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Abstract. We show that Hermite’s approximations to values of the exponential function
at given algebraic numbers are nearly optimal when considered from an adelic perspective.
We achieve this by taking into account the ratio of these values whenever they make sense in
the various completions (Archimedean or p-adic) of a number field containing these algebraic
numbers.

1. Introduction

We know by Euler that the number e admits a continued fraction expansion consisting of

intertwined arithmetic progressions

e = [2, (1, 2n, 1)∞n=1] = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . ].

Euler, Sundman and Hurwitz also obtained similar expansions for the numbers e2/m where

m is a non-zero integer [13, §§31-32]. Consequently, one may derive very good measures

of rational approximations to these numbers (see for example the fully explicit results of

Bundschuch [6, Satz 2], in the case where m is even). This is the aspect that interests us

here. We propose the following heuristic explanation: the ratios 2/m with m ∈ Z \ {0} are

the only non-zero rational numbers z for which the usual power series

(1.1) ez =
∞∑
k=0

zk

k!

converges only as a real number. Indeed, let p be a prime number and let Cp denote the

completion of the algebraic closure Q of Q for the p-adic absolute value of Q extended to

Q, with |p|p = p−1. We know that, for z ∈ Cp, the series (1.1) converges in Cp if and only

if |z|p < p−1/(p−1). In particular, for a rational number z, viewed as an element of Cp, this

series converges if and only if the numerator of z is divisible by p when p 6= 2, and by 4 when

p = 2.

This phenomenon also extends to algebraic numbers. Indeed, let K be a number field,

namely an algebraic extension of Q of finite degree. Then any absolute value on K induces

the same topology on K as an absolute value coming from an embedding from K into C or

2010 Mathematics Subject Classification. Primary 11J13; Secondary 11J61, 11J82, 11H06.
Key words and phrases. adeles, exponential function, geometry of numbers, Hermite approximations,

measures of approximation, roots of polynomials, semi-resultant, steepest ascent, volumes.
Research partially supported by NSERC.

1



2 DAMIEN ROY

into Cp for a prime number p. We say that such embeddings define the same place v of K if

they induce the same absolute value on K denoted | |v. We then denote by Kv the completion

of K for this absolute value. When the place v comes from an embedding of K into C, the

place v is called Archimedean and we write v | ∞. Otherwise it is called ultrametric, and

we write v | p if it comes from an embedding of K into Cp. When α ∈ K is non-zero, the

series for eα converges in each Archimedean completion of K but only in a finite number of

ultrametric completions. In particular, when K admits a single Archimedean place, which

happens when K = Q or when K is quadratic imaginary, then it may occur that eα has a

meaning only for this place. Then, we obtain the following estimate where OK denotes the

ring of integers of K.

Proposition 1.1. Let K ⊂ C be the field Q or a quadratic imaginary extension of Q, and

let α be a non-zero element of K such that |α|v ≥ p−1/(p−1) for each prime number p and

each place v of K with v | p. Then, for any x, y ∈ OK with |x| > 1, we have

|x| |xeα − y| ≥ c(log |x|)−2g−1

where g stands for the number of places v of K with v | ∞ or |α|v 6= 1, and where c > 0 is

a constant depending only on α and K.

For example if K = Q(
√
−2), we may take α = 2(1 ±

√
−2)/m where m ∈ OK \ {0}. If

K = Q(
√
−23), we may take α = (1±

√
−23)/(2m) where m ∈ OK \ {0}. We do not know

what is the best possible exponent for log |x| in the above measure of approximation to eα.

Note that, in some cases, eα admits a generalized continued fraction expansion similar to

the one of e (with partial quotients in OK) but we do not consider this question here.

More generally, let α1, . . . , αs be distinct elements of a number field K ⊂ C. Lindemann-

Weierstrass theorem [18] tells us that their exponentials eα1 , . . . , eαs ∈ C are linearly in-

dependent over K and the classical proof, in all variants (see [11, Appendix]), is based on

Hermite’s approximations which we recall in the next section. Our goal is to show that these

approximations are nearly optimal in the context of geometry of numbers over the adeles of

K, when taking into account all places v of K and all pairs of indices i, j with 1 ≤ i < j ≤ s

for which the series for eαi−αj converges in Kv. It is possible that this observation reflects a

much wider property of the values of the exponential function.

For example the series for e3 converges in R and in Q3 but not in any Qp for a prime

number p 6= 3. Then our approach leads to the following result.

Proposition 1.2. For any integer n ≥ 1, we define a convex body Cn of R2 and a lattice Λn

of R2 by

Cn =

{
(x, y) ∈ R2 ; |x| ≤ (2n)!

n!3n/2
, |xe3 − y| ≤

(3

2

)2n 1

n!3n/2

}
,

Λn =
{

(x, y) ∈ Z2 ; |xe3 − y|3 ≤ 3−n
}
.
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For i = 1, 2, let λi(Cn,Λn) denote the i-th minimum of Cn with respect to Λn, that is the

smallest λ > 0 such that λCn contains at least i elements of Λn which are linearly independent

over Q. Then we have

(cn2)−1 ≤ λ1(Cn,Λn) ≤ λ2(Cn,Λn) ≤ cn2,

for a constant c > 1 that does not depend on n.

Since 3nZ2 ⊂ Λn and λ1(Cn,Λn) ≥ (cn2)−1, one deduces that λ1(Cn,Z2) ≥ (cn23n)−1 for

any integer n ≥ 1. Consequently, for each ε > 0, there exists a constant cε > 0 such that

|x| |xe3 − y| ≥ cε|x|−ε

for all (x, y) ∈ Z2 with x 6= 0. One may even derive slightly sharper estimates (see [6, Satz

1]). However, numerical computations described in Section 12 yield

(1.2) |x| |xe3 − y| ≥ (3 log |x| log log |x|)−1 if 4 ≤ |x| ≤ 10500 000.

If true whenever |x| ≥ 4, this would be slightly better than what we expect for almost all

real numbers with respect to Lebesgue measure. More involved computations which we do

not describe here even suggest the existence of a real number g > 0 such that

|x1| |x1e3 − x2| |x1e3 − x2|3 ≥ (log |x1|)−g

for any (x1, x2, x3) ∈ Z3 with |x1| large enough. Finally, an important result of Baker [2]

shows that if α2, . . . , αs ∈ Q are distinct non-zero rational numbers then, for each ε > 0,

there exists a constant cε > 0 such that

|x1| |x1eα2 − x2| · · · |x1eαs − xs| ≥ cε|x1|−ε

for each (x1, . . . , xs) ∈ Zs with |x1| 6= 0. The properties of Hermite’s approximations suggest

that the right hand side cε|x1|−ε in this inequality could be remplaced by (log |x1|)−g for a

constant g > 0 depending only on (α2, . . . , αs), when |x1| is large enough.

In this paper, N stands for the set of non-negative integers and N+ = N\{0} for the set of

positive integers. A French translation is available on the arXiv server under the identifier

arXiv:1905.00343 [math.NT].

Acknowledgments: I warmly thank Michel Waldschmidt for numerous exchanges on these

questions. In particular, his course notes [17] were a source of inspiration. I also thank the

referees for helpful comments.

2. Statement of the main result

Let K be a number field, let OK be its ring of integers, let d = [K : Q] be its degree over

Q, and let s ∈ N+. For any ultrametric place v of K, we denote by Ov = {x ∈ Kv ; |x|v ≤ 1}
the ring of integers of Kv and by dv = [Kv : Qp] the local degree of Kv, where p stands for the

prime number below v (notation v | p), namely the prime number p for which | |v extends the
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p-adic absolute value on Q. Following McFeat [12, §2.2], we denote by µv the Haar measure

on Kv normalized so that µv(Ov) = 1. For an Archimedean place (notation v | ∞), we again

denote by dv = [Kv : R] the local degree of Kv, and define µv as the Lebesgue measure on

Kv (this field is R or C). We denote by r1 (resp. r2) the number of places v | ∞ with dv = 1

(resp. dv = 2), so that d = r1 + 2r2.

The ring of adeles of K is the product KA =
∏

vKv running over all places v of K, with

the restricted topology. This is a locally compact ring that we equip with the Haar measure

µ, product of the µv. We identify K as a subfield of KA via the diagonal embedding. Then

K becomes a discrete subgroup of KA and, with the above normalization, we have

µ(KA/K) = 2−r2|D(K)|1/2,

where D(K) stands for the discriminant of K. By abuse of notation, we also write µ for the

product measure of s copies of µ on Ks
A. Similarly, for each place v of K, we also write µv

for the product measure of s copies of µv on Ks
v . With our normalization of the absolute

value on Kv, if T : Ks
v → Ks

v is a Kv-linear map and if E is a measurable subset of Ks
v , the

set T (E) is measurable with measure µv(T (E)) = | detT |dvv µv(E).

2.1. Minima of adelic convex bodies. An adelic convex body of Ks is a product

C =
∏
v

Cv ⊂ Ks
A,

indexed by all places v of K, which satisfies the following properties:

(i) if v | ∞, then Cv is a convex body of Ks
v , namely a compact convex neighborhood of

0 in Ks
v such that α Cv = Cv for any α ∈ Kv with |α|v = 1;

(ii) if v -∞, then Cv is a finite type (thus free) sub-Ov-module of Ks
v of rank s;

(iii) Cv = Osv for all but finitely many places v of K with v -∞.

Suppose that C is such a product. For each i = 1, . . . , s, we define its i-th minimum λi(C)
as the smallest λ > 0 for which the adelic convex body

λC =
∏
v|∞

λCv
∏
v-∞

Cv

contains at least i linearly independent elements of Ks over K. With this notation and our

normalization of measures, the adelic version of Minkowski’s theorem reads as follows.

Theorem 2.1 (McFeat, Bombieri and Vaaler). For any adelic convex body C of Ks, we have

2sr1(s!)−d ≤ (λ1(C) · · ·λs(C))d µ(C) ≤ 2s(r1+r2)|D(K)|s/2.

We refer the reader to [12, Theorem 5] and [4, Theorem 3] for the upper bound on the

product of the minima (see also the upper bound of Thunder in [16, Theorem 1 and Corol-

lary]). The lower bound given here is taken from [12, Theorem 6]; it is slightly weaker than

the one of [4, Theorem 6].
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2.2. Hermite’s approximations. Suppose from now on that s ≥ 2 and let α1, . . . , αs be

distinct elements of K. For each s-tuple n := (n1, . . . , ns) ∈ Ns, we define polynomials of

K[z] by

fn(z) = (z − α1)
n1 · · · (z − αs)ns and Pn(z) =

N∑
k=0

f (k)
n (z)

where

N = n1 + · · ·+ ns

represents the degree of fn, and where f
(k)
n denotes the k-th derivative of fn for each integer

k ≥ 0. We then form the point

an :=
(
Pn(α1), . . . , Pn(αs)

)
∈ Ks.

We call it the Hermite approximation of order n for the s-tuple (α1, . . . , αs). Our goal is to

give a precise meaning to the term “approximation”, by working in the adeles of K.

