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Abstract. In a previous paper with the same title, we gave an upper bound for the
exponent of uniform rational approximation to a quadruple of Q-linearly independent real
numbers in geometric progression. Here, we explain why this upper bound is not optimal.

1. Introduction. For each positive integer n and each real number ξ,
we follow Bugeaud and Laurent [2] and denote by λ̂n(ξ) the exponent of
uniform rational approximation to the geometric progression (1, ξ, . . . , ξn)
of length n+1 and ratio ξ. This is defined as the supremum of all λ ∈ R for
which the inequalities

|x0| ≤ X, max
1≤i≤n

|x0ξi − xi| ≤ X−λ

admit a non-zero solution x = (x0, . . . , xn) ∈ Zn+1 for each large enough real
number X. In their 1969 seminal paper [3], Davenport and Schmidt estab-
lished upper bounds for λ̂n(ξ) that are independent of ξ when [Q(ξ) : Q] > n,
that is, when 1, ξ, . . . , ξn are linearly independent over Q. Then, using an ar-
gument of geometry of numbers, they deduced a result on approximation to
such ξ by algebraic integers of degree at most n + 1. For n = 1 and n = 2,
both estimates are best possible. For n = 1, we have λ̂1(ξ) = 1 for each
ξ ∈ R \ Q, and the corresponding result on approximation by algebraic in-
tegers of degree at most 2 is best possible as explained in [3, §1]. For n = 2,
it is shown in [3, Theorem 1a] that, for each ξ ∈ R with [Q(ξ) : Q] > 2,
we have λ̂2(ξ) ≤ 1/γ ∼= 0.618, where γ = (1 +

√
5)/2 stands for the golden

ratio. In [6], we showed that this upper bound is best possible, and in [7] that
the corresponding result on approximation by algebraic integers of degree at
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most 3 is also best possible. For n > 2, refined upper bounds for λ̂n(ξ) have
been established in [1, 4, 5, 8–10] but the least upper bound is unknown.
This paper deals with the case n = 3.

Let λ3 ∼= 0.4245 denote the smallest positive root of T 2−γ3T +γ, where
γ = (1 +

√
5)/2, as above. In the previous paper [8] with the same title,

I proved the following statement.

Theorem 1.1. Let ξ ∈ R with [Q(ξ) : Q] > 3, and let c and λ be pos-
itive real numbers. Suppose that, for any sufficiently large value of X, the
inequalities

(1.1) |x0| ≤ X, max
1≤i≤3

|x0ξi − xi| ≤ cX−λ

admit a non-zero solution x = (x0, x1, x2, x3) ∈ Z4. Then λ ≤ λ3. Moreover,
if λ = λ3, then c is bounded below by a positive constant depending only on ξ.

In particular, any ξ ∈ R with [Q(ξ) : Q] > 3 has λ̂3(ξ) ≤ λ3.
For several years, before the publication of [8], I thought that the upper

bound λ3 for λ in Theorem 1.1 could be optimal until I realized that it is not.
However, I did not include the proof of this as it was only leading to a small
improvement over λ3. The goal of this paper is to present that argument
in the hope that it will help finding the least upper bound. In fact, we will
prove the following result.

Theorem 1.2. Under the hypotheses of Theorem 1.1, we have λ < λ3.

Using the same method, it is possible to compute an explicit ε > 0 such
that λ̂3(ξ) ≤ λ3 − ε. I refrain from doing that here in order to keep the
presentation as simple as possible. In a further paper, I plan to provide more
tools to make progress on this problem.

In the next two sections, we recall most of the results of [8] with some
precision added, including the notion of minimal points and the definition
of the important polynomial map C : (R4)2 → R2 that was already implicit
in [3]. In Section 4, we introduce a new pair of polynomial maps Ψ− and Ψ+
from (R4)3 to R4 and we elaborate on their analytic and algebraic properties.
In Sections 5 to 7 we use these tools to study the behavior of the minimal
points assuming that the hypothesis of Theorem 1.1 holds with λ = λ3. In
each section, we get new algebraic relations that link the minimal points. In
Section 6, they involve the polynomial map C, and in Section 7, the maps Ψ±.
In the process, we isolate a very rigid structure among the subspaces spanned
by consecutive minimal points. Using this, we end up with a contradiction
in Section 8, and this proves Theorem 1.2. For some of the main results
that we establish along the way, we indicate weaker conditions on λ for
which they hold, but we omit the proofs to keep the paper reasonably short.
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In an addendum, we provide a further algebraic relation involving another
polynomial map with interesting algebraic properties.

2. Notation and preliminaries. The notation is as in [8]. We fix a
real number ξ with [Q(ξ) : Q] > 3 and a real number λ > 0 which fulfills the
hypothesis of Theorem 1.1 for some constant c > 0. For brevity, we use the
symbols � and � to denote inequalities involving multiplicative constants
that depend only on ξ and λ. We also denote by � their conjunction. As we
are not interested in the dependence on c, we consider that c � 1, contrary
to what is done in [8].

For each integer n ≥ 1 and each point x = (x0, x1, . . . , xn) ∈ Rn+1, we
define

x− = (x0, . . . , xn−1), x+ = (x1, . . . , xn), ∆x = x+ − ξx−,(2.1)

‖x‖ = max
0≤i≤n

|xi| and L(x) = max
1≤i≤n

|x0ξi − xi|.(2.2)

For each p = 1, . . . , n + 1, we identify
∧pRn+1 with R(

n+1
p ) via an ordering

of the Grassmann coordinates as in [11, Chap. I, §5]. If n ∈ {1, 2, 3} and if
x is a non-zero point of Zn+1, then L(x) 6= 0 and we have

(2.3) L(x) � ‖∆x‖ � ‖x ∧ (1, ξ, . . . , ξn)‖.

As in [8, §2], we fix a sequence (xi)i≥1 of non-zero points of Z4 with the
following properties:

(a) the positive integers Xi := ‖xi‖ form a strictly increasing sequence;
(b) the positive real numbers Li := L(xi) form a strictly decreasing se-

quence;
(c) if some non-zero point x ∈ Z4 satisfies L(x) < Li for some i ≥ 1, then
‖x‖ ≥ Xi+1.

This is slightly different than the construction of Davenport and Schmidt in
[3, §4], but it plays the same role. In particular, using (2.3), our hypothesis
translates into the basic estimate

(2.4) Li � ‖∆xi‖ � X−λi+1.

We say that (xi)i≥1 is a sequence of minimal points for ξ in Z4.
For any integer n ≥ 1, we define the height of a non-zero vector subspace

V of Rn defined over Q to be

H(V ) = ‖y1 ∧ · · · ∧ yp‖,

where (y1, . . . ,yp) is any basis of V ∩Zn over Z. We also set H({0}) = 1. We
now recall some definitions and results from [8, §3] relative to the subspaces
〈xi, . . . ,xj〉R of R4 spanned by consecutive minimal points xi, . . . ,xj . They
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use the well-known fact that, since [Q(ξ) : Q] > 3, any proper subspace of R4

contains finitely many minimal points (see [8, Lemma 2.4]).
We first recall that each xi is a primitive point of Z4, that is, a non-zero

point of Z4 whose gcd of the coordinates is 1. Thus, 〈xi〉R has height Xi for
each i ≥ 1, and so 〈xi〉R 6= 〈xj〉R for distinct integers i, j ≥ 1. For each i ≥ 2,
we define

Wi = 〈xi−1,xi〉R.
ThenWi has dimension 2 and the set I of integers i ≥ 2 for whichWi 6=Wi+1

is infinite. For each i ∈ I, we define the successor of i in I to be the smallest
element j of I with j > i. We also say that elements i < j of I are consecutive
in I if j is the successor of i in I. For such i and j, we have

Wi 6=Wi+1 = · · · =Wj 6=Wj+1,

thus Wi+1 =Wj = 〈xi, . . . ,xj〉R = 〈xi,xj〉R. For each i ∈ I, we also define

Ui =Wi +Wi+1 = 〈xi−1,xi,xi+1〉R.
Then Ui has dimension 3. Finally, we define J to be the set of all i ∈ I for
which Ui 6= Uj where j is the successor of i in I. This is an infinite subset
of I. For each triple of consecutive elements h < i < j of I, we have

Ui =Wh+1 +Wi+1 = 〈xh,xi〉R + 〈xi,xj〉R = 〈xh,xi,xj〉R,
thus (xh,xi,xj) is a basis of Ui. We also note that Ui = 〈xh, . . . ,xj〉R.
Moreover, we have xj+1 /∈ Ui if and only if i ∈ J . The heights of these
subspaces of R4 can be estimated as follows.

