < <
Khintchine (1926-28) @12 S A(u) < >
Jarnik (1938): A(u) =1-— ()

M. Laurent (2009): The set of all quadruples (A(u), A(u), 7(u)

A R 1
{()‘7>‘7777A'); 2<7<00, A=1——,
7




2.4. Dimension n > 3

e Spectrum of (\, 7):
> inequalities by Khintchine (1926, 1928);
> they are best possible: Jarnik (1935, 1936).

e Spectrum of (\,7):
» inequalities: Jarnik (1938) for n = 3, German (2012) for n > 3;
> best possible: Schmidt and Summerer (2016);
» full spectrum: Marnat (2018) and for n = 3 Jarnik (1954).

e Spectra of (\,\) and (7,7):
» conjectured by Schmidt and Summerer in 2013;
» full spectrum: Marnat and Moschevitin (2020).

e Spectrum of ()\,X, 7,7): Open problem for n > 4.
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3.1. Schmidt and Summerer theory (2009, 2013)

Let u € R" be non-zero. Define

c(@={xer i K <1 k< 5f (@21

Li(q) =log Ai(C(e)) (g=0, 1<i<n)

@ Classical exponents of approximation can be expressed in terms of

gol.(u) = liminf Li(9) and  @;(u) :=limsup ﬂ i=1,...,n

= g—oo g g—00 q

@ Problem: Characterize the family of maps

Ly: [0,00) — R”
g — (L1(q);---,Ln(q))

... up to bounded functions.



Formulas for the four exponents

@ From the definitions, one gets

@ Using the duality of Mahler, one gets

e
M) =175, )

N
7(u) =0 1.
~ o, (u)
A(u) = T
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1)[0 < Li(q) <+ < L(q)]
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3.2. Basic properties of Ly,...,L,

C(Q) ={xeR"; x| <1, [x-ul <Q7"}, Li(q) = log A;(C(e))

3) ‘ Li,...,L, are continuous and monotone increasing




3.3. The trajectory of a point

C(Q)={xeR"; x| <1, |x-u <@}

For each x € Z" \ {0}, we define
o A(x,Q) :=min{A>0; x € AC(Q)} = max{|[|x|, Q|x-u|}
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3.3. The trajectory of a point

C(Q)={xeR"; x| <1, |x-u <@}

For each x € Z" \ {0}, we define
o A(x,Q) :=min{A>0; x € AC(Q)} = max{|[|x|, Q|x-u|}

o L(x,q) := log A(x, &%) = max {log |x]|, q + log | u[}

slope 1 L(x. q)
slope 0

log ||x||

0 —log|x - u|



3.4. The first minimum

L(x,q) = max {log [[x]| , g + log [x - u[}

4) |L1(q) = min{L(x,q); x € Z"\ {0}} (g =0)
is continuous and piecewise linear with slopes 0 and 1.

Example: n =2, u=(3,2)

L
(0,1)
3
2
1 (2’ *3)
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3.4. The first minimum
L(x, q) = max {log |[x|| , g + log [x - u[}

4) |Li(q) = min{L(x,q); x € Z"\ {0}} (g >0)
is continuous and piecewise linear with slopes 0 and 1.

5) ’ Li(qg) = L2(q) at each g where L; changes slope from 1 to 0.‘

Example: n =2, u=(3,2)

L
(0,1)
3
2
Pod (27 73)
1 / L1(q)
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3.5. Compound convex bodies (Mahler, 1955)
o Write R” = U L (u)g where U = u*,
AR = AU LWH where WK = ALY A (u)g,

(@) = {a e A'R": flal| <1, || projuyen (@) < @71},

L (q) = log ;(c¥(e”) (1< <Z>)

4') Lgk) = Li(q) +--- + Lx(g) + O(1) | is continuous and piecewise

linear with slopes 0 and 1.

5') At each point g where it changes slope from 1 to 0, we have

199(q) = () = [Lisa(q) = Lu(q) + O(1)]




3.6. The theorem of Schmidt and Summerer

For j =1,...,n, we define a map P;: [0,00) = R by

(q) = L1(q) if j=1,
Pi(q) == LP(q) ~ LY V(q) if2<j<n-1,
) if j = n.

Theorem (Schmidt-Summerer, 2013)

There exists v > 0 such that the function P = (Py,...,P,): [0,00) — R"
satisfies
IP(q) — Lu(q)||loc <~ for each q >0,

and is an (n,~y)-system according to the following definition.




3.7. (n,~)-systems

Definition. An (n,~)-system is a map P = (P1,...,Pp): [0,00) — R”

which satisfies the following conditions.