We first recall some properties of these points. For simplicity, we start by assuming that

K ⊆ C. We find

(2.1)
d

dz

(
Pn(z)e−z

)
=
(
P ′n(z)− Pn(z)

)
e−z = −fn(z)e−z.

So, for any pair i, j ∈ {1, . . . , s}, we obtain

Pn(αi)e
−αi − Pn(αj)e

−αj =

∫ αj

αi

fn(z)e−z dz ,

independently of the path of integration from αi to αj in C. Upon integrating along the line

segment [αi, αj] joining those two points and observing that

max
z∈[αi,αj ]

|fn(z)| ≤ RN with R = max
1≤k,`≤s

|αk − α`|,

we deduce that ∣∣Pn(αi)e
−αi − Pn(αj)e

−αj
∣∣ ≤ c1R

N

for a constant c1 > 0 that is independent of the choice of i, j and n. Similarly, for i = 1, . . . , s,

the formula (2.1) yields

Pn(αi) =

∫ ∞
0

fn(z + αi)e
−z dz ,

by integrating along [0,∞) ⊂ R. Since |fn(t+ αi)| ≤ (t+R)N for all t ≥ 0, we deduce that

|Pn(αi)| ≤
∫ ∞
0

(t+R)Ne−t dt = eR
∫ ∞
R

tNe−t dt ≤ eR
∫ ∞
0

tNe−t dt = eRN ! .

More generally, let v be any Archimedean place of K. Put

(2.2) Rv = max
1≤k,`≤s

|αk − α`|v
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and choose an embedding σ : K → C such that |α|v = |σ(α)| for all α ∈ K. Then, for any

pair of indices i, j ∈ {1, . . . , s}, the above computations yield∣∣Pn(αi)e
−αi − Pn(αj)e

−αj
∣∣
v

=

∣∣∣∣∣
∫ σ(αj)

σ(αi)

fσn (z)e−zdz

∣∣∣∣∣ ≤ cvR
N
v ,(2.3)

|Pn(αi)|v ≤ eRvN ! ,(2.4)

where fσn denotes the image of fn under the ring homomorphism from K[z] to C[z] which

fixes z and coincides with σ on K, and where cv > 0 depends only on v and α1, . . . , αs. Thus,

an is a projective approximation to (eα1 , . . . , eαs) at each Archimedean place of K.

In this paper, we establish an upper bound for the integral in (2.3) which is sharper than

cvR
N
v for each Archimedean place v of K. We also provide analogs of (2.3) and of (2.4) for the

ultrametric places v of K whenever their left hand side makes sense in Kv. More precisely,

as eαj−αi could make sense in Kv without eαi and eαj making sense, we consider instead

the quantities |Pn(αi)e
αj−αi − Pn(αj)|v. Here again, we will need sharp estimates while

usually the ultrametric places are treated in an expeditious manner. In general, one chooses

a common denominator b of α1, . . . , αs, that is an integer b ≥ 1 such that bα1, . . . , bαs ∈ OK .

Then the polynomial g(z) := bNf(z/b) has coefficients in OK and, for each i = 1, . . . , s, we

find

bN

(ni)!
Pn(αi) =

N∑
k=ni

bN

(ni)!
f (k)(αi) =

N∑
k=ni

bkk!

(ni)!
· g

(k)(bαi)

k!
∈ OK .

For example, if n1 = · · · = ns = n, this implies that (bN/n!)an ∈ OsK .

The above estimates are key-ingredients in the classical proof of the Lindemann-Weiertrass

theorem asserting that eα1 , . . . , eαs are linearly independent over K. However, two more

ingredients are missing. The first one is a reduction step of Weierstrass which is explained in

[11, Appendix, §3] (see also [3, Chapter 1, §3]). The second one is the existence of families

of s linearly independent approximations over K. Hermite himself noticed this problem and

solved it in order to prove the transcendence of e. We will use here the following remarkable

result of Mahler.

Theorem 2.2 (Mahler). Suppose that n = (n1, . . . , ns) ∈ Ns
+ has positive coordinates. Let

e1 = (1, 0, . . . , 0), . . . , es = (0, . . . , 0, 1) denote the canonical basis elements of Zs. Then, we

have

(2.5) ∆n := det(an−e1 , . . . , an−es) =
s∏
i=1

(
(ni − 1)!

∏
k 6=i

(αi − αk)nk
)
6= 0.

The proof of Mahler is clever. It is presented in [10, §8] and again in [11, Appendix, §16].

In the case where n1 = · · · = ns, the result is due to Hermite [9]. Hermite’s proof is different.

It is based on the recurrence relations satisfied by the points an which we generalize in

Appendix A.
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2.3. Statement of the main result. With the above notation, let S be the finite set

consisting of all Archimedean places of K together with the ultrametric places v of K such

that |αi − αj|v 6= 1 for at least one pair of indices i, j ∈ {1, . . . , s} with i 6= j. For each

s-tuple n = (n1, . . . , ns) ∈ Ns
+, we let N denote its sum and we define an adelic convex body

Cn =
∏

v Cn,v of Ks as follows.

(i) If v |∞ is the place attached to an embedding σ : K ↪→ C, we define Rv by (2.2).

Then Cn,v is the set of points (x1, . . . , xs) ∈ Ks
v which satisfy

(2.6) |xi|v ≤ eRv(N − 1)! and |xieαj−αi − xj|v ≤ max
1≤k≤s

∣∣∣∣∣
∫ σ(αj)

σ(αi)

fσn−ek(z)eσ(αj)−z dz

∣∣∣∣∣
for each pair of indices i, j ∈ {1, . . . , s} with i 6= j.

(ii) If v ∈ S and if v | p for a prime number p, then Cn,v is the set of points (x1, . . . , xs)

in Ks
v which satisfy

(2.7) |xi|v ≤ p3N
∏

1≤k≤s

max
{
|αi − αk|v, p−1/(p−1)

}nk
for i = 1, . . . , s, as well as

(2.8) |xieαj−αi − xj|v ≤ p3N
∏

1≤k≤s

max
{
|αi − αk|v, |αj − αk|v

}nk
for each pair of integers i, j ∈ {1, . . . , s} such that 0 < |αj − αi|v < p−1/(p−1).

(iii) Finally, if v /∈ S, then Cn,v is the set of points (x1, . . . , xs) ∈ Ks
v satisfying

|xi|v ≤ |(ni − 1)!|v
for i = 1, . . . , s.

The crucial feature of these adelic convex bodies Cn is that the linear forms which define

them involve only the complex or p-adic values of the exponential function at the points

αj − αi.

In view of the estimates in §2.2, the points an−e1 , . . . , an−es satisfy the conditions in (i)

and so they belong to Cn,v for each Archimedean place v of K. Likewise, we will see in the

next section that the conditions in (ii) or (iii) are also satisfied by these points (in fact, they

are designed for that purpose). So these points also belong to Cn,v for each non-Archimedean

place v of K. This yields the first assertion in the following result.

Theorem 2.3. Let n = (n1, . . . , ns) ∈ Ns
+. Then the adelic convex body Cn contains the

points an−e1 , . . . , an−es. Moreover, upon setting N = n1 + · · · + ns, we have the following

volume estimates.

(i) If v | ∞, then

(s!)−1|∆n|v ≤ µv(Cn,v)1/dv ≤ cvN
2s−2|∆n|v

for a constant cv > 0 depending only on α1, . . . , αs and v.
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(ii) If v ∈ S and if v | p for a prime number p, then

|∆n|v ≤ µv(Cn,v)1/dv ≤ (p3N)s|∆n|v.

(iii) If v /∈ S, then µv(Cn,v)1/dv = |∆n|v.

Note that, for each place v of K, these estimates enclose the volume of Cn,v between limits

whose ratio is a polynomial in N while these limits themselves grow like |∆n|v, that is roughly

like an exponential in N if v -∞ or like N ! if v | ∞. When v | ∞, we give an explicit value

for the constant cv in Theorem 8.1.

The lower bounds for µv(Cn,v) follow easily from the definition of ∆n as a determinant

in (2.5), if we take for granted the fact that Cn,v contains the points an−ei for i = 1, . . . , s.

Indeed, let T : Ks
v → Ks

v be the Kv-linear map defined by

T (x1, . . . , xs) = x1an−e1 + · · ·+ xsan−es

for each (x1, . . . , xs) ∈ Ks
v . Then Cn,v contains T (Ev) where Ev is given by

Ev = {(x1, . . . , xs) ∈ Ks
v ; |x1|v + · · ·+ |xs|v ≤ 1} if v | ∞,

Ev = Osv if v -∞.

As | detT |v = |∆n|v, we have µv(T (Ev)) = |∆n|dvv µv(Ev). If v | ∞, we also have µv(Ev) ≥
(s!)−dv , thus µv(Cn,v)1/dv ≥ (s!)−1|∆n|v. If v - ∞, we simply have µv(Ev) = 1, thus

µv(Cn,v)1/dv ≥ |∆n|v.

Our main contribution therefore lies in the upper bounds for the volume of the components

Cn,v, and we explain our strategy below. These upper bounds in turn yield an upper bound

for the volume of Cn from which we derive the following conclusion thanks to the adelic

Minkowski theorem.

Corollary 2.4. In the notation of Theorem 2.3, we have

cN−g ≤ λ1(Cn) ≤ · · · ≤ λs(Cn) ≤ 1 where g = s− 2 + s
∑
v∈S

dv
d
,

and where c > 0 is a constant depending only on α1, . . . , αs.

Proof. Since
∏

v |∆n|dvv = 1 and since S contains all Archimedean places of K, we find

µ(Cn) =
∏
v

µv(Cn,v) ≤
∏
v|∞

(
cdvv N

(2s−2)dv
) ∏
v∈S, v|p

(p3N)sdv = cd1N
gd

where c1 > 0 is independent of n. Since Cn contains the points an−e1 , . . . , an−es of Ks and

since, by Theorem 2.2, these points are linearly independent over K, we also have

λ1(Cn) ≤ · · · ≤ λs(Cn) ≤ 1.

Thus, by Theorem 2.1, we obtain

(s!)−1 ≤ λ1(Cn) · · ·λs(Cn)µ(Cn)1/d ≤ λ1(Cn)c1N
g,

so λ1(Cn) ≥ cN−g with c = 1/(c1s!). �
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The proof of Theorem 2.3 uses general results on univariate polynomials f(z) ∈ C[z] which

we could not find in the literature. Suppose that f has degree N ≥ 1. Let A be its set of

roots in C and let B be the set of roots of its derivative f ′ which do not belong to A. In

Section 5, we consider the paths of steepest descent for |f | starting from an arbitrary point

β of C. These paths necessarily end in an element of A. We show that they are contained

in the convex hull of A ∪ {β}, with length at most πRN where R is the radius of any disk

containing A ∪ {β}. In Section 6, for each β ∈ B, we denote by m(β) the multiplicity of β

as a root of f ′ and, starting from β, we choose m(β) + 1 paths of steepest descent for |f |
which are locally distinct in a neighborhood of β. These paths draw a graph on A ∪ B and

we show that this graph is in fact a tree. We extract from it a sub-graph G on A which is

also a tree with edges indexed by B. Then, for each edge of G with end points α, α′ ∈ A,

indexed by β ∈ B, we obtain a path joining α to α′ passing through β, with length at most

2πRN , along which |f | is maximal at the point β.