Proposition 2.1.

(i) For each i ≥ 2, the pair (xi−1,xi) is a basis of Wi ∩ Z4 and we have

H(Wi) � XiLi−1 � X1−λ
i .

(ii) For each i ∈ I, we have

XiH(Ui)� H(Wi)H(Wi+1).

(iii) For each pair of consecutive elements i < j of I with i ∈ J , we have

H(Wj)� H(Ui)H(Uj).

Part (i) is [8, Lemma 3.1]. Part (ii) follows from a general inequality
of Schmidt from [11, Chap. I, Lemma 8A] on the basis that Wi and Wi+1

have sum Ui and intersection 〈xi〉R. Part (iii) follows from the same formula
upon noting that the sum of Ui and Uj is R4 with height 1 and that their
intersection is Wj .

Determinants play a crucial role in this theory. For each integer n ≥ 0
and each choice of yi = (yi,0, . . . , yi,n) ∈ Rn+1 for i = 0, . . . , n, we de-
note by det(y0, . . . ,yn) the determinant of the matrix (yi,j) whose rows are
y0, . . . ,yn. We will need the following formula.
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Lemma 2.2. Suppose that n ≥ 1. Then, for y0, . . . ,yn as above, we have

det(y0, . . . ,yn) =
n∑
i=0

(−1)iyi,0 det(∆y0, . . . , ∆̂yi, . . . ,∆yn)

where the hat on ∆yi on the right hand side indicates that this point is
omitted from the list.

Proof. The linear map ϕ : Rn+1 → Rn+1 sending each y = (y0, . . . , yn)
of Rn+1 to

ϕ(y) = (y0, y1 − ξy0, . . . , yn − ξyn−1) = (y0, ∆y)

has determinant 1. Thus, the square matrix with rows y0, . . . ,yn has the
same determinant as that with rows ϕ(y0), . . . , ϕ(yn). The result follows by
expanding the determinant of the latter matrix along its first column.

The formula of Lemma 2.2 yields the standard estimate

(2.5) |det(y0, . . . ,yn)| �
n∑
i=0

‖yi‖L(y0) · · · L̂(yi) · · ·L(yn)

for any choice of y0, . . . ,yn ∈ Rn+1 with n ≤ 3. We add the condition n ≤ 3
so that the implicit constant in (2.5) is independent of n. In this paper, we
will need finer estimates of the following form.

Corollary 2.3. Let n ∈ {1, 2, 3} and let y0, . . . ,yn be linearly indepen-
dent elements of Zn+1. Then

|det(y0, . . . ,yn)| � ‖yn‖ |det(∆y0, . . . ,∆yn−1)|

if L(yn) < 1 and if the n products ‖yi‖L(y0) · · · L̂(yi) · · ·L(yn) with index
i = 0, . . . , n− 1 are smaller than some positive function δ of ξ.

Proof. Put d = det(y0, . . . ,yn). Lemma 2.2 yields∣∣d− (−1)nyn,0 det(∆y0, . . . ,∆yn−1)
∣∣ ≤ c n−1∑

i=0

‖yi‖L(y0) · · · L̂(yi) · · ·L(yn)

for some c = c(ξ) > 0. Since d is a non-zero integer, we have |d| ≥ 1. So, if
the conditions of the corollary are fulfilled with δ = 1/(2nc), we obtain∣∣d− (−1)nyn,0 det(∆y0, . . . ,∆yn−1)

∣∣ ≤ 1/2 ≤ |d|/2,
and the result follows since the condition L(yn) < 1 implies that yn,0 6= 0
and ‖yn‖ � |yn,0|.

We also recall that (2.5) generalizes to

(2.6) ‖y0 ∧ · · · ∧ yp‖ �
p∑
i=0

‖yi‖L(y0) · · · L̂(yi) · · ·L(yp)
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for any choice of y0, . . . ,yp ∈ Rn+1 with 0 ≤ p ≤ n ≤ 3. We conclude with
the following estimates from [8, Lemma 2.1].

Lemma 2.4. Let C ∈ Z2 and x ∈ Zn+1 with n ∈ {1, 2, 3}. Then the point
y = C+x− − C−x+ ∈ Zn satisfies

‖y‖ � ‖x‖L(C) + ‖C‖L(x) and L(y)� ‖C‖L(x).

3. The maps C and E. For each non-zero point x of R4, we define

V (x) = 〈x−,x+〉R ⊆ R3.

We also define a polynomial map C : R4 × R4 → R2 by

C(x,y) = (det(x−,x+,y−),det(x−,x+,y+))

and note that, for a given (x,y) ∈ R4 × R4, we have

(3.1) C(x,y) 6= 0 ⇐⇒ (dimV (x) = 2 and V (y) 6⊆ V (x)).

Since C is quadratic in its first argument, there is a unique tri-linear map
E : (R4)3 → R2 such that

(3.2) E(w,x,y) = E(x,w,y) and E(x,x,y) = 2C(x,y)

for each choice of w,x,y ∈ R4. It is given by

E(w,x,y) = (det(w−,x+,y−)− det(w+,x−,y−),

det(w−,x+,y+)− det(w+,x−,y+)).

Besides (3.2), we note that this map satisfies

(3.3) E(x,y,y) = E(y,x,y) = −C(y,x)
for each (x,y) ∈ R4 × R4.

The following result uses the operator ∆ defined in (2.1). We write ∆2 to
denote its double iteration. Thus, for a point x ∈ R4, we have ∆2x = ∆(∆x).
We also denote by ∆x− the vector ∆(x−) = (∆x)−, omitting parentheses.
Similarly, ∆x+ stands for ∆(x+) = (∆x)+.

Lemma 3.1. For any x = (x0, . . . , x3) and y = (y0, . . . , y3) in R4, we
have

C(x,y)− = x0 det(∆
2x, ∆y−) + y0 det(∆x−, ∆2x) +O(L(x)2L(y)),

C(x,y)+ = x0 det(∆
2x, ∆y+) + y0ξ det(∆x−, ∆2x) +O(L(x)2L(y)),

∆C(x,y) = x0 det(∆
2x, ∆2y) +O(L(x)2L(y)).

Proof. For any choice of sign ε, we have

C(x,y)ε = det(x−,x+,yε) = det(x−, ∆x,yε).

Thus, Lemma 2.2 gives

C(x,y)ε = x0 det(∆
2x, ∆yε) + (yε)0 det(∆x−, ∆2x) +O(L(x)2L(y)),
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where (y−)0 = y0 and (y+)0 = y1 = y0ξ +O(L(y)). This explains the first
two formulas. The last one follows from them by the definition of ∆.

The above estimates have the following immediate consequence.

Corollary 3.2. For any x,y ∈ R4, we have

‖C(x,y)‖ � ‖x‖L(x)L(y) + ‖y‖L(x)2, L(C(x,y))� ‖x‖L(x)L(y).

For brevity, we write

(3.4) Vi = V (xi) and Ci,j = C(xi,xj)

for each pair of positive integers i and j. Then we have the following non-
vanishing result.

Lemma 3.3. Suppose that λ >
√
2 − 1 ∼= 0.4142. There is an integer

i0 ≥ 1 with the following properties:

(i) dimVi = 2 and Vi 6= Vi+1 for any integer i ≥ i0.
(ii) For any integer i ≥ i0 and any non-zero y ∈ Z3, there is a choice of

signs ε and η for which the integer det(xεi ,x
η
i+1,y) is non-zero.

(iii) For any pair of consecutive elements i < j of I with i ≥ i0, the four
points Ci,i+1, Ci,j, Cj,j−1 and Cj,i are all non-zero, and Ci,j = bCi,i+1

for some non-zero integer b with |b| � Xj/Xi+1.