(51) Pi(q) < Pia(@)+v (1 <j<n 0<gq).

(S2) Pi(a) < Pi(q2) +7y (1<j<n0<q1<q).

(S3) For j=1,...,n, the function M; := Py +--- 4+ P;: [0,00) = R is
continuous and piecewise linear with slopes 0 and 1.

(S4) Mn(q) =q (0 <q).

(S5) If, for j € {1,...,n— 1}, the function M; changes slope from 1 to 0
at a point g > 0, then P;1(q) < Pi(q) + 1.
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(S3) For j=1,...,n, the function M; := Py +--- 4+ P;: [0,00) = R is
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(S4) Mn(q) =q (0 <q).

(S5) If, for j € {1,...,n— 1}, the function M; changes slope from 1 to 0
at a point g > 0, then P;1(q) < Pi(q) + 1.

Pi,..., P, are continuous and piecewise linear

(53) = with slopes —1, 0 and 1



3.8. Ideal case
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(3) Forj=1,...,n, the function M; := Py +--- + Pj: [go,00) = R is
continuous and piecewise linear with slopes 0 and 1.

(4) Mn(a)=q (qo < q).

(5) If, for j € {1,...,n—1}, the function M; changes slope from 1 to 0
at a point g > qo, then Pi11(q) < Pj(q) +0.
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3.8. Ideal case

Definition. An (n,0)-system is a map P = (P1,..., Ps): [go,00) — R”
which satisfies the following conditions.

1) Pi(q) <--- < Pu(q) (g0 < q).

P1,..., P, are continuous and piecewise linear with slopes 0 and 1.
M; := Py + ---+ P;j has slopes 0 and 1 (1 <j < n).

Mn(q)=q (qo < q).
If, for j € {1,...,n— 1}, the function M; changes slope from 1 to 0
at a point g > qo, then Pi11(q) < Pj(q) +0.




3.8. Ideal case

Definition. An (n,0)-system is a map P = (P1,...,Ps): [go,00) — R”
which satisfies the following conditions.

(1) Pi(q) <---<Pn(q) (g0<q).

(2) P1,..., Py are continuous and piecewise linear with slopes 0 and 1.
(3) Mj:=P1+---+ Pj hasslopes 0 and 1 (1 <j < n).
(

(

at a point g > qo, then Pi11(q) < Pj(q) +0.
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3.8. ldeal case

Definition. An  n-system isa map P = (P1,...,P,): [go,00) — R”
which satisfies the following conditions.
) Pi(q) < < Pa(q) (q0<q).

Pi1,..., P, are continuous and piecewise linear with slopes 0 and 1.

i —P1+ -+ Pj has slopes 0 and 1 (1 <j < n).

(1
(2)

3) M

(4) [Ma(q) = Pr(q) + ---+Pn(q):q\ (40 < ).

(5) If, for j € {1,...,n—1}, the function M; changes slope from 1 to 0
at a point g > qo, then Pj11(q) = P;(q).

5

Let 6 > 0. We that P is a rigid system with mesh ¢ if, for g = go and for
each g > qo at which some M; changes slope from 0 to 1, the coordinates
of P(g) form a strictly increasing sequence of positive multiples of .




3.9. The combined graph of a rigid system
Let P=(P1,...,Pn): [qo,00) — R” be a rigid system with mesh §.

Denote by g1 < g2 < ... the points where at least one of the sums
M; = Py + - -- + P; changes slope from 0 to 1.

The combined graph of Pi,..., P, has the following shape:
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3.10. Characterization up to bounded maps
Theorem (R. 2015)

For each nonzero u € R" and each § > 0, there exists a rigid n-system P
of mesh ¢ such that L, — P is a bounded function on [0, 00). Conversely,

given any n-system P, there exists a nonzero u € R" such that L, — P is
bounded.
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3.11. Interpretation as a game (Luca Ghidelli)
We can view an n-system as giving the positions of n players Py,..., P,
moving on a line, as a function of the time g, according to the following
rules.
@ At time g = 0, they all stand at
position 0.

@ They always remain in the same
order (P; cannot overpass Py, nor
P can overpass Pj3, etc).

@ At any time, only the player who
has the ball can move and he
moves at constant speed 1.

@ The player who holds the ball can
only pass it to a player that is
behind him or next to him.

(<]
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Combined graph of the 3-system in the animation
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4.1. Example: Khintchine's transference inequalities
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Moreover 0 < ¢, (u) < —, thus ‘ n—1<7(u) <oo ‘
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Thank you! i
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