For the proof of Theorem 2.3 (i), we may assume that the given place v | ∞ comes from

an inclusion K ⊂ C. We then apply the above construction, choosing f to be the gcd of the

polynomials fn−e1 , . . . , fn−es . If the coordinates of n ∈ Ns
+ are all ≥ 2, we thus obtain a tree

G on A = {α1, . . . , αs}. Then, for each edge of G with end points αi, αj, we bound from

above the integrals in (2.6) as a function of |f(β)| where β /∈ A is the corresponding root of

f ′. From this, we deduce in Section 8 an upper bound for the volume of the convex body Cn,v
in terms of the product of the values |f(β)|m(β) with β ∈ B, this being the Chudnovsky semi-

resultant of f and f ′. The upper bound for µv(Cn,v) then follows thanks to the computation

of this semi-resultant in Section 7. The general case where at least one coordinate of n is

equal to 1 requires a slight adjustment.

The treatment of the ultrametric places v -∞ is simpler. In Section 3, we show that Cn,v
contains the points an−e1 , . . . , an−es . Afterwards, in Section 9, we construct a rooted forest

on {α1, . . . , αs} associated with the place v. This allows us to select s inequalities among

(2.7) and (2.8) and to deduce from them the required upper bound on the volume of Cn,v in

Section 10. The relevant notions from graph theory are recalled in Section 4.

In Section 11, we restrict to “diagonal” approximations to two exponentials, namely to

the case s = 2 and n1 = n2. In this situation, we provide a refined form of our main result

whose proof relies only on the estimates from Sections 2.2 and 3. We then use it to prove

Propositions 1.1 and 1.2 from the introduction.

We conclude in Section 12 by explaining how Hermite’s recurrence formulas recalled in

Appendix A can be used to compute efficiently the partial quotients in the continued fraction

expansion of e3. This in turn permits to validate the inequalities (1.2) in less than two hours

of computation on a small desk computer.
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3. Ultrametric estimates

Let v be a place of K above a prime number p. In this section, we complete the proof

of the first assertion in Theorem 2.3 by showing that the component Cn,v of Cn contains the

points an−e1 , . . . , an−es for each n ∈ Ns
+. To this end, we use the following notation and

results.

For each a ∈ Cp and each r > 0, we denote by

B(a, r) = {z ∈ Cp ; |z − a|p ≤ r}

the closed disk of Cp with center a and radius r (both closed and open in Cp). For such a

disk B = B(a, r) and for any analytic function g : B → Cp, we define

|g|B = sup{|g(z)|p ; z ∈ B}.

This quantity can also be computed from the Taylor series expansion of g around the point

a via the formula

|g|B = sup
k∈N

∣∣∣∣g(k)(a)

k!

∣∣∣∣
p

rk,

which yields the p-adic form of Cauchy’s inequalities

|g(k)(a)|p ≤ |k!|pr−k|g|B (k ∈ N)

(see [14, §1.5]). For the computations, we also use the estimates

(3.1) δk ≤ |k!|p ≤ kδk−p ≤ p2kδk (k ∈ N), where δ = p−1/(p−1),

which follow from the formula |k!|p = p−m where m =
∑∞

`=1bk/p`c.

Lemma 3.1. Let n = (n1, . . . , ns) ∈ Ns, let N = n1 + · · · + ns, and let i, j ∈ {1, . . . , s}.
Then, we have

(3.2) |Pn(αi)|v ≤ p2N
s∏

k=1

max{|αi − αk|v, δ}nk .

If |αi − αk|v ≤ 1 for k = 1, . . . , s, we also have

(3.3) |Pn(αi)|v ≤ |ni!|v.

Finally, if ρ = |αi − αj|v satisfies 0 < ρ < δ, we have

(3.4) |Pn(αi)e
αj−αi − Pn(αj)|v ≤

ρ

δ
p2N

s∏
k=1

max{|αi − αk|v, |αj − αk|v}nk .

Proof. To simplify, we may assume that K ⊂ Cp and that |α|v = |α|p for each α ∈ K.

Then, the polynomial fn(z) ∈ K[z] can be viewed as an analytic function fn : Cp → Cp. To

estimate |Pn(αi)|v = |Pn(αi)|p, we set

B = B(αi, δ) and M = |fn|B.
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For k = 0, 1, . . . , N , Cauchy’s inequalities together with (3.1) yield

|f (k)
n (αi)|p ≤ |k!|pδ−kM ≤ p2kM ≤ p2NM,

thus

|Pn(αi)|v =

∣∣∣∣∣
N∑
k=0

f (k)
n (αi)

∣∣∣∣∣
p

≤ p2NM.

This proves (3.2) since

M ≤
s∏

k=1

sup{|z − αk|p ; z ∈ B}nk =
s∏

k=1

max{|αi − αk|v, δ}nk .

If |αi−αk|v ≤ 1 for each k, a similar computation yields |fn|B ≤ 1 with B = B(αi, 1). Then

Cauchy’s inequalities give |f (k)
n (αi)|p ≤ |k!|p for each k ∈ N. Since we have f

(k)
n (αi) = 0 for

k = 0, . . . , ni − 1, we deduce that |f (k)
n (αi)|v ≤ |ni!|v for each k ∈ N and the upper bound

(3.3) follows.

Suppose now that 0 < ρ = |αi − αj|p < δ. To prove (3.4), we use instead

B = B(αj, ρ) and M = |fn|B.

Since ρ < δ, the function g : B → Cp given by

g(z) = Pn(z)eαj−z − Pn(αj) (z ∈ B)

is analytic with g(αj) = 0 and

(3.5) g′(z) = −fn(z)eαj−z (z ∈ B).

For each integer ` = 0, 1, . . . , N , we have

|f (`)
n (αj)|p ≤ |`!|pρ−`M ≤ p2`(δ/ρ)`M ≤ p2N(δ/ρ)`M.

Since f (`)
n = 0 for ` > N , this remains valid for each ` ∈ N. Then, by (3.5), Leibniz formula

for the derivative of a product yields, for each integer k ≥ 1,

|g(k)(αj)|p ≤ max
0≤`<k

|f (`)
n (αj)|p ≤ p2N(δ/ρ)k−1M.

Since αi ∈ B and g(αj) = 0, we deduce that

|Pn(αi)e
αj−αi − Pn(αj)|v = |g(αi)|p ≤ |g|B = sup

k≥1

∣∣∣∣g(k)(αj)k!

∣∣∣∣
p

ρk ≤ p2N(ρ/δ)M.

The upper bound (3.4) follows since

M ≤
s∏

k=1

sup{|z − αk|p ; z ∈ B}nk =
s∏

k=1

max{|αi − αk|v, |αj − αk|v}nk . �

Theorem 3.2. Let n = (n1, . . . , ns) ∈ Ns
+. Then the subset Cn,v of Ks

v defined in Section

2.3 contains the points an−e1 , . . . , an−es.
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Proof. Fix an integer ` ∈ {1, . . . , s} and put P = Pn−e` . To show that Cn,v contains the point

an−e` = (P (α1), . . . , P (αs)), we fix arbitrary i, j ∈ {1, . . . , s}. Since max{|αi − α`|v, δ} ≥
δ ≥ 1/p, the inequality (3.2) of Lemma 3.1 applied to n− e` instead of n provides∣∣P (αi)

∣∣
v
≤ p2(N − 1)

1

δ

s∏
k=1

max{|αi − αk|v, δ}nk ≤ p3N

s∏
k=1

max{|αi − αk|v, δ}nk .

If |αi − αk|v = 1 for each k = 1, . . . , s with k 6= i, the inequality (3.3) of the same lemma

also provides ∣∣P (αi)
∣∣
v
≤ |(ni − 1)!|v.

Finally, if ρ = |αj − αi|v satisfies 0 < ρ < δ, then, since max{|αi − α`|v, |αj − α`|v} ≥ ρ, the

inequality (3.4) with n replaced by n− e` yields

|P (αi)e
αj−αi − P (αj)|v ≤

ρ

δ
p2(N − 1) · 1

ρ

s∏
k=1

max{|αi − αk|v, |αj − αk|v}nk

≤ p3N
s∏

k=1

max{|αi − αk|v, |αj − αk|v}nk . �

4. Preliminaries of graph theory

A graph G is a pair (V,E) where V is a finite non-empty set and E is a possibly empty

set consisting of subsets of V with two elements. The elements of V are called the vertices

of G and those of E the edges of G in agreement with the usual graphic representation.

Let G = (V,E) be a graph. An elementary chain in G is a sequence (α1, . . . , αm) of m ≥ 2

distinct elements of V such that {αi, αi+1} ∈ E for i = 1, . . . ,m − 1. We say that G is

connected if, for each pair of distinct elements α, β of V , there exists at least one elementary

chain (α1, . . . , αm) in G with α1 = α and αm = β. We say that G is a tree if there exists

exactly one such chain for each choice of α, β ∈ V with α 6= β. When G is connected, we

have |V | ≤ |E|+ 1 with equality if and only if G is a tree.

In general, for a graph G = (V,E), there exists one and only one choice of integer r ≥ 1

and partitions V = V1 ∪ · · · ∪ Vr and E = E1 ∪ · · · ∪ Er of V and E into r disjoint subsets

such that Gi = (Vi, Ei) is a connected graph for i = 1, . . . , r. We say that G1, . . . , Gr are the

connected components of G. If these are trees, we say that G is a forest. When G admits r

connected components, we have |V | ≤ |E|+ r with equality if and only if G is a forest.

A rooted forest is a triple G = (R, V,E) where (V,E) is a forest and where R is a subset

of V containing exactly one vertex from each connected component of (V,E). We say that

R is the set of roots of G. Then, for each β ∈ V \ R, there is a unique elementary chain

(α1, . . . , αm) with α1 ∈ R and αm = β. So we obtain a partial ordering on V by defining

α < β if β /∈ R∪{α} and if the elementary chain which links β to an element of R contains α.

In particular, any edge {α, β} ∈ E can be ordered so that α < β. The resulting pairs (α, β)

are called the directed edges of G. For fixed α ∈ V , we say that DG(α) = {β ∈ V ; α < β} is
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the set of descendants of α. The set SG(α) of minimal elements of DG(α) is called the set of

successors of α. Note that the pairs (α, β) ∈ V ×V with β ∈ SG(α) are exactly the directed

edges of G. Moreover, any β ∈ V \ R is the successor of a unique α ∈ V . This allows us to

formulate the following result.

Proposition 4.1. Let G = (R, V,E) be a rooted forest, let K be a field, let (xα)α∈V be a

family of indeterminates over K indexed by V , and let ϕ : E → K be a function. For each

β ∈ V , we define

Lβ =

{
xβ if β ∈ R,

xβ − ϕ({α, β})xα if β ∈ SG(α) with α ∈ V .