Proof. For each sufficiently large integer i ≥ 1, we have dimVi = 2 by
[8, Lemma 2.3] and Vi 6= Vi+1 by [8, Proposition 5.2]. Thus property (i) holds
for some integer i0 ≥ 1. We now show that (ii) and (iii) also hold for such i0.

To prove (ii), fix an integer i ≥ i0 and a non-zero point y ∈ Z3. If
y ∈ Vi, we can write Vi = 〈xεi ,y〉R for a choice of sign ε, and then we obtain
R3 = Vi+Vi+1 = 〈xεi ,x

η
i+1,y〉R for a choice of sign η. If y /∈ Vi, then 〈xεi ,y〉R

is a subspace of R3 of dimension 2 for any choice of sign ε. Choosing ε such
that xεi /∈ Vi+1, we find again that R3 = 〈xεi ,y〉R+Vi+1 = 〈xεi ,x

η
i+1,y〉R for a

choice of sign η. In both cases the triple (xεi ,x
η
i+1,y) is linearly independent,

so its determinant is a non-zero integer.
To prove (iii), fix a pair of consecutive elements i < j of I with i ≥ i0. In

view of (3.1), we have Ci,i+1 6= 0 and Cj−1,j 6= 0. Moreover [8, Lemma 4.2]
gives Ci,j = bCi,i+1 for some non-zero integer b with |b| � Xj/Xi+1. Thus,
we have Ci,j 6= 0. By (3.1), this means that Vi 6= Vj and so Cj,i 6= 0.

We conclude with two growth estimates for the sequence (Xi)i≥1:

Lemma 3.4. Suppose that λ >
√
2−1. Then, for each pair of consecutive

elements i < j of I, we have

(3.5) Xj+1 � Xθ
i+1 where θ =

1− λ
λ

.
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If moreover i ∈ J , then we also have

(3.6) Xi � Xθ2−1
j .

Proof. Let i < j be consecutive elements of I. If i is large enough, we
have Cj,j−1 6= 0 by Lemma 3.3. Since Cj,j−1 ∈ Z2, this implies that

1 ≤ ‖Cj,j−1‖ � XjLj−1Lj ,

where the second estimate comes from Corollary 3.2. As Proposition 2.1 gives
XjLj−1 � H(Wj) = H(Wi+1) � Xi+1Li, we deduce that

1� Xi+1LiLj � X1−λ
i+1 X

−λ
j+1

and (3.5) follows. For i ∈ J , the estimate (3.6) follows from [8, Corollary 5.3,
equation (11)].

4. The maps Ψ− and Ψ+. For each choice of sign ε among {−,+}, we
define a polynomial map Ψε : (R4)3 → R4 by the formula

(4.1) Ψε(x,y, z) = C(y, z)εx+ E(y, z,x)εy − C(y,x)εz.
We first note the following identities.

Lemma 4.1. For any choice of x,y, z ∈ R4, we have

Ψ−(x,y, z)
− = det(x−,y−, z+)y− − det(x−,y−, z−)y+,

Ψ+(x,y, z)
+ = det(x+,y+, z+)y− − det(x+,y+, z−)y+.

Proof. For any choice of y1, . . . ,y4 ∈ R3, we have
4∑
i=1

(−1)i−1 det(y1, . . . , ŷi, . . . ,y4)yi = 0,

where (y1, . . . , ŷi, . . . ,y4) denotes the sequence obtained by removing yi
from (y1, . . . ,y4). The first formula follows from this identity applied to the
points x−,y−,y+, z− ∈ R3. We obtain the second formula by applying it to
x+,y−,y+, z+ ∈ R3.

Proposition 4.2. For any choice of x,y, z ∈ R4 \ {0} with

(4.2)
L(x)

‖x‖
≥ L(y)

‖y‖
≥ L(z)

‖z‖
,

and for any choice of sign ε, we have

‖Ψε(x,y, z)‖ � ‖y‖2L(x)L(z) + ‖z‖L(x)L(y)2,(4.3)

L(Ψε(x,y, z))� ‖z‖L(x)L(y)2.(4.4)

Proof. Fix x,y, z ∈ R4 \ {0} with property (4.2) and set ψε = Ψε(x,y, z)
for some sign ε among {−,+}. We first note that ∆ψε is a sum of four terms
of the form

v = ±det(y±1 ,y
±
2 ,y

±
3 )∆y4,
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where (y1,y2,y3,y4) is a permutation of (x,y,y, z) with
L(y1)

‖y1‖
≥ L(y2)

‖y2‖
≥ L(y3)

‖y3‖
.

By the general estimate (2.5), we find that

‖v‖ � ‖y3‖L(y1)L(y2)L(y4) ≤ ‖z‖L(x)L(y)2,
and (4.4) follows.

Substituting y+ = ξy− + ∆y and z+ = ξz− + ∆z in the formulas of
Lemma 4.1, we find

ψεε = det(xε,yε, ∆z)y− − det(xε,yε, z−)∆y.

Using (2.5) and (4.2), this gives

‖ψεε‖ � ‖y‖2L(x)L(z) + ‖z‖L(x)L(y)2,
and (4.3) follows because ‖ψε‖ � ‖ψεε‖+ L(ψε).

Corollary 4.3. For any non-zero v,w,x,y, z ∈ R4 \ {0} with

(4.5)
L(v)

‖v‖
≥ L(w)

‖w‖
≥ L(x)

‖x‖
≥ L(y)

‖y‖
≥ L(z)

‖z‖
,

and for any choice of sign ε, the integer

dε = det(v,w,x, Ψε(x,y, z))

satisfies

(4.6) |dε| �
(
‖y‖2L(x)L(z) + ‖x‖ ‖z‖L(y)2

)
L(v)L(w)L(x).

Proof. In view of (4.5), the estimate (2.5) gives

|dε| � ‖Ψε(x,y, z)‖L(v)L(w)L(x) + ‖x‖L(v)L(w)L(Ψε(x,y, z)).

Then (4.6) follows from the estimates of the proposition.

When the right hand side of (4.6) is sufficiently small, the integers d−
and d+ must both be 0. The next proposition analyses the outcome of such
a vanishing in a context that we will encounter later.

Proposition 4.4. Let (v,w,x,y) be a basis of R4 with x− ∧ x+ 6= 0,
and let

(4.7) z = ay + bx+ cw

for some a, b, c ∈ R. Suppose that

(4.8) det(v,w,x, Ψε(x,y, z)) = 0

for any choice of sign ε. Then there exists t ∈ R such that

(i) C(y, z) = tC(x,y),

(ii) C(z,y) = ctC(x,w),

(iii) det(C(z,x), C(x,w)) = c2 det(C(w,x), C(x,w)).
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Proof. We will use the tri-linearity of the map E as well as its properties
(3.2) and (3.3). We first substitute formula (4.1) for Ψε(x,y, z) into (4.8).
This gives

det(v,w,x,y)E(y, z,x)ε − det(v,w,x, z)C(y,x)ε = 0

for any choice of sign ε. In view of (4.7), we also have

det(v,w,x, z) = a det(v,w,x,y).

Since det(v,w,x,y) 6= 0, the former formula simplifies to

E(y, z,x)ε − aC(y,x)ε = 0,

which can also be rewritten as

(y− ∧ z+ − y+ ∧ z− − ay− ∧ y+) ∧ xε = 0.

As x− ∧ x+ 6= 0, we therefore have

y− ∧ z+ − y+ ∧ z− − ay− ∧ y+ = −tx− ∧ x+

for some t ∈ R. This in turn implies that

(4.9) E(y, z,u) = aC(y,u)− tC(x,u)

for any u ∈ R4.
For the choice of u = x, formula (4.9) reduces to

(4.10) E(y, z,x) = aC(y,x).

For u = y, (4.9) yields (i) since E(y, z,y) = −C(y, z). For u = z, it gives

C(z,y) = −aC(y, z) + tC(x, z)

= −atC(x,y) + tC(x, z) by (i)
= tC(x, z− ay)
= tC(x, bx+ cw) by (4.7)
= ctC(x,w),

which is (ii). Upon substituting formula (4.7) for z into (4.10), we find

0 = E(y, ay + bx+ cw,x)− aC(y,x)
= aC(y,x)− bC(x,y) + cE(w,y,x).

Using this relation, we obtain

C(z,x) = (1/2)E(ay + bx+ cw, ay + bx+ cw,x)

= a2C(y,x)− abC(x,y) + acE(w,y,x)− bcC(x,w) + c2C(w,x)

= −bcC(x,w) + c2C(w,x),

which yields (iii).
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5. First step. By [8, Corollary 6.3], the complement I \ J of J in I
is infinite if λ > λ2, where λ2 ∼= 0.4241 denotes the positive root of the
polynomial P2(T ) = 3T 4 − 4T 3 + 2T 2 + 2T − 1. In fact, we can show that
I \ J is infinite as long as λ > (3−

√
3)/3 ∼= 0.4226 but we will not go into

this here as the proof is relatively elaborate.
Below, we recall the proof that λ ≤ λ3 where λ3 ∼= 0.4245 is as in the

introduction and we study in some detail the limit case where λ = λ3. We
start with a lemma which uses the notation θ = (1− λ)/λ from (3.5).

Lemma 5.1. For each pair of consecutive elements k < l of I, we have

(5.1) H(Ul)
1/λ � Xθ

l+1X
−1
k+1.

When this is optimal in the sense that H(Ul)
1/λ � Xθ

l+1X
−1
k+1 for another

implicit constant depending only on ξ, we also have

(5.2) Xk+1 � Xl, Lk � X−λk+1, Ll � X−λl+1.

Proof. Using the estimates of Proposition 2.1, we find

H(Ul)� X−1l H(Wl)H(Wl+1) ≤ X−1k+1H(Wl)H(Wl+1),

H(Wl) = H(Wk+1) � Xk+1Lk � X1−λ
k+1 ,

H(Wl+1) � Xl+1Ll � X1−λ
l+1 ,

thus H(Ul)� X1−λ
l+1 X

−λ
k+1, which is equivalent to (5.1). If this is optimal for

a set of pairs k < l, then all the above estimates are optimal for those pairs
and this yields (5.2).

Proposition 5.2. Suppose that λ ≥ λ3. Then λ = λ3 and there are
infinitely many sequences of consecutive elements g < h < i < j of I with
h /∈ J and i ∈ J . For each of them, we have

(5.3)
Xg+1 � Xh, Xh+1 � Xi � Xθ

h, Xi+1 � Xj � Xγ/θ
i , Xj+1 � Xθ

j ,

Lg � X−λg+1, Lh � X−λh+1, Li � X−λi+1, Lj � X−λj+1,

and

(5.4) H(Uh) � X
λ/γ
h+1.

If h is large enough, we also have g ∈ J and Xg � X
θ/γ
h .

Note that (5.3) yields Xi+1 � Xj � Xγ
h and Xj+1 � Xγθ

h .

Proof of Proposition 5.2. Since λ > λ2, we know by [8, Corollary 6.3]
that I \ J is infinite. Since J is infinite as well, there are arbitrarily large
consecutive sequences of elements g < h < i < j of I with h /∈ J and i ∈ J .
Consider any such sequence, and set

U =Wh +Wh+1 =Wi +Wi+1.
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Then U 6= Uj =Wj +Wj+1 and Proposition 2.1 gives

H(Wj)� H(U)H(Uj),(5.5)
XjH(Uj)� H(Wj)H(Wj+1),(5.6)

H(Wj+1) � Xj+1Lj � X1−λ
j+1 .(5.7)

Thus, we obtain

(5.8) H(U)� H(Wj)

H(Uj)
� Xj

H(Wj+1)
� Xj

X1−λ
j+1

≥ Xi+1

X1−λ
j+1

.

Using 1/λ = 1 + θ and the estimate Xj+1 � Xθ
i+1 from Lemma 3.4, this

gives

(5.9) H(U)1/λ �
X1+θ
i+1

Xθ
j+1

� X1+θ−θ2
i+1 .

Applying Lemma 5.1 to U = Uh = Ui, we also find

H(U)1/λ � Xθ
i+1X

−1
h+1,(5.10)

H(U)1/λ � Xθ
h+1X

−1
g+1 � X

θ−1/θ
h+1 ,(5.11)

where the second inequality in (5.11) uses the estimate Xh+1 � Xθ
g+1 from

Lemma 3.4. Combining (5.9) and (5.10), we obtain

(5.12) Xh+1 � Xθ2−1
i+1 ,

and so (5.9) and (5.11) yield

(5.13) X1+θ−θ2
i+1 � H(U)1/λ � X

θ−1/θ
h+1 � X

(θ−1/θ)(θ2−1)
i+1 .

As h can be chosen arbitrarily large, we conclude that

1 + θ − θ2 ≤ (θ − 1/θ)(θ2 − 1) = θ(θ − 1/θ)2,

which can be rewritten as

1 ≤ (θ − 1/θ) + (θ − 1/θ)2.

This gives θ − 1/θ ≥ 1/γ and so λ2 − γ3λ + γ ≥ 0, which in turn implies
that λ ≤ λ3. Since λ ≥ λ3, we conclude that λ = λ3, thus θ − 1/θ = 1/γ
and the inequalities (5.13) are optimal. Going backwards, we deduce that all
estimates (5.5) to (5.13) are optimal.

Since (5.10) and (5.11) are optimal, Lemma 5.1 gives

Xg+1 � Xh, Xh+1 � Xi, Lg � X−λg+1, Lh � X−λh+1, Li � X−λi+1.

Optimality in (5.7) and (5.8) also yields Xi+1 � Xj and Lj � X−λi+1. Finally,
(5.9), (5.11) and (5.12) being optimal, we have

Xj+1 � Xθ
i+1, Xh+1 � Xθ

g+1, Xh+1 � Xθ2−1
i+1 = X

θ/γ
i+1
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and H(U) � X
(θ−1/θ)λ
h+1 = X

λ/γ
h+1. This proves (5.3) and (5.4). Finally, using

Lemma 5.1 as in (5.11), we find that

H(Ug)� X
(θ−1/θ)λ
g+1 = X

λ/γ
g+1.

So, if h is large enough, we have Ug 6= U = Uh and thus g ∈ J . Then
Lemma 3.4 gives Xg � Xθ2−1

h = X
θ/γ
h .

We conclude this section with three consequences of the above estimates
in the limit case where λ = λ3.

Corollary 5.3. Suppose that λ = λ3. Then any pair of large enough
consecutive elements of I contains at least one element of J .

Proof. Otherwise, since J is infinite, there would exist arbitrarily large
triples of consecutive elements g < h < i of I with g /∈ J , h /∈ J and i ∈ J ,
contrary to the last assertion of the proposition.

More precise estimates based on similar arguments show that Corol-
lary 5.3 holds for λ ≥ 0.42094.

Corollary 5.4. Suppose that λ = λ3, and let h < i < j be consecutive
elements of I with h /∈ J . If h is large enough, then (xh,xi,xj ,xj+1) is a
basis of R4 with

1 � |det(xh,xi,xj ,xj+1)| � Xj+1|det(∆xh, ∆xi, ∆xj)| � Xj+1LhLiLj .

Proof. For h large enough, Corollary 5.3 gives i ∈ J , and then

R4 = Ui + Uj = 〈xh,xi,xj〉R + 〈xi,xj ,xj+1〉R = 〈xh,xi,xj ,xj+1〉R,
thus (xh,xi,xj ,xj+1) is a basis of R4. As this basis is made up of integer
points, its determinant d is a non-zero integer. Since

XjLhLiLj+1 ≤ XjLhLiLj � Xγ−λθ−λγ−λγθ
h � X−0.575h ,

Corollary 2.3 gives

|d| � Xj+1|det(∆xh, ∆xi, ∆xj)| � Xj+1LhLiLj ,

and the conclusion follows from the computation

Xj+1LhLiLj � Xγθ−λθ−λγ−λθγ
h = 1,

since γθ − λθ − λγ − λθγ = λγ(θ2 − 1)− λθ = 0.