Then, upon extending the partial ordering on V to a total ordering, the matrix of the linear

forms (Lβ)β∈V with respect to the basis (xα)α∈V is lower triangular with 1 everywhere on the

diagonal.

5. Paths of steepest ascent

In this section, we fix a non-constant monic polynomial f(z) ∈ C[z], a compact convex

subset K of C containing all the roots of f , and a closed disk D of C containing K. We

denote by N the degree of f , and by R the radius of D. The main goal of this section is to

prove the following result.

Theorem 5.1. Let β ∈ K. There exists a root α of f and a path γ : [0, 1] → C linking

γ(0) = α to γ(1) = β, such that f(γ(t)) = tf(β) for each t ∈ [0, 1]. The image of such a

path is contained in K, with length at most πRN .

By a path we mean here a continuous piecewise differentiable map γ : I → C on a closed

subinterval I of R. For a path γ as in the statement of the theorem, γ(0) is necessarily a

root of f and we have max{|f(γ(t))| ; 0 ≤ t ≤ 1} = |f(β)|. We will see that, in fact, γ is a

path of steepest ascent for |f |.

For the proof, we consider the polynomial f as a covering of Riemann surfaces f : C→ C
of degree N , ramified in a finite number of points. Then any path γ : [0, 1]→ C lifts into N

paths γ1, . . . , γN : [0, 1] → C such that f−1(γ(t)) = {γ1(t), . . . , γN(t)} for all t ∈ [0, 1]. The

latter are not unique in general, because of ramification, and are constructed by pasting as

in the proof of [8, Theorem 4.14]. For a path γ of the form γ(t) = tf(β) with f(β) 6= 0, this

leads to the following statement.

Lemma 5.2. Let β ∈ C with f(β) 6= 0, and let m = m(β) ≥ 0 denote the order of the

derivative of f at β. Then, there exist δ ∈ (0, 1) and m+ 1 paths γ0, . . . , γm from [0, 1] to C
such that

(i) γ0(1) = · · · = γm(1) = β,

(ii) f(γ0(t)) = · · · = f(γm(t)) = tf(β) for each t ∈ [0, 1],



14 DAMIEN ROY

(iii) γ0(t), . . . , γm(t) are m+ 1 distinct numbers for each t ∈ (1− δ, 1).

Moreover, for each j = 0, 1, . . . ,m and each t ∈ (0, 1) such that f ′(γj(t)) 6= 0, the function

γj is analytic at t and its derivative γ′j(t) heads in the direction where the norm |f | of f

grows fastest.

The last assertion of the lemma means that γ0, . . . , γm are paths of steepest ascent for

the norm of f . This is true in fact for any path γ such that f(γ(t)) = ct (0 ≤ t ≤ 1) with

a fixed c ∈ C \ {0} because the image of the map t 7→ ct with t ≥ 0 is a half line that is

orthogonal to the circles centered at the origin. As the map f : C→ C is conformal outside

of the ramification points, the preimage γ of this curve is orthogonal to the level curves of

|f | outside of these points. We will revisit the construction of the paths γj in Lemma 6.3.

Proof of Theorem 5.1. If f(β) = 0, the constant path γ(t) = β for each t ∈ [0, 1] is the

only possible choice and it has the required properties. Suppose from now on that f(β) 6= 0.

Then the preceding lemma provides a path γ of the required type linking β to a root of f .

Fix such a path. For the computations, we denote by α1, . . . , αs the distinct roots of f in C
and by n1, . . . , ns their respective multiplicities so that

f(z) = (z − α1)
n1 · · · (z − αs)ns .

We also denote by B the set of zeros of the derivative f ′ of f .

By Gauss-Lucas theorem the set B is contained in the convex hull of the roots of f , thus

B ⊂ K. The fact that the image of γ is contained in K admits a similar proof. Indeed,

suppose by contradiction that the image escapes from K. Then, since K is convex, there

exists a half-plane containing K but not the image of γ. More precisely, there exist a, b ∈ C
with |a| = 1 such that Re(az + b) ≤ 0 for each z ∈ K and Re(aγ(t) + b) > 0 for at least one

t ∈ [0, 1]. Choose t0 ∈ [0, 1] for which Re(aγ(t0) + b) is maximal, and set z0 = γ(t0). Since

Re(az0+b) > 0, we have z0 /∈ K, thus t0 ∈ (0, 1) and z0 /∈ B. Therefore γ is differentiable at t0
with Re(aγ′(t0)) = 0. However, by differentiating both sides of the equality f(γ(t)) = tf(β)

at t = t0, we obtain

aγ′(t0) =
af(β)

f ′(γ(t0))
=

af(z0)

t0f ′(z0)
=

(
s∑
`=1

t0n`
a(z0 − α`)

)−1
.

As Re(a(z0−α`)) = Re(az0 + b)−Re(aα` + b) ≥ Re(az0 + b) > 0 for ` = 1, . . . , s, we deduce

that Re(aγ′(t0)) > 0, a contradiction.

To estimate the length L(γ) of γ, we use the Cauchy-Crofton formula

L(γ) =
1

4

∫ 2π

0

A(θ) dθ where A(θ) =

∫ ∞
−∞

N(r, θ) dr ,

and N(r, θ) = Card{t ∈ [0, 1] ; Re(γ(t)e−iθ) = r}
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(see for example the beautiful proof of [1]). Fix r, θ ∈ R and consider the polynomial

gr,θ(u) = Im

(
f((r + iu)eiθ)

f(β)

)
∈ R[u].

If t0 ∈ [0, 1] satisfies Re(γ(t0)e
−iθ) = r, we may write γ(t0) = (r + iu0)e

iθ for some u0 ∈ R.

Then we have f((r + iu0)e
iθ) = t0f(β) and consequently gr,θ(u0) = 0. As γ is injective on

[0, 1] (because f ◦γ is), this means that N(r, θ) is at most equal to the number of real roots of

gr,θ. But, as f has degree N , the polynomial gr,θ(u) has degree at most N and its coefficient

of uN is Im((ieiθ)N/f(β)). Thus, except possibly for the 2N values of θ ∈ [0, 2π) for which

this coefficient vanishes, we have gr,θ 6= 0 and thus N(r, θ) ≤ N .

For fixed θ, the set {Re(ze−iθ) ; z ∈ D} is an interval Iθ of R of length 2R. As the image

of γ is contained in K ⊂ D, we have N(r, θ) = 0 if r /∈ Iθ. We conclude that A(θ) ≤ 2RN

except for at most 2N values of θ ∈ [0, 2π), and thus L(γ) ≤ πRN .

6. A tree of paths between complex roots

As in the preceding section, we fix a non-constant monic polynomial f(z) ∈ C[z]. We

denote by N its degree, by A = {α1, . . . , αs} the set of its complex roots, by K the convex

hull of A, and by R the radius of a closed disk D containing A. We also denote by B =

{β1, . . . , βp} the set of roots of f ′(z) which are not roots of f(z), that is the set of zeros of

the logarithmic derivative f ′(z)/f(z). Then we may write

f(z) = (z − α1)
n1 · · · (z − αs)ns ,(6.1)

f ′(z) = N(z − α1)
n1−1 · · · (z − αs)ns−1(z − β1)m1 · · · (z − βp)mp ,(6.2)

for integers n1, . . . , ns ≥ 1 with sum N , and integers m1, . . . ,mp ≥ 1 with sum s− 1.

For each β ∈ C, we denote by m(β) the order of f ′(z) at β. With this notation, we have

mj = m(βj) for j = 1, . . . , p. The goal of this section is to prove the following result.

Theorem 6.1. There exists a tree G with the following properties:

(i) Its set of vertices is A.

(ii) It has s− 1 edges, each one indexed by an element of B.

(iii) For each β ∈ B, there are exactly m(β) edges indexed by β.

(iv) If {α, α′} is an edge of G indexed by β, there exists a path γ : [0, 1]→ C of length at

most 2πRN , contained in K, linking γ(0) = α to γ(1) = α′, such that

γ(1/2) = β and max
0≤t≤1

|f(γ(t))| = |f(β)|.

When all the roots of f(z) are real, we have f(z) ∈ R[z] and we can give a very simple

proof of the theorem. To this end, we may assume that the roots are labelled in increasing

order α1 < · · · < αs. Then, in each interval [αj, αj+1] with 1 ≤ j ≤ s− 1, the function |f(z)|
achieves its maximum in a zero βj of f ′(z) with αj < βj < αj+1. Since B has cardinality



16 DAMIEN ROY

p ≤ s− 1, this exhausts all the elements of B: we have p = s− 1 and m1 = · · · = ms−1 = 1.

We take for G the graph with set of vertices A, whose edges are the pairs {αj, αj+1} indexed

by βj for j = 1, . . . , s − 1. Then G is a tree and, for each j = 1, . . . , s − 1, the piecewise

affine linear path γj with γj(0) = αj, γj(1/2) = βj and γj(1) = αj+1 fulfills the conditions in

(iv). Moreover its length is αj+1 − αj ≤ 2R.

Step 1. The proof of the general case requires several lemmas. For each β ∈ B, we choose

once for all m(β) + 1 paths γβ,0, . . . , γβ,m(β) with end point β as in Lemma 5.2. Then we

have γβ,j(0) ∈ A for j = 0, . . . ,m(β). Our goal is to show that these m(β) + 1 points of A

are distinct and that the graph G with vertices α1, . . . , αs and edges {γβ,0(0), γβ,j(0)} with

β ∈ B and 1 ≤ j ≤ m(β) satisfies the properties (i) to (iv) from the theorem. Note that this

graph is independent of the choices if and only if m(β) = 1 for each β ∈ B and no pair of

elements of B can be connected by a path of steepest ascent. We start with property (iv).

Lemma 6.2. Let β ∈ B and j ∈ {1, . . . ,m(β)}. Then the path γ̃ from γβ,0(0) to γβ,j(0)

given by

γ̃(t) =

{
γβ,0(2t) if 0 ≤ t ≤ 1/2,

γβ,j(2− 2t) if 1/2 ≤ t ≤ 1,

is contained in K, with length at most 2πRN . Moreover, it satisfies

γ̃(1/2) = β and max
0≤t≤1

|f(γ̃(t)| = |f(β)|.

Proof. We have B ⊂ K by Gauss-Lucas theorem. Then, for each β ∈ B, Theorem 5.1 shows

that the paths γβ,0 and γβ,j are contained in K with length at most πRN . The conclusion

follows since these are paths of steepest ascent for |f |. �

Step 2. We first prove the following result where S = C ∪ {∞} stands for the Riemann

sphere with its usual topology. Afterwards, we use it to construct a tree H on A ∪B.