Proposition 5.5. Suppose that λ = λ3, and let g < h < i < j be
consecutive elements of I with h /∈ J . If h is large enough, then

(i) |det(∆2xg, ∆
2xh)| � LgLh and |det(∆2xi, ∆

2xj)| � LiLj ,
(ii) 1 � ‖Ch,g‖ � L(Ch,g) and 1 � ‖Cj,i‖ � L(Cj,i),
(iii) L(Cg,h) � Xg/Xh and L(Ci,j) � Xi/Xj .
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Proof. Since g < h and i < j are pairs of consecutive elements of I,
Lemma 3.3(iii) shows that Ch,g and Cj,i are non-zero points of Z2 if h is
large enough. As Corollary 3.2 gives

‖Ch,g‖ � XhLgLh � X1−λ−θλ
h = 1,

we deduce that ‖Ch,g‖ � 1 for large enough h, and thus L(Ch,g) � 1 since
ξ /∈ Q. Since LgL2

h tends to 0 as h→∞, Lemma 3.1 yields

1 � L(Ch,g) � Xh|det(∆2xg, ∆
2xh)| � XhLgLh � 1,

and then
L(Cg,h) � Xg|det(∆2xg, ∆

2xh)| � XgLgLh,

because Lg/Xg tends to 0 as h→∞. This proves the first parts of (i)–(iii).
The second parts are proved in the same way.

6. A new set of algebraic relations. From now on, we assume that
λ = λ3 ∼= 0.4245 and so the estimates of Proposition 5.2 apply. To alleviate
the notation, we also set

Ci := Ci,i+1 = C(xi,xi+1)

for each i ∈ I. By Lemma 3.3(iii), this is a non-zero point of Z2 for each
large enough i. In this section, we show that det(Cj , Ck) = 0 for any triple of
consecutive elements i < j < k of I with i ∈ J large enough, and we deduce
that J contains finitely many triples of consecutive elements of I. By a finer
analysis that we avoid here, one can show that this finiteness property holds
whenever λ > λ2, where λ2 ∼= 0.4241 is defined at the beginning of Section 5.

Lemma 6.1. Let h < i < j be consecutive elements of I with h /∈ J . Then

‖Ch‖ � X
θ(1−2λ)
h , L(Ch)� X

−λ/γ
h , ‖Ci‖ � X

γ(1−2λ)
h , L(Ci)� X

−λ/γ
h .

Moreover, det(Ch, Ci) = 0 if h is large enough.

Proof. The estimates of Corollary 3.2 and Proposition 5.2 yield

‖Ch‖ � Xh+1L
2
h � X

θ(1−2λ)
h and ‖Ci‖ � Xi+1L

2
i � X

γ(1−2λ)
h .

If h is large enough, Lemma 3.3(iii) gives Ch,i = bCh for some non-zero
integer b. Then, using Corollary 3.2, we find

L(Ch) ≤ L(Ch,i)� XhLhLi � X1−λθ−λγ
h .

Similarly, if h is large enough, Lemma 3.3(iii) gives Ci,j = b′Ci for some
non-zero integer b′ and, using Corollary 3.2, we find

L(Ci) ≤ L(Ci,j)� XiLiLj � Xθ−λγ−λθγ
h .

This proves the remaining estimates since

1− λθ − λγ = λ− λγ = −λ/γ and θ − λγ − λθγ = θ − γ = −λ/γ.
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Finally, using these estimates, Lemma 2.4 gives

|det(Ch, Ci)| � ‖Ch‖L(Ci) + ‖Ci‖L(Ch)� Xa
h ,

where a = γ(1 − 2λ) − λ/γ < −0.018. As det(Ch, Ci) is an integer, it must
be 0 if h is large enough.

Lemma 6.2. Let i < j < k be consecutive elements of I with i ∈ J . If i
is large enough, then det(Cj , Ck) = 0.

Proof. If j /∈ J , this follows from Lemma 6.1. So, we may assume that
j ∈ J . Then we have {i, j} ⊂ J and [8, Lemma 6.1] gives

(6.1) L(Cj)� Xα
k+1 where α =

−λ4 + λ3 + λ2 − 3λ+ 1

λ(λ2 − λ+ 1)
∼= −0.1536.

If k ∈ J , we also have {j, k} ⊂ J and the same result gives L(Ck) � Xα
l+1,

where l is the successor of k in I, and so, a fortiori,

(6.2) L(Ck)� Xα
j+1.

If k /∈ J , the last estimate still holds as Lemma 6.1 gives L(Ck)� X
−λ/γ
k ≤

X
−λ/γ
j+1 where −λ/γ ∼= −0.2623 < α. Using (6.1) and (6.2) together with the

estimates for ‖Cj‖ and ‖Ck‖ coming from Corollary 3.2, Lemma 2.4 gives

|det(Cj , Ck)| � ‖Cj‖L(Ck) + ‖Ck‖L(Cj)
� X1−2λ+α

j+1 +X1−2λ+α
k+1 � X−0.0026j+1 .

Thus det(Cj , Ck) = 0 if i is large enough.

Proposition 6.3. The set J contains finitely many triples of consecutive
elements of I.

Proof. Suppose on the contrary that J contains infinitely many such
triples. Then there are infinitely many maximal sequences of consecutive
elements i < j < · · · < r of I contained in J , with cardinality at least 3.
If i is large enough, such a sequence extends to a sequence

h < i < j < · · · < r < h′ < i′

of consecutive elements of I with h /∈ J and h′ /∈ J , and by Lemma 6.2,
the integer points Cj , . . . , Cr, Ch′ , Ci′ are all integral multiples of a single
primitive point C of Z2. Using Corollary 3.2 and Lemma 6.1, we find that

‖C‖ ≤ ‖Cj‖ � X1−2λ
j+1 and L(C) ≤ L(Ci′)� X

−λ/γ
h′ .

As r ∈ J , Lemma 3.4 gives Xr � Xθ2−1
h′ = X

θ/γ
h′ . As r > j, we also have

Xr ≥ Xj+1 � Xθ
j using the estimates of Proposition 5.2. Thus, we obtain

L(C)� X−λ/θr � X−λj .
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We form the point
y = C−x+

j − C
+x−j ∈ Z3.

If h is large enough, then Vj = 〈x−j ,x
+
j 〉R has dimension 2 by Lemma 3.3(i),

and so y is non-zero. Using Lemma 2.4, we find

L(y)� ‖C‖Lj � X1−3λ
j+1 , ‖y‖ � XjL(C) + ‖C‖Lj � X1−λ

j

since 1 − 3λ < 0. So, for any choice of signs ε and η, we obtain, using the
general estimate (2.5),

|det(xεh−1,x
η
h,y)| � XhLh−1L(y) + ‖y‖Lh−1Lh

� X
1−λ+γθ(1−3λ)
h +X

γ(1−λ)−λ−θλ
h � X−0.024h .

By Lemma 3.3(ii), this is impossible if h is large enough.

7. Another set of algebraic relations. As in the preceding section,
we assume that λ = λ3 ∼= 0.4245. We start with the following observation.

Lemma 7.1. Let g < h < i < j be consecutive elements of I with h /∈ J .
Then we have

pxj = qxi + rxh + sxg

for some integers p, q, r, s with 1 ≤ |p| � 1 and 1 ≤ |s| � 1. Moreover, if
h is large enough, then (xg−1,xg,xh,xi) is a basis of R4.

Proof. Set U = Uh = Ui. Then (xg,xh,xi) and (xh,xi,xj) are bases of
U as a vector space over R, while (xh,xi) is a basis of Wh+1 =Wi over R.

By Proposition 2.1(i), the pair (xh,xh+1) is a basis of Wh+1 ∩Z4 over Z.
Thus, it can be extended to a basis (xh,xh+1,y) of U ∩ Z4 over Z. By the
above, we can write

xi = axh + bxh+1,

xg = a′xh + b′xh+1 + c′y,

xj = a′′xh + b′′xh+1 + c′′y

for a unique choice of integers a, a′, a′′, b, b′, b′′, c′, c′′ with b 6= 0, c′ 6= 0 and
c′′ 6= 0. For these integers, we find that

(7.1) bc′xj − bc′′xg ∈ 〈xh,xi〉Z.