Lemma 6.3. Let β ∈ B and let m = m(β). There exist δ > 0 and m + 1 continuous

functions γ+0 , . . . , γ
+
m from [1,∞] to S = C ∪ {∞} such that

(i) γ+0 (1) = · · · = γ+m(1) = β,

(ii) f(γ+0 (t)) = · · · = f(γ+m(t)) = tf(β) for each t ∈ [1,∞],

(iii) γ+0 (t), . . . , γ+m(t) are m+ 1 distinct numbers for each t ∈ (1, 1 + δ).

Then, the curves Γ+
0 = γ+0 ([1,∞]), . . . ,Γ+

m = γ+m([1,∞]) meet only at the points β and ∞ on

S. Moreover, their complement S \ (Γ+
0 ∪ · · · ∪ Γ+

m) is the union of m+ 1 disjoint connected

open subsets R0, . . . ,Rm of C such that γβ,j([0, 1)) ⊆ Rj for j = 0, . . . ,m.

The proof is based on Jordan curve theorem and is illustrated in Figure 1.
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∞

· · · Γ+
1 Γ−0 Γ+

0 Γ−m Γ+
m Γ−m−1 Γ+

m−1 · · ·

β

Rm

Rm−1R0

γ−0 (0)

γ−m(0)

γ−m−1(0)

Figure 1. Illustration for the proof of Lemma 6.3.

Proof. Upon putting ` = m + 1, we may write f(z) = f(β)(1 + (z − β)`g(z)) where g(z)

is a polynomial with g(β) 6= 0. Then, for sufficiently small ε > 0, there exist an open

neighborhood V of β and a biholomorphic function h from V to B(0, ε) = {z ∈ C ; |z| < ε}
satisfying h(β) = 0 and

f(z) = f(β)(1 + h(z)`)

for each z ∈ V . Fix such a choice of ε, V and h, and set δ = ε` and ρ = eπi/`. For

j = 0, . . . ,m, we define a continous function γ+j : [1, 1 + δ)→ V by

(6.3) γ+j (t) = h−1
(
ρ2j(t− 1)1/`

)
(1 ≤ t < 1 + δ).

Then, for fixed t ∈ (1, 1 + δ), the numbers z = γ+0 (t), . . . , γ+m(t) are the ` distinct solutions

of f(z) = tf(β) with z ∈ V . In particular, γ+0 , . . . , γ
+
m satisfy Conditions (i) and (iii) of the

lemma, as well as (ii) for each t ∈ [1, 1 + δ). For j = 0, . . . ,m, we extend γ+j to a continuous

function γ+j : [1,∞]→ S satisfying f(γ+j (t)) = tf(β) for each t ∈ [1,∞].

Similarly, for j = 0, . . . ,m, we define a continuous function γ−j : (1− δ, 1]→ V by

γ−j (t) = h−1
(
ρ2j+1(1− t)1/`

)
(1− δ < t ≤ 1).

For fixed t ∈ (1−δ, 1), the numbers z = γ−0 (t), . . . , γ−m(t) are the ` distinct solutions of f(z) =

tf(β) with z ∈ V , thus they form a permutation of γβ,0(t), . . . , γβ,m(t). This permutation

being independent of t, there is no loss of generality in assuming that γ−j is the restriction

of γβ,j to (1 − δ, 1] for j = 0, . . . ,m. Then we extend each γβ,j : [0, 1] → C to a continuous

function γ−j : [−∞, 1]→ S such that f(γ−j (t)) = tf(β) for each t ∈ [−∞, 1].

Put Γ−j = γ−j ([−∞, 1]) and Γ+
j = γ+j ([1,∞]) for j = 0, . . . ,m, and fix j, k ∈ {0, 1, . . . ,m}.

The curves Γ−j and Γ+
k meet only at the points β and ∞ because if γ−j (t) = γ+k (u) for

some t ∈ [−∞, 1] and u ∈ [1,∞], then tf(β) = uf(β), thus t = u = 1 or −t = u = ∞.

Suppose now that j < k. As the curves Γ+
j and Γ+

k meet at infinity, there exists a smallest

r ∈ [1 + δ,∞] such that γ+j (r) = γ+k (r). For this choice of r, the union γ+j ([1, r]) ∪ γ+k ([1, r])

is a simple closed curve Γ. By Jordan curve theorem, its complement in S is thus the
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union of two connected open sets R and R′ with boundary Γ. On the other hand, the map

h : V → B(0, ε) is a homeomorphism and, in view of (6.3), we find that

V ∩ Γ = γ+j ([1, 1 + δ)) ∪ γ+k ([1, 1 + δ)) = h−1(P ) where P = [0, ε)ρ2j ∪ [0, ε)ρ2k.

As P is the union of two rays in B(0, ε) making angles 2πj/` and 2πk/` with respect to

the real axis, its complement B(0, ε) \ P is the union of two disjoint connected open sets U
and U ′ which are open sectors of the disk B(0, ε). One of them, say U , contains the rays

(0, ε)ρ2i+1 with j ≤ i < k while the other U ′ contains those with 0 ≤ i < j or k ≤ i ≤ m. As

h is a homeomorphism, h−1(U) and h−1(U ′) are disjoint connected open subsets of S whose

union is V \ Γ. We may assume that h−1(U) ⊂ R and h−1(U ′) ⊂ R′. Then, we obtain

γ−i ((1− δ, 1)) = h−1((0, ε)ρ2i+1) ⊆

{
R if j ≤ i < k,

R′ else.

However, R and R′ share the same boundary, contained in Γ+
j ∪ Γ+

k . Thus none of the sets

Γ−i \{β,∞} = γ−i ((−∞, 1)) meet this boundary. As these are connected curves, we conclude

that Γ−i \ {β,∞} is contained in R if j ≤ i < k and in R′ otherwise. In particular, none of

the open subsets R and R′ of C is bounded and consequently we must have r = ∞. This

means that Γ+
j and Γ+

k meet only at β and ∞.

With the above notation, we define Rj = R for the choice of j ∈ {0, . . . ,m − 1} and

k = j + 1. We also define Rm = R′ for the choice of j = 0 and k = m. These are connected

open subsets of C with γβ,j([0, 1)) ⊂ Γ−j \ {β,∞} ⊂ Rj for j = 0, . . . ,m. It remains to show

that R0, . . . ,Rm pairwise disjoint. To this end, we first note that if j 6= k, then Rj 6⊆ Rk

since Γ−j \ {β,∞} is contained in Rj but not in Rk. So if Rj and Rk intersect, then Rj

meets the boundary of Rk. Then Rj contains at least one point of Γ+
i \ {β,∞} for some

i ∈ {0, 1, . . . ,m}. However, by the choice of Rj, we have γ+i (t) /∈ Rj for each t ∈ (1, 1 + δ).

Thus the curve Γ+
i \ {β,∞} is not fully contained in Rj and, as it is a connected set, it

meets the boundary of Rj without being fully contained in it. This is impossible because

that boundary is the union of two curves among Γ+
0 , . . . ,Γ

+
m. �

Lemma 6.4. For each β ∈ B, the m(β) + 1 points γβ,j(0) ∈ A with 0 ≤ j ≤ m(β) are

distinct. Moreover, let H be the graph whose set of vertices is A ∪ B and whose edges are

the pairs {β, γβ,j(0)} with β ∈ B and 0 ≤ j ≤ m(β). Then H is a tree.

Proof. The first assertion is a direct consequence of the preceding lemma because, for β ∈ B
and m = m(β), this lemma provides disjoint connected open sets R0, . . . ,Rm such that

γβ,j(0) ∈ Rj for j = 0, . . . ,m.

To begin with, suppose that H is not a forest. Then H contains a simple cycle: an

elementary chain (a1, . . . , ak) with k ≥ 3 such that {ak, a1} is an edge of H. Then, k is an

even integer and the ai’s belong alternatively to A or B according to the parity of i. By

permuting cyclicly the elements of this chain if necessary, we may assume that a1 ∈ B and

that |f(a1)| ≥ |f(ai)| for i = 1, . . . , k. Let m = m(a1) and let R0, . . . ,Rm be the connected
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open sets associated to the point a1 ∈ B by Lemma 6.3. For each point z 6= a1 outside of

these open sets, we have f(z) = tf(a1) for a real number t > 1, thus |f(z)| > |f(a1)|. We

set ak+1 = a1 and, for i = 1, . . . , k, we denote by γi the path of the form γβ,j which links ai
and ai+1. For each t ∈ [0, 1], we have f(γi(t)) = tf(ai) if i is odd and f(γi(t)) = tf(ai+1) if i

is even. In both cases, this yields |f(γi(t))| ≤ |f(a1)|, with the strict inequality if t 6= 1. As

a1, . . . , ak are distinct and as γi(1) ∈ {a3, . . . , ak−1} when 2 ≤ i ≤ k − 1, we deduce that the

curve

Γ = γ1([0, 1)) ∪ γ2([0, 1]) ∪ · · · ∪ γk−1([0, 1]) ∪ γk([0, 1))

is contained in R0 ∪ · · · ∪ Rm. As this is a connected subset of C, it is therefore fully

contained in Rj for some j. Since γ1(1) = γk(1) = a1, this implies that γ1 = γk, thus

a2 = γ1(0) = γk(0) = ak, which is impossible.

So H is a forest. Therefore, its number of connected components is equal to its number

of vertices minus its number of edges, that is

|A ∪B| −
∑
β∈B

(m(β) + 1) = s−
∑
β∈B

m(β) = 1.

Thus H is connected and so it is a tree. �

Step 3. Proof of Theorem 6.1. Let G be the graph whose set of vertices is A and whose

edges are the pairs

(6.4) {γβ,0(0), γβ,j(0)}
(
β ∈ B, 1 ≤ j ≤ m(β)

)
.

Since H is connected, so is the graph G. Since G possesses s = |A| vertices and since∑
β∈Bm(β) = s−1, we deduce that the s−1 edges (6.4) are distinct and that G is a tree. In

particular, for each β ∈ B, there are exactly m(β) edges of G indexed by β and Lemma 6.2

shows that, for each of them, there exists a path satisfying Condition (iv) of the theorem.

7. Computation of a semi-resultant

We first prove the following formula.

Proposition 7.1. With the notation of the preceding section, we have

NN

p∏
j=1

f(βj)
mj =

s∏
i=1

(
nnii
∏
k 6=i

(αi − αk)nk
)
.

The left hand side of this equality is the semi-resultant of f(z) and f ′(z) in the sense of

Chudnovsky [5, 7].

Proof. The formula for the derivative of a product applied to the factorization (6.1) of f(z)

yields

f ′(z) = (z − α1)
n1−1 · · · (z − αs)ns−1g(z)
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where

g(z) =
s∑

k=1

nk
∏
i 6=k

(z − αi).

By comparison with the factorization (6.2) of f ′(z), we also find that

g(z) = N(z − β1)m1 · · · (z − βp)mp .

Upon evaluating both expressions for g(z) at z = αk, we obtain

N

p∏
j=1

(αk − βj)mj = nk
∏
i 6=k

(αk − αi) (1 ≤ k ≤ s).

Since m1 + · · ·+mp = s− 1, these equalities may be rewritten as

N

p∏
j=1

(βj − αk)mj = nk
∏
i 6=k

(αi − αk) (1 ≤ k ≤ s).

As stated, this yields

NN

p∏
j=1

f(βj)
mj = NN

p∏
j=1

( s∏
k=1

(βj − αk)nk
)mj

=
s∏

k=1

(
N

p∏
j=1

(βj − αk)mj
)nk

=
s∏

k=1

(
nk
∏
i 6=k

(αi − αk)
)nk

=
s∏
i=1

(
nnii
∏
k 6=i

(αi − αk)nk
)
. �

Corollary 7.2. With the same notation, we have

N !

p∏
j=1

∣∣f(βj)
∣∣mj ≤ s∏

i=1

(
ni!
∏
k 6=i

|αi − αk|nk
)
.

Proof. Since N = n1 + · · ·+ ns, we find

N !

n1! · · ·ns!

(n1

N

)n1

· · ·
(ns
N

)ns
≤
(n1

N
+ · · ·+ ns

N

)N
= 1.

This yields N !
∏s

i=1 n
ni
i ≤ NN

∏s
i=1 ni! , and the conclusion follows. �

8. Volume of the Archimedean components

We are now ready to prove the upper bound estimate in Theorem 2.3 (i). The notation is

as in Section 2.

Theorem 8.1. Let v be an Archimedean place of K and let Cn,v be the convex body of Ks
v

defined in Section 2.3 for the choice of an s-tuple n = (n1, . . . , ns) ∈ Ns
+. Then, we have

µv(Cn,v)1/dv ≤ cvN
2s−2|∆n|v with cv = 2sesRv(2πRs

v)
s−1|∆1|−1v ,

where N = n1 + · · ·+ ns, Rv = max1≤i<j≤s |αi − αj|v, and 1 = (1, . . . , 1).
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Proof. To simplify, we may assume that K ⊂ C and that |α|v = |α| for each α ∈ K.

By permuting α1, . . . , αs if necessary, we may also assume that n1 ≥ · · · ≥ ns form a non-

increasing sequence. We denote by D the closed disk of radius Rv and center (α1+· · ·+αs)/s
in C. As this disk contains α1, . . . , αs, it also contains the convex hull K of these points.

Suppose first that n1 ≥ 2 and let r be the largest index such that nr ≥ 2. We form the

polynomial

f(z) =
fn(z)

(z − α1) · · · (z − αs)
=

r∏
i=1

(z − αi)ni−1.

The set of its roots is A = {α1, . . . , αr} and its degree is N − s. Its derivative factors as

f ′(z) = (N − s)(z − α1)
n1−2 · · · (z − αr)nr−2(z − β1)m1 · · · (z − βp)mp

where B = {β1, . . . , βp} is the set of roots of f ′(z) outside of A, and where mj is the

multiplicity of βj for j = 1, . . . , p. We choose a tree G as in Theorem 6.1 for this polynomial

f(z). By construction, the set of vertices of G is A. We now extend G to a graph G̃ on

{α1, . . . , αs} in the following way. For each j = r+ 1, . . . , s, we choose a path γj : [0, 1]→ C
such that γj(1) = αj and f(γj(t)) = tf(αj) as in Theorem 5.1. Then γj(0) is a root of f , thus

an element of A, and we add the edge {γj(0), αj} to the graph G. Finally, we choose α1 ∈ A
as a root of the resulting tree G̃. As explained in Section 4, this turns G̃ into an oriented

graph. Let Ẽ denote the set of oriented edges of G̃. By construction, Cn,v is contained in

the set C̃n,v of all points (x1, . . . , xs) ∈ Ks
v satisfying

|x1|v ≤ eRv(N − 1)!

as well as

|xieαj−αi − xj|v ≤ bi,j := max
1≤k≤s

∣∣∣∣∫ αj

αi

fn−ek(z)eαj−zdz

∣∣∣∣
for each directed edge (αi, αj) in Ẽ. By Proposition 4.1, the s linear forms defining C̃n,v are

linearly independent with determinant 1, in some ordering. Thus C̃n,v is a convex body of

Ks
v with

(8.1) µv(Cn,v)1/dv ≤ µv(C̃n,v)1/dv ≤ 2seRv(N − 1)!
∏

(αi,αj)∈Ẽ

bi,j.

For now, fix (αi, αj) ∈ Ẽ and k ∈ {1, . . . , s}. By construction, we have i ≤ r, that is

αi ∈ A. If j ≤ r, we also have αj ∈ A, and {αi, αj} is an edge of G. Then, Theorem 6.1

associates to this edge a point β ∈ B and a path γ : [0, 1] → C of length at most 2πRvN ,

contained in K, joining αi and αj, such that

max
0≤t≤1

|f(γ(t))| = |f(β)|.
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Using a hat to indicate that a factor is omitted in a product, this yields∣∣∣∣∫ αj

αi

fn−ek(z)eαj−zdz

∣∣∣∣ =

∣∣∣∣∫ αj

αi

f(z)(z − α1) · · · ̂(z − αk) · · · (z − αs)eαj−zdz
∣∣∣∣

≤ 2πRvN |f(β)| max
z∈K

∣∣(z − α1) · · · ̂(z − αk) · · · (z − αs)eαj−z
∣∣

≤ 2πRs
ve
RvN |f(β)| ,

since |z − α`| ≤ Rv for any z ∈ K and ` = 1, . . . , s. Finally, if j > r, we have αi = γj(0) for

the path γj chosen earlier. By Theorem 5.1, the image of γj is contained in K, of length at

most πRvN ≤ 2πRvN . Thus the same computation as above yields∣∣∣∣∫ αj

αi

fn−ek(z)eαj−zdz

∣∣∣∣ ≤ 2πRs
ve
RvN |f(αj)| .

Since each βj is associated to mj edges of G and since Ẽ has cardinality s− 1, we deduce

from (8.1) that

(8.2) µv(Cn,v)1/dv ≤ 2seRv(N − 1)!
(
2πRs

ve
RvN)s−1

p∏
j=1

|f(βj)|mj
s∏

j=r+1

|f(αj)| .

As nk = 1 for k > r, Corollary 7.2 gives

(N − s)!
p∏
j=1

∣∣f(βj)
∣∣mj ≤ r∏

i=1

(
(ni − 1)!

∏
k 6=i

|αi − αk|nk−1
)
.

For i = r + 1, . . . , s, we also have ni = 1 and so

|f(αi)| =
r∏

k=1

|αi − αk|nk−1 = (ni − 1)!
∏
k 6=i

|αi − αk|nk−1.

Using (2.5), this implies that

(N − s)!
p∏
j=1

|f(βj)|mj
s∏

j=r+1

|f(αj)| ≤
s∏
i=1

(
(ni − 1)!

∏
k 6=i

|αi − αk|nk−1
)

=
|∆n|v
|∆1|v

.

Substituting this upper bound in (8.2), we conclude that µv(Cn,v)1/dv ≤ cvN
2s−2|∆n|v, as in

the statement of the theorem. �

9. A forest at ultrametric places

Let v be an ultrametric place of K. In this section we use the terminology for graphs

explained in Section 4 to build a rooted forest on an arbitrary non-empty finite subset of

Kv. We start with a preliminary construction.

Proposition 9.1. Let A be a non-empty finite subset of Kv and let α0 ∈ A. There exists

a tree G rooted in α0 having A as its set of vertices, such that, for each α, β, γ ∈ A with

β ∈ SG(α), we have

(9.1) γ ∈ DG(β) ⇐⇒ |α− β|v > |β − γ|v > 0.
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Proof. We proceed by induction on the cardinality |A| of A. If |A| = 1, there is nothing

to prove. Suppose that |A| ≥ 2. Let ρ be the largest distance between two elements of A,

and let {α0, . . . , αk} be a maximal subset of A containing α0, whose elements are at mutual

distance |αi− αj|v = ρ for 0 ≤ i < j ≤ k. Since v is ultrametric, we have k ≥ 1 and the sets

Ai := {β ∈ A ; |αi − β|v < ρ} (0 ≤ i ≤ k)

form a partition of A. For i = 0, . . . , k, we have αi ∈ Ai and |Ai| < |A|, thus we may assume

the existence of a rooted tree Gi = (αi, Ai, Ei) which fulfils Condition (9.1) for each choice

of α, β, γ ∈ Ai with β ∈ SGi(α). We set

E = E0 ∪ · · · ∪ Ek ∪ {{α0, α1}, . . . , {α0, αk}}.

Then G = (α0, A,E) is a rooted tree. Let α, β, γ ∈ A with β ∈ SG(α), and let i be the index

for which α ∈ Ai. If β ∈ Ai, then β ∈ SGi(α) and DG(β) = DGi(β), thus

γ ∈ DG(β) ⇐⇒ γ ∈ DGi(β) ⇐⇒ |α− β|v > |β − γ|v > 0.

If instead β ∈ Aj for some j 6= i, then we must have i = 0, α = α0 and β = αj. Then

|α− β|v = ρ and DG(β) = Aj \ {αj}. So we find

γ ∈ DG(β) ⇐⇒ ρ > |αj − γ|v > 0 ⇐⇒ |α− β|v > |β − γ|v > 0.

Thus G has the required property. �

As the proof shows, the graph G constructed in this way is not unique in general (since

the choice α1, . . . , αk ∈ A is not unique). This leads to the following construction which in

general is not unique either.

Theorem 9.2. Let A be a non-empty finite subset of Kv, let δ > 0, and let R be a maximal

subset of A whose elements are at mutual distance at least δ. Then, there exists a rooted

forest G having A as its set of vertices and R as its set of roots, which satisfies the following

properties:

(i) for any β ∈ R and γ ∈ A, we have

γ ∈ DG(β) ⇐⇒ δ > |β − γ|v > 0;

(ii) for any α, β, γ ∈ A with β ∈ SG(α), we have

γ ∈ DG(β) ⇐⇒ |α− β|v > |β − γ|v > 0.

Proof. For each ρ ∈ R, we define

A(ρ) = {α ∈ A ; |α− ρ|v < δ},

and we choose a rooted tree G(ρ) = (ρ,A(ρ), E(ρ)) as in Proposition 9.1. Since the sets A(ρ)

with ρ ∈ R form a partition of A, the union of these graphs constitutes a rooted forest

G = (R,A,E) where E = ∪ρ∈RE(ρ). By construction, it satisfies Condition (i). To show

that Condition (ii) is also fulfilled, fix α, β, γ ∈ A with β ∈ SG(α), and let ρ ∈ R such that

α ∈ A(ρ). Since β ∈ SG(α), we have β ∈ A(ρ) and DG(β) = DG(ρ)(β). Moreover, if γ satisfies
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|α − β|v > |β − γ|v then |β − γ|v < δ and so γ ∈ A(ρ). Thus Condition (ii) for α, β, γ is

satisfied in G since it is satisfied in G(ρ). �

In terms of elementary chains, Conditions (i) and (ii) of the theorem can be reformulated

as follows: given γ ∈ A, a sequence (γ1, . . . , γk) in G, with k ≥ 1 and γk 6= γ, starting on

a root γ1 ∈ R, can be extended to an elementary chain (γ1, . . . , γ`) ending on γ` = γ if

and only if either we have k = 1 and δ > |γ1 − γ|v > 0 or the sequence (γ1, . . . , γk) is an

elementary chain with k ≥ 2 and |γk−1 − γk|v > |γk − γ|v > 0.