We claim that |bc′| � 1 and |bc′′| � 1. To prove this, we note that xh∧xi =
bxh ∧ xh+1, thus

‖xg ∧ xh ∧ xi‖ = ‖bxg ∧ xh ∧ xh+1‖ = ‖bc′y ∧ xh ∧ xh+1‖ = |bc′|H(U).

Similarly, we find that

‖xj ∧ xh ∧ xi‖ = |bc′′|H(U).
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The claim is then a consequence of the following computations based on the
general estimate (2.6) and the estimates of Proposition 5.2:

‖xg ∧ xh ∧ xi‖ � XiLgLh � Xθ−λ−λθ
h = X

λθ/γ
h � H(U),

‖xj ∧ xh ∧ xi‖ � XjLhLi � Xγ−λθ−λγ
h = X

λθ/γ
h � H(U),

as θ− λ− λθ = λ(θ2− 1) = λθ/γ and γ − λθ− λγ = (1− λ)(γ − 1) = λθ/γ.
This claim together with (7.1) proves the first assertion of the lemma.

Finally, if h is large enough, Proposition 5.2 gives g ∈ J , and thus we
have Ug + Uh = R4. Since (xg−1,xg,xh) is a basis of Ug while (xg,xh,xi) is
a basis of Uh, it follows that (xg−1,xg,xh,xi) is a basis of R4.

The next result plays a crucial role and holds whenever λ ≥ 0.42094.
Here, we only prove it under our current hypothesis that λ = λ3.

Proposition 7.2. Let g < h < i < j be consecutive elements of I with
h /∈ J , and let ε be a sign among {−,+}. If h is large enough, then

(7.2) det(xg−1,xg,xh, Ψε(xh,xi,xj)) = 0.

Proof. The conditions (4.5) of Corollary 4.3 are fulfilled for the sequence
(v,w,x,y, z) = (xg−1,xg,xh,xi,xj). So, upon denoting by dε the determi-
nant on the left hand side of (7.2), we obtain

|dε| � (X2
i LhLj +XhXjL

2
i )Lg−1LgLh.

Using the estimates (5.3) of Proposition 5.2, we find

X2
i LhLj � X

2θ−λθ−λγθ
h ≤ X1.2047

h and XhXjL
2
i � X

1+γ−2λγ
h ≤ X1.2444

h .

Since Lemma 3.4 gives Xg+1 � Xθ
g , we also have Lg−1 � X−λg � X

−λ/θ
g+1 ,

thus
Lg−1LgLh � X

−λ/θ−λ−λθ
h ≤ X−1.3131h ,

and so |dε| � X−0.687h . As dε is an integer, we conclude that dε = 0 if h is
large enough.

Corollary 7.3. Let g < h < i < j be consecutive elements of I with
h /∈ J . If h is large enough, there are non-zero rational numbers c and t
whose numerators and denominators are bounded only in terms of ξ, such
that

(i) Ci,j = tCh,i,

(ii) Cj,i = ctCh,g,

(iii) det(Cj,h, Ch,g) = c2 det(Cg,h, Ch,g).

Proof. Lemma 7.1 and Proposition 7.2 show that the hypotheses of Pro-
position 4.4 are fulfilled with (v,w,x,y, z) = (xg−1,xg,xh,xi,xj) and
c = s/p for bounded non-zero integers p and s, if h is large enough. Then
(i)–(iii) hold for some t ∈ R. If h is large enough, Proposition 5.5(ii) also
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gives ‖Cj,i‖ � ‖Ch,g‖ � 1. Then (ii) implies that ct is a non-zero rational
number with bounded numerator and denominator. Since c has the same
property, this applies to t as well.

The third identity of the corollary has the following consequence.

Lemma 7.4. Let g < h < i < j be consecutive elements of I with h /∈ J .
If h is sufficiently large, then

‖Cg‖ � |det(Cj,h, Ch,g)| � ‖Cj,h‖ � X
λ2/γ
h .

Since λ2/γ ∼= 0.111, this is a significant improvement on the generic
upper bound ‖Cg‖ � X1−2λ

g+1 � X1−2λ
h coming from Corollary 3.2, where

1− 2λ ∼= 0.151.

Proof of Lemma 7.4. If h is large enough, we have 1 � ‖Ch,g‖ � L(Ch,g)
by Proposition 5.5(ii), and Lemma 3.3(iii) gives Cg,h = bCg for some non-
zero integer b with |b| � Xh/Xg+1 � 1. Thus, if h is sufficiently large,
Corollary 7.3(iii) yields

|det(Cg, Ch,g)| � |det(Cj,h, Ch,g)| � ‖Cj,h‖.
Using Corollary 3.2, we also find

‖Cj,h‖ � XjLjLh � Xγ−λγθ−λθ
h = X

λ2/γ
h

since γ − λγθ − λθ = −1 + γ2λ = λ2/γ. On the other hand, we note that

L(Cg) = |b|−1L(Cg,h) � Xg/Xh � X
θ/γ−1
h ≤ X−0.162h

using Proposition 5.5(iii) and the estimate Xg � X
θ/γ
h of Proposition 5.2.

In particular, this means that ‖Cg ∧ (1, ξ)‖ � L(Cg) tends to 0 as h → ∞.
As ‖Ch,g ∧ (1, ξ)‖ � L(Ch,g) � 1, we conclude that the angle between Cg
and Ch,g is bounded away from 0 as h→∞ and so

|det(Cg, Ch,g)| � ‖Cg‖ ‖Ch,g‖ � ‖Cg‖.
Proposition 7.5. Any pair of sufficiently large consecutive elements of

I contains exactly one element of J .

Proof. By Corollary 5.3, any pair of sufficiently large consecutive ele-
ments of I contains at least one element of J . So, it remains to show that J
contains finitely many pairs of consecutive elements of I.

Suppose on the contrary that J contains infinitely many such pairs. Then
it follows from Proposition 6.3 and Corollary 5.3 that there exist arbitrarily
long sequences of consecutive elements g < h < i < j < k < l of I with

g ∈ J, h /∈ J, i ∈ J, j ∈ J, k /∈ J, l ∈ J.
Since k /∈ J , Lemma 7.4 gives

(7.3) ‖Cj‖ � X
λ2/γ
k .
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On the other hand, if h is large enough, Lemma 3.3(iii) gives Cj,k = bCj
for some non-zero b ∈ Z with |b| � Xk/Xj+1 � 1. In view of this, Proposi-
tion 5.5(iii) gives

(7.4) L(Cj) � L(Cj,k) � Xj/Xk � X
1/θ−1
k = X

−λ/γ
k ,

using the fact that Xk � Xj+1 � Xθ
j since h /∈ J and k /∈ J . Combining

(7.3) and (7.4), we obtain L(Cj)� ‖Cj‖−1/λ. By [8, Lemma 2.2], this implies
that L(Cj) � ‖Cj‖−1/λ, but we will not need that. We will get the desired
contradiction by considering the sequence e < f < g < h of four consecutive
elements of I ending with h, and by forming the point

y = C−j x
+
e − C+

j x
−
e ∈ Z3.

If h is large enough, Lemma 3.3(i) shows that the points x−e and x+
e are

linearly independent and thus y is non-zero. By Lemma 2.4, we have

(7.5) ‖y‖ � ‖Cj‖Le +XeL(Cj).

If f /∈ J , Proposition 5.2 gives, for h large enough,

(7.6) Xe � X
θ/γ
f , Le � X−λf , Xγ

f � Xh.

If f ∈ J and h is large enough, Proposition 6.3 tells us that e /∈ J because
f, g ∈ J . Then Proposition 5.2 shows that the estimates (7.6) still hold. In
fact, it even gives the stronger estimateXe � X1/θ

f with exponent 1/θ < θ/γ.
Combining (7.3)–(7.6) and using the estimate Xk � Xj+1 � Xγθ

h coming
from Proposition 5.2, we find that

‖y‖ � X
λ2/γ
k X

−λ/γ
h +X

θ/γ2

h X
−λ/γ
k � X

λ2θ−λ/γ
h +X

θ/γ2−λθ
h � X−0.018h .

For h large enough, this is impossible as y 6= 0.

8. Final contradiction. In this section, we assume that our fixed real
number ξ of Section 2 satisfies the hypotheses of Theorem 1.1 for λ = λ3
∼= 0.4245 and we prove Theorem 1.2 by reaching a contradiction.

More precisely, we will show that if f < g < h < i < j < k < l are
consecutive elements of I with h /∈ J large enough, then the points Cf,h and
Ck,l are linearly dependent with

(8.1) ‖Cf,h‖ < ‖Ck,l‖ and L(Cf,h) > L(Ck,l),

which is impossible. To show this, we will need sharp estimates on the above
quantities.

Proposition 7.5 greatly simplifies the problem by showing that large con-
secutive elements of I alternate between J and I \ J . By Proposition 5.2,
this provides sharp estimates on the minimal points. Explicitly, if h < i < j
are large consecutive elements of I with h /∈ J , then Proposition 7.5 shows
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that i ∈ J and j /∈ J , and Proposition 5.2 gives

(8.2) Xh+1 � Xi � Xθ
h, Xi+1 � Xj � Xγ/θ

i , Lh � X−λh+1, Li � X−λi+1.

In particular, this gives Xγ/θ
i � Xi+1 � Xθ

i for each i ∈ I. Corollary 7.3(ii)
also has the following consequence.

Lemma 8.1. There is a primitive point (a, b) ∈ Z2 such that

Ch,g ∈ 〈(a, b)〉Z
for each pair of large enough consecutive elements g < h of I with h /∈ J .

Proof. For each pair of large enough consecutive elements g < h of I
with h /∈ J , the next pair of consecutive elements i < j of I has j /∈ J ,
and Corollary 7.3(ii) shows that Ch,g and Cj,i are linearly dependent. As
the latter are non-zero points of Z2, they are integer multiples of the same
primitive point (a, b) of Z2. The result follows by induction on h.

For each integer i ≥ 1, we define

∆̃xi =
∆xi
‖∆xi‖

and ∆̃2xi =
∆2xi
‖∆xi‖

= ∆(∆̃xi).

Since ‖∆xi‖ � Li, Corollary 5.4 and Proposition 5.5(i) have the following
immediate consequences.

Lemma 8.2. For any large enough consecutive elements g < h < i < j of
I with h /∈ I, we have

|det(∆̃xh, ∆̃xi, ∆̃xj)| � 1 and |det(∆̃2xg, ∆̃2xh)| � 1.

The next lemma asks for precise estimates for |det(∆̃x
−
i , ∆̃x

+

i )| as i goes
to infinity in I.

Lemma 8.3. For any large enough integers i < j with i ∈ I, we have

1 ≤ ‖Ci,j‖ �
Xj

Xi+1
‖Ci‖ � XjL

2
i |det(∆̃x

−
i , ∆̃x

+

i )|.

Proof. For integers 1 ≤ i < j, Lemma 3.1 gives

‖Ci,j‖ = c|xj,0| |det(∆x−i , ∆
2xi)|+O(XiLiLj),

where c = max {1, |ξ|} and where xj,0 is the first coordinate of xj . If i ∈ I,
we also have Xi+1 � X

γ/θ
i by the remark below (8.2), thus

XiLiLj ≤ XiL
2
i � X

1−2λγ/θ
i � X−0.0133i .

As ∆2xi = ∆x+
i − ξ∆x−i , we deduce that

‖Ci,j‖ = c|xj,0| |det(∆x−i , ∆x+
i )|+O(X

−0.0133
i ).
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Moreover, if i is large enough, Lemma 3.3 shows that Ci = Ci,i+1 is a non-zero
point of Z2. Then the above estimate with j = i+ 1 yields

1 ≤ ‖Ci‖ � Xi+1|det(∆x−i , ∆x+
i )|,

and the conclusion follows.

We now exploit the various estimates of Corollary 7.3 and their conse-
quences developed in Lemmas 7.4 and 8.1.

Proposition 8.4. Let (a, b) be as in Lemma 8.1. For any large enough
consecutive elements g < h < i < j of I with h /∈ J , we have

(i) |det(∆̃x
−
h , ∆̃x

+

h )| � Xσ
h |det(∆̃x

−
i , ∆̃x

+

i )|,

(ii) |det(∆̃2xh, a∆̃x
+

g − b∆̃x
−
g )| � Xγλ−1

h � X−0.3131h ,

(iii) |det(∆̃x
−
g , ∆̃x

+

g )| � X−σh |det(∆̃2xj , a∆̃x
+

h − b∆̃x
−
h )|,

where σ = 2− (3 + γ)λ ∼= 0.0396.

Proof. By Corollary 7.3(i), we have ‖Ch,i‖ � ‖Ci,j‖, and thus

XiL
2
h|det(∆̃x

−
h , ∆̃x

+

h )| � XjL
2
i |det(∆̃x

−
i , ∆̃x

+

i )|

by the previous lemma. As we find that XiL
2
h � X1−2λ

i � X
θ(1−2λ)
h and

that XjL
2
i � X1−2λ

j � X
γ(1−2λ)
h , this yields the estimate of part (i) with

σ = (γ − θ)(1− 2λ) = (λ/γ)(1− 2λ) = 2− (3 + γ)λ.
Lemma 8.1 implies that aC+

h,g−bC
−
h,g = 0. By the formulas of Lemma 3.1,

this gives
Xh|det(∆2xh, a∆x+

g − b∆x−g )| � XgL
2
h,

and part (ii) follows as XgL
2
h/(XhLgLh) = XgLh/(XhLg) � X

θ/γ−λθ−1+λ
h

= Xγλ−1
h .
Finally, Lemma 7.4 gives ‖Cg‖ � |det(Cj,h, Ch,g)|. As Ch,g is a non-zero

multiple of (a, b) by Lemma 8.1, and as it has bounded norm by Proposi-
tion 5.5(ii), it is a bounded non-zero multiple of (a, b). We deduce that

1 ≤ ‖Cg‖ � |aC+
j,h − bC

−
j,h| = |det(x

−
j , ∆xj , ax

+
h − bx

−
h )|

� Xj |det(∆2xj , a∆x+
h − b∆x−h )|,

using Lemma 2.2 to expand the determinant, and noting that XhL
2
j tends

to 0 as h → ∞. Since Lemma 8.3 gives ‖Cg‖ � Xg+1|det(∆x−g , ∆x+
g )|, we

obtain the estimate of part (iii) by observing that XjLhLj/(Xg+1L
2
g) �

Xγ−θλ−γθλ−1+2λ
h = X−σh .

In a first step, we deduce upper bound estimates for the quantities
|det(∆̃x

−
i , ∆̃x

+

i )| with i ∈ I. We will show later that they are best possible
up to multiplicative constants.



22 D. Roy

Corollary 8.5. Let σ be as in Proposition 8.4. For any pair of consec-
utive elements g < h of I with h /∈ J , we have

(i) |det(∆̃x
−
g , ∆̃x

+

g )| � X−σh ,

(ii) |det(∆̃x
−
h , ∆̃x

+

h )| � X
−σ/γ
h .

Proof. We may assume that g < h are large enough so that Proposi-
tion 8.4 applies to the sequence of four consecutive elements g < h < i < j of
I starting with g. Then part (i) follows immediately from Proposition 8.4(iii).
For part (ii), we may assume that h is large enough so that j /∈ J and thus
the estimate of part (i) holds with the pair g < h replaced by i < j. Then
Proposition 8.4(i) gives

|det(∆̃x
−
h , ∆̃x

+

h )| � Xσ
hX
−σ
j � Xσ−γσ

h = X
−σ/γ
h .

Corollary 8.6. Let σ be as in Proposition 8.4. For any pair of consec-
utive elements g < h of I with h /∈ J , there are points (sg, tg) and (sh, th) of
norm 1 in R2 such that

∆̃xg = ±(s2g, sgtg, t2g) +O(X−σh ) and ∆̃xh = ±(s2h, shth, t2h) +O(X
−σ/γ
h ).