10. Volume of the ultrametric components

We now complete the proof of Theorem 2.3 by proving the remaining estimates in parts

(ii) and (iii). The notation is as in Section 2.

Theorem 10.1. Let v be a place of K above a prime number p, let n = (n1, . . . , ns) ∈ Ns
+

and let N = n1 + · · ·+ns. Then the sub-Ov-module Cn,v of Ks
v defined in Section 2.3 satisfies

µv(Cn,v)1/dv ≤ (p3N)s|∆n|v .

Moreover, if |αi − αj|v = 1 for each i, j ∈ {1, . . . , s} with i 6= j, then we also have

µv(Cn,v)1/dv = |∆n|v.

Proof. We apply Theorem 9.2 to the set A = {α1, . . . , αs} with δ = p−1/(p−1). It provides a

rooted forest G with set of roots R, set of vertices A, and set of edges E (possibly empty).

For each α ∈ A, we define xα = xi and nα = ni where i is the index for which α = αi. Then,

Cn,v is contained in the set C̃n,v of points (x1, . . . , xs) ∈ Ks
v satisfying

|xβ|v ≤ p3N
∏
γ∈A

max{|β − γ|v, δ}nγ

for each root β ∈ R, as well as

|xαeβ−α − xβ|v ≤ p3N
∏
γ∈A

max{|α− γ|v, |β − γ|v}nγ

for each directed edge (α, β) ∈ E or equivalently for each pair {α, β} with β ∈ SG(α) (since

we then have |β − α|v < δ). By Proposition 4.1, the above s linear forms are linearly

independent with determinant 1, in some ordering. So C̃n,v is a free sub-Ov-module of Ks
v of

rank s with

µv(Cn,v)1/dv ≤ µv(C̃n,v)1/dv ≤ (p3N)s∆′∆′′

where

∆′ =
∏
β∈R
γ∈A

max{|β − γ|v, δ}nγ and ∆′′ =
∏

α,β,γ∈A
β∈SG(α)

max{|α− γ|v, |β − γ|v}nγ .
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Let β, γ ∈ A. If β ∈ R, Theorem 9.2 (i) yields

(10.1) max{|β − γ|v, δ} =

{
δ if γ ∈ DG(β) ∪ {β},
|β − γ|v else.

Otherwise, there exists a unique α ∈ A such that β ∈ SG(α) and, since

|α− γ|v > |β − γ|v ⇐⇒ |α− β|v > |β − γ|v,

Theorem 9.2 (ii) yields

(10.2) max{|α− γ|v, |β − γ|v} =

{
|α− γ|v if γ ∈ DG(β) ∪ {β},
|β − γ|v else.

Since DG(β) ∪ {β} runs through all connected components of G as β runs through R and

since we have
∑

γ∈A nγ = N , the equality (10.1) implies that

∆′ = δN
∏
β∈R

γ/∈DG(β)∪{β}

|β − γ|nγv .

Furthermore, the equality (10.2) implies that

∆′′ =

( ∏
α∈A

γ∈DG(α)

|α− γ|nγv

)( ∏
β/∈R

γ/∈DG(β)∪{β}

|β − γ|nγv

)

As a result we obtain

∆′∆′′ = δN
∏
β∈A

∏
γ∈A\{β}

|β − γ|nγv .

Since δN =
∏

β∈A δ
nβ ≤

∏
β∈A |nβ!|v ≤

∏
β∈A |(nβ − 1)!|v, we conclude that

µv(Cn,v)1/dv ≤ (p3N)s
∏
β∈A

∣∣∣(nβ − 1)!
∏
γ 6=β

(β − γ)nγ
∣∣∣
v

= (p3N)s|∆n|v.

Finally, if |αi − αj|v = 1 for each i, j ∈ {1, . . . , s} with i 6= j, then Cn,v consists of all points

(x1, . . . , xs) ∈ Ks
v satisfying

|xi|v ≤ |(ni − 1)!|v
for i = 1, . . . , s, thus

µ(Cn,v)1/dv =
s∏
i=1

|(ni − 1)!|v = |∆n|v. �

11. A special case

The adelic convex bodies Cn associated to a point (α1, . . . , αs) ∈ Ks depend only on the

differences αj − αi with 1 ≤ i < j ≤ s. So, we may always assume that α1 = 0. Then for

s = 2, we simply have a point (0, α) ∈ K2. The proposition below is an explicit form of

Corollary 2.4 for such a point and for diagonal pairs n = (n, n) ∈ N2
+. In this statement,

the adelic convex body is rescaled so that its v-adic component is contained in O2
v for each
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ultrametric place v of K. We use it afterwards to prove Propositions 1.1 and 1.2 from the

introduction. The notation is the same as in Section 2.

Proposition 11.1. Let α ∈ K \ {0}, and let S be the finite set of places v of K with v | ∞
or |α|v 6= 1. For each place v of K with v -∞, we set Bv = min

{
1, p1/(p−1)|α|v

}
where p is

the prime number below v. We also set

g =
∑
v∈S

dv
d

and B =
∏
v-∞

B−dv/dv .

Finally, for each n ∈ N+, we denote by C̃n the adelic convex body of K2 whose components

C̃n,v are defined as follows.

(i) If v | ∞, then C̃n,v is the set of points (x, y) ∈ K2
v such that

|x|v ≤ ng−1
Bn(2n)!

|α|nv n!
and |xeα − y|v ≤ ng

Bn|α|nv
4n n!

.

(ii) If v | p for a prime number p and if |α|v < p−1/(p−1), then C̃n,v consists of the points

(x, y) ∈ K2
v such that

|x|v ≤ 1 and |xeα − y|v ≤ B2n
v .

(iii) If v | p for a prime number p and if |α|v ≥ p−1/(p−1), then C̃n,v = O2
v.

Then we have

(11.1) c4n
−2g+1 ≤ λ1(C̃n) ≤ λ2(C̃n) ≤ c3

for constants c3, c4 > 0 that depend only on α and K.

Proof. Let n ∈ N+. We consider the adelic convex body Cn constructed in Section 2.3 for

the choice of α1 = 0, α2 = α and n = (n, n). For an Archimedean place v of K associated

to an embedding σ : K ↪→ C and for k = 1, 2, we find∣∣∣∣∣
∫ σ(α)

0

fσn−ek(z)eσ(α)−zdz

∣∣∣∣∣ ≤ |σ(α)|e|σ(α)| max
t∈[0,1]

∣∣fσn−ek(σ(α)t)
∣∣

≤ e|σ(α)||σ(α)|2n max
t∈[0,1]

tn−1(1− t)n−1

= 4e|α|v(|α|v/2)2n.

Thus the points (x, y) of Cn,v satisfy

|x|v ≤ e|α|v(2n− 1)! and |xeα − y|v ≤ 4e|α|v(|α|v/2)2n.

This implies that avCn,v ⊆ C̃n,v for

av =
ng−1Bn

4e|α|vαn(n− 1)!
∈ K×v .
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For each prime number p and each place v of K with v | p, we also find that avCn,v ⊆ C̃n,v
for

av =
ptv

αn(n− 1)!
∈ K×v

where tv is the integer for which

2np3B−nv ≤ ptv < 2np4B−nv

if v ∈ S, and tv = 0 otherwise. This computation is based simply on the fact that |(n−1)!|v ≥
|n!|v ≥ p−n/(p−1). Thus we obtain a Cn ⊆ C̃n for the idele a = (av)v ∈ K×A .

The product D =
∏

v{x ∈ Kv ; |x|v ≤ |av|v} ⊂ KA is an adelic convex body of K. By the

product formula applied to the principal idele αn(n− 1)! ∈ K×, we find that the volume of

D is

µ(D) = 2r1πr2
∏
v

|av|dvv = 2r1πr2
∏
v|∞

(ng−1Bn

4e|α|v

)dv ∏
p, v|p

p−tvdv .

Since
∏

v|∞B
dv = Bd =

∏
v-∞B

−dv
v , this can be rewritten as

µ(D) = c1n
d(g−1)

∏
p, v|p

(ptvBn
v )−dv ,

with c1 = 2r1πr2
∏

v|∞(4e|α|v)−dv . Since ptvBn
v = 1 if v /∈ S and ptvBn

v < 2np4 if v ∈ S and

v | p, this yields

µ(D) ≥ c2n
d(g−1)

∏
v∈S′

n−dv = c2n
dg
∏
v∈S

n−dv = c2,

where S ′ = {v ∈ S ; v - ∞} and c2 = c1
∏

v∈S′(2p
4)−dv . By Theorem 2.1 (with s = 1),

we thus have λ1(D) ≤ c3 where c3 = (2r1+r2|D(K)|1/2c−12 )1/d. This means that there exists

β ∈ K× satisfying |β|v ≤ c3|av|v for all Archimedean places v of K and |β|v ≤ |av|v for all

other places. So, we obtain

βCn ⊆ c3C̃n,

which yields

λ1(C̃n) ≤ λ2(C̃n) ≤ c3

since βCn contains the K-linearly independent points βan−e1 , βan−e2 of K2. By Theorem

2.1 (with s = 2), this implies that

λ1(C̃n) ≥ (2c3)
−1µ(C̃n)−1/d.

Finally, for each place v of K, we find that

µv(C̃n,v)1/dv ≤

{
4n2g−1B2n if v | ∞,

B2n
v else.

Since Bd
∏

v-∞B
dv
v = 1, this implies that µ(C̃n)1/d ≤ 4n2g−1, and so (11.1) follows with

c4 = (8c3)
−1. �
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Proof of Proposition 1.1. Under the hypotheses of this proposition, the field K admits a

single Archimedean place ∞, induced by the inclusion K ⊂ C. Moreover, in the notation of

Proposition 11.1, the choice of α leads to Bv = 1 for any other place v of K. Thus, for each

n ∈ N+, we obtain

C̃n = C̃n,∞ ×
∏
v 6=∞

O2
v,

where C̃n,∞ consists of all points (x, y) of K2
∞ ⊆ C2 satisfying

|x| ≤ ng−1
(2n)!

|α|n n!
and |xeα − y| ≤ ng

|α|n

4n n!
.

Moreover, by (11.1), we have λ1(C̃n) ≥ c4n
−2g+1 for a constant c4 > 0 depending only on α

and K.

Let (x, y) ∈ O2
K with x 6= 0. The above implies that, for each n ∈ N+,

if |x| < h(n) := c4n
−g (2n)!

|α|n n!
then |xeα − y| ≥ c4n

−g+1 |α|n

4n n!
.

If |x| is large enough, we can find an integer n ≥ 2 such that en ≤ h(n − 1) ≤ |x| < h(n).

Then we have n ≤ log |x| and we obtain

|x| |xeα − y| ≥ h(n− 1)c4n
−g+1 |α|n

4n n!

≥ c24|α|n−2g
(

2n− 2

n− 1

)
4−n ≥ c5n

−2g−1 ≥ c5(log |x|)−2g−1,

with c5 = c24|α|/8. Since OK is a discrete subset of C, this leaves out a finite number of

values of x. To include them in the final lower bound, it suffices to replace c5 by a sufficiently

small constant c > 0. �

Proof of Proposition 1.2. We apply Proposition 11.1 with K = Q and α = 3. In this context,

we have g = 2 and B = B−13 = 31/2. For a given n ∈ N+, a simple computation shows that

the Archimedean component C̃n,∞ of the adelic convex body C̃n satisfies

(11.2) nCn ⊆ C̃n,∞ ⊆ n2Cn,

where Cn is the convex body of R2 defined in Proposition 1.2. For its ultrametric components,

we find that

C̃n,3 = {(x, y) ∈ Z2
3 ; |xe3 − y|3 ≤ 3−n}

and C̃n,p = Z2
p for each prime number p 6= 3. Thus the points of Q2 which belong to

the latter components are exactly those of the lattice Λn in Proposition 1.2. Therefore,

the minima of C̃n with respect to Q2 in the adelic sense are also the minima of C̃n,∞ with

respect to Λn in the classical sense. In view of the inclusions (11.2), this implies that

c4n
−2 ≤ λ1(Cn,Λ) ≤ λ2(Cn,Λ) ≤ c3n

2 for the constants c3 and c4 given by Proposition

11.1. �
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12. Numerical computations

The formulas in Appendix A allow us to compute recursively the diagonal Hermite ap-

proximations to (1, e3). In this last section, we explain how they can be used to compute

efficiently the partial quotients in the continued fraction expansion of e3 ∈ R, and then to

verify the inequalities (1.2) from the introduction. Our reference for continued fractions is

[15, Ch. I].

Let e3 = [a0, a1, a2, . . . ] denote the continued fraction expansion of e3. Its first terms are

e3 = [20, 11, 1, 2, 4, 3, 1, 5, 1, 2, 16, . . . ],

without any noticeable regularity. For each integer n ≥ 0, we form the n-th convergent of e3

pn
qn

= [a0, a1, . . . , an]

with pn ∈ Z, qn ∈ N+ and gcd(pn, qn) = 1. The table below lists all integers n ≥ 1 with

qn−1 ≤ 10500 000 for which

an = max{a1, a2, . . . , an}.
For each of those integers, it provides the corresponding value of an as well as the value of

log(qn−1) truncated at the first decimal place.

n 1 10 31 87 133 211 244 388 2708 8055

an 11 16 68 189 492 739 2566 5885 6384 10409

log(qn−1) 0.0 9.4 34.5 97.9 151.1 256.6 297.6 475.0 3307.2 9614.8

n 9437 29508 30939 43482 91737 196440 476544

an 19362 21981 46602 51140 315466 546341 569869

log(qn−1) 11258.4 34996.8 36750.6 51515.4 109063.1 233261.9 566111.1

To show how this implies the estimations (1.2), define ψ(x) = 3 log(x) log(log(x)) for each

x ≥ e. For each pair (p, q) ∈ Z2 with q ≥ 1, there exists an integer n ≥ 1 such that

qn−1 ≤ q < qn. Then, by the property of best approximation of the convergents (Theorem

of Lagrange [15, Chapter I, Theorem 5E]), we have

|qe3 − p| ≥ |qn−1e3 − pn−1| ≥
1

qn + qn−1
≥ 1

(an + 2)qn−1
.

Assuming q ≥ 3, this implies that

(12.1) ψ(q)q |qe3 − p| ≥ ψ(qn−1)

an + 2
.

It is easy to check that the right hand side of (12.1) is ≥ 1 for all entries n of the table

with n ≥ 10. Thus it is also ≥ 1 for each integer n ≥ 10 with qn−1 ≤ 10500 000. A quick
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computation shows that this is also true for n = 2, . . . , 9. Thus the left hand side of (12.1)

is ≥ 1 if 11 ≤ q ≤ 10500 000. Finally, one checks that this is still true when 4 ≤ q ≤ 10.

To compute the partial quotients an, put

Cn =

(
2n− 4 2n− 1
2n− 1 2n+ 2

)
and An = Cn · · ·C1

for each n ≥ N+. By Corollary A.3 in the Appendix, the rows of (n − 1)!An are Hermite’s

approximations an−1,n and an,n−1 to (1, e3). Thus we have

(12.2) lim
n→∞

An

(
e3

−1

)
=

(
0
0

)
.

We also note that, for each n ≥ 2, the matrices Cn and An belong to the set

M =

{(
t u
t′ u′

)
∈ Mat2×2(Z) ; 0 ≤ t < u, 0 ≤ t′ < u′ and tu′ 6= t′u

}
.

This is clear for the matrices Cn. For the matrices An, this follows from the fact that M is

closed under matrix multiplication.

In general, if A =

(
t u
t′ u′

)
∈M, the ratios t/u and t′/u′ admit unique continued fraction

expansions
t

u
= [a0, a1, . . . , a`] and

t′

u′
= [a′0, a

′
1, . . . , a

′
`′ ]

with a0 = a′0 = 0, a` ≥ 2 if ` ≥ 1, and a′`′ ≥ 2 if `′ ≥ 1. Let (a0, . . . , ak) be the common

initial part of the sequences (a0, . . . , a`) and (a′0, . . . , a
′
`′). When k = 0, that is when t = 0

or t′ = 0 or bu/tc 6= bu′/t′c, we say that A is reduced. Then, we find that

A = R

(
0 1
1 ak

)
· · ·
(

0 1
1 a1

)
where R ∈M is reduced, with the convention that the right hand side is R when k = 0. In

particular, for each n ≥ 2, we obtain

An = Rn

(
0 1
1 ak(n)

)
· · ·
(

0 1
1 a1

)
for a reduced matrix Rn ∈M, integers 0 ≤ k(1) ≤ k(2) ≤ · · · and positive integers a1, a2, . . .

such that

(12.3) Cn+1Rn = Rn+1

(
0 1
1 ak(n+1)

)
· · ·
(

0 1
1 ak(n)+1

)
,

with the convention that the product on the right is Rn+1 when k(n+ 1) = k(n). By (12.2),

the integers k(n) go to infinity with n and so we conclude that

e−3 = [0, a1, a2, . . . ] and e3 = [a1, a2, . . . ]

are the respective continued fraction expansions of e−3 and e3. Therefore, to compute their

partial quotients ak, it suffices to compute recursively the matrices Rn whose coefficients are

in practice much smaller then those of An (we may also at each step factor out the power of

3 dividing Rn). To further save computation time we do not compute exactly the integers
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qn but keep only a floating point approximation of them (in practice we use 10 significative

decimal digits). In this way, it takes slightly above an hour of CPU time to produce the

table using MAPLE software with a 64 bits intel i5 processor.

Appendix A. Recurrence relations

The notation being as in Section 2.2 we extend the definition of fn(z), Pn(z) and an to

any s-tuple n ∈ Zs by setting

fn(z) = Pn(z) = 0 and an = (0, . . . , 0) if n /∈ Ns.

For each n ∈ Ns
+, we denote by An the matrix whose `-th row is an−e` for ` = 1, . . . , s. In

[9, §§IX-X], Hermite provides a recurrence formula linking An+1 to An where 1 = (1, . . . , 1).

Here we give more general recurrence relations based on the same principle. The formula

(A.1) below is due to Hermite [9, §IX, p. 230] when n ∈ Ns
+.

Proposition A.1. Let n = (n1, . . . , ns) ∈ Ns. We have

(A.1) an = (fn(α1), . . . , fn(αs)) +
s∑
j=1

njan−ej .

Moreover, if k, ` ∈ {1, . . . , s} with nk ≥ 1, we also have

(A.2) an+e`−ek = an + (αk − α`)an−ek .

Proof. Leibniz formula for the derivative of a product gives

f ′n(z) =
s∑
j=1

njfn−ej(z).

Taking the sum of all derivatives on both sides of this equality, we obtain

Pn(z) = fn(z) +
s∑
j=1

njPn−ej(z)

and (A.1) follows. The formula (A.2) is trivial if k = `. Suppose that k 6= ` and nk ≥ 1 so

that n− ek ∈ Ns. Then we find

fn+e`−ek(z)− fn(z) = (z − α`)fn−ek(z)− (z − αk)fn−ek(z) = (αk − α`)fn−ek(z).

Taking again the sum of the derivatives, this yields

Pn+e`−ek(z) = Pn(z) + (αk − α`)Pn−ek(z)

and (A.2) follows. �

Corollary A.2. Let n = (n1, . . . , ns) ∈ Ns
+ and ` ∈ {1, . . . , s}. Then we have

An+e` = Mn,`An
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where

Mn,` =


n1 + (α1 − α`) n2 · · · ns

n1 n2 + (α2 − α`) · · · ns
...

...
. . .

...
n1 n2 · · · ns + (αs − α`)

 .

Proof. As the entries of n are positive, the polynomial fn vanishes at all points α1, . . . , αs
and the formulas of Proposition A.1 yield

an+e`−ek = (αk − α`)an−ek +
s∑
j=1

njan−ej (1 ≤ k ≤ s). �

When s = 2, this provides a quick way of computing the matrices An,n.

Corollary A.3. Suppose that s = 2, α1 = 0 and α2 = α ∈ K \ {0}. Then, for each n ∈ N+,

we have

(A.3) An,n =

(
Pn−1,n(0) Pn−1,n(α)
Pn,n−1(0) Pn,n−1(α)

)
= (n− 1)!CnCn−1 · · ·C1

where

Ci =

(
2i− 1− α 2i− 1

2i− 1 2i− 1 + α

)
(i ∈ N+).

Proof. We find that P0,1(z) = z + 1− α and P1,0(z) = z + 1, thus A1,1 = C1. In general, for

an integer n ≥ 1, the formulas of the preceding corollary give

An+1,n+1 =

(
n n+ 1
n n+ 1 + α

)(
n− α n
n n

)
An,n = nCn+1An,n

and the conclusion follows by induction on n. �
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[13] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea, New York (1950), reprint of the second ed., 1929.
[14] P. Robba, Lemmes de Schwarz et lemmes d’approximations p-adiques en plusieurs variables, Invent.

Math. 48 (1978), 245–277.
[15] W. M. Schmidt, Diophantine approximation, Lecture Note in Math., vol. 785, Springer-Verlag, 1980.
[16] J. L. Thunder, Remarks on adelic geometry of numbers, in: Number theory for the millennium, III,

(Urbana, IL, 2000), 253–259, A K Peters, 2002.
[17] M. Waldschmidt, An introduction to irrationality and transcendence methods, Lecture 2, 2008 Arizona

Winter School, 32 pp;
https://webusers.imj-prg.fr/∼michel.waldschmidt/articles/pdf/AWSLecture2.pdf
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