As ∆̃xg and ∆̃xh are points of norm 1 in R3, this is a direct consequence
of Corollary 8.5 and of the following simple observation.

Lemma 8.7. Let y ∈ R3 with ‖y‖ = 1, and let δ = |det(y−,y+)|. There
exists a point (r, s) ∈ R2 with ‖(r, s)‖ = 1 such that

‖y ± (r2, rs, s2)‖ ≤ 2δ.

Proof. We may assume that δ < 1, otherwise any point (r, s) of norm 1
has the required property. Writing y = (a, b, c), we have δ = |ac − b2|. By
permuting a and c, and by multiplying y by −1 if necessary, we may assume
that a = |a| ≥ |c|. We set (r, s) = (1, b). Then we have ‖(r, s)‖ = 1 since
|b| ≤ ‖y‖ ≤ 1 and we find

(8.3) ‖y − (1, b, b2)‖ = max {1− a, |b2 − c|}.
If a < 1, we have |c| < 1, thus |b| = 1 since ‖y‖ = 1, and then δ = 1 − ac.
As δ < 1, this implies that c > 0, thus the right hand side of (8.3) becomes
max {1− a, 1− c} ≤ δ. If a = 1, it reduces to |b2 − c| = δ. In both cases, we
are done.

From now on, we fix a pair of points (sg, tg) and (sh, th) as in Corollary 8.6
for each pair of consecutive elements g < h of I with g ∈ J and h /∈ J . This
yields a unique point (si, ti) for each large enough i ∈ I.

Proposition 8.8. For any large enough consecutive elements g < h <
i < j of I with h /∈ J , we have
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(i) 1 � |tg − ξsg| � |th − ξsh| � |sgth − shtg|,
(ii) 1 � |shti − sith| � |shtj − sjth| � |sitj − sjti|.

Proof. Using the formulas of Corollary 8.6, the estimates of Lemma 8.2
become

1 � |det(∆̃2xg, ∆̃2xh)| =
∣∣∣∣(tg − ξsg)(th − ξsh) det(sg tg

sh th

)∣∣∣∣+O(X−σ/γh ),

1 � |det(∆̃xh, ∆̃xi, ∆̃xj)| =

∣∣∣∣∣∣∣det
s

2
h shth t2h
s2i siti t2i
s2j sjtj t2j


∣∣∣∣∣∣∣+O(X−σ/γh )

= |(shti − sith)(shtj − sjth)(sitj − sjti)|+O(X
−σ/γ
h ).

The conclusion follows since all the factors involved have bounded absolute
values.

In particular, Proposition 8.8(i) implies that |ti − ξsi| � 1 for each large
enough i ∈ I. Analyzing in the same way the estimate of Proposition 8.4(ii),
we find the following relation.

Proposition 8.9. Let (a, b) be as in Lemma 8.1 and let κ = ‖(a, b)‖.
For each pair of consecutive elements g < h of I with h /∈ J , we have

(8.4) (sg, tg) = ±κ−1(a, b) +O(X−σh ),

where σ is as in Proposition 8.4. If h is large enough, then we also have
|ath − bsh| � 1.

Proof. We may assume that the pair g < h comes from a sequence of
consecutive elements g < h < i < j of I with h /∈ J large enough so that
Proposition 8.4 applies. Using the formula of Corollary 8.6 for ∆̃xg, we find
that

X−0.3131h � |det(∆̃2xh, a∆̃x
+

g − b∆̃x
−
g )|

= |(atg − bsg) det(∆̃2xh, (sg, tg))|+O(X−σh ).

Using the formula of Corollary 8.6 for ∆̃xh and Proposition 8.8(i), we also
note that

|det(∆̃2xh, (sg, tg))| = |(th − ξsh)(sgth − shtg)|+O(X
−σ/γ
h ) � 1.

So, we conclude that
|atg − bsg| � X−σh .

If |b| ≤ |a|, we have 1 ≤ |a| = κ� 1 and this gives tg = (b/a)sg +O(X−σh ),
thus

(sg, tg) = sg
(
1, b/a

)
+O(X−σh ).
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Since ‖(sg, tg)‖ = 1, this implies that sg = ±1 +O(X−σh ) and (8.4) follows.
The case where |a| ≤ |b| is similar and also yields (8.4). Using this formula
for (sg, tg) and assuming h large enough, we conclude from Proposition 8.8(i)
that

|ath − bsh| = κ|sgth − tgsh|+O(X−σh ) � 1.

We deduce the following strengthening of Corollary 8.5.

Corollary 8.10. Let σ be as in Proposition 8.4. For any large enough
consecutive elements g < h of I with h /∈ J , we have

(i) |det(∆̃x
−
g , ∆̃x

+

g )| � X−σh ,

(ii) |det(∆̃x
−
h , ∆̃x

+

h )| � X
−σ/γ
h .

Proof. For large enough consecutive elements g < h < i < j of I with
h /∈ J , we have j /∈ J and we find

|det(∆̃2xj , a∆̃x
+

h − b∆̃x
−
h )|

= |(tj − ξsj)(ath − bsh)(sjth − shtj)|+O(X
−σ/γ
h ) � 1

using the formulas of Corollary 8.6, the estimates of Proposition 8.8, and the
last estimate of Proposition 8.9. This gives (i) as a consequence of Proposi-
tion 8.4(iii). Finally, (ii) follows from (i) with g replaced by i, together with
Proposition 8.4(i), similarly to the proof of Corollary 8.5(ii).

Proposition 8.11. Let σ be as in Proposition 8.4. For any large enough
consecutive elements g < h < i < j of I with h /∈ J , we have

‖Cg,h‖ � Xγ2λ−1
h , L(Cg,h) � X

−λ/γ2
h , ‖Ch,j‖ � X

γ(3λ−1)
h , L(Ch,j) � Xγ2λ−γ

h .

Proof. Using Lemma 8.3 and the estimates of the previous corollary, we
find that

‖Cg,h‖ � XhL
2
g|det(∆̃x

−
g , ∆̃x

+

g )| � X1−2λ−σ
h = Xγ2λ−1

h ,

‖Ch,j‖ � XjL
2
h|det(∆̃x

−
h , ∆̃x

+

h )| � X
γ−2θλ−σ/γ
h = X

γ(3λ−1)
h .

By Proposition 5.5(iii), we also have

L(Cg,h) � Xg/Xh � X
θ/γ−1
h = X

−λ/γ2
h .

Finally, Lemma 3.1 gives

∆Ch,j = xh,0 det(∆
2xh, ∆

2xj) +O(L2
hLj),

where xh,0 is the first coordinate of xh. Using the formulas of Corollary 8.6
together with the estimates of Proposition 8.8, we find that

|det(∆̃2xh, ∆̃2xj)| = |(th − ξsh)(tj − ξsj)(shtj − sjth)|+O(X
−σ/γ
h ) � 1,
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and so

L(Ch,j) = |∆Ch,j | � XhLhLj � X1−θλ−γθλ
h = Xγ2λ−γ

h .

Final contradiction. Let f < g < h < i < j < k < l be consecutive
elements of I with h /∈ J . If h is large enough, we have

{f, h, j, l} ⊂ I \ J, {g, i, k} ⊂ J, Xf � X
1/γ
h , Xl � Xγ2

h ,

and Proposition 8.11 gives

‖Ck,l‖ � Xγ4λ−γ2
h = X0.2915...

h , L(Ck,l) � X−λh = X−0.4245...h ,

‖Cf,h‖ � X3λ−1
h = X0.2735...

h , L(Cf,h) � Xγλ−1
h = X−0.3131...h .

Using the standard estimate (2.5) for determinants, we deduce that

|det(Cf,h, Ck,l)| � ‖Cf,h‖L(Ck,l) + ‖Ck,l‖L(Cf,h)� X−0.021h .

As this determinant is an integer, it vanishes if h is large enough, and we
conclude that Cf,h = ρCk,l for some non-zero ρ ∈ Q that depends on h. If
h is large enough, we also note that ‖Cf,h‖ < ‖Ck,l‖ and L(Cf,h) > L(Ck,l),
as claimed in (8.1). This is impossible since the first inequality implies that
|ρ| < 1, while the second yields |ρ| > 1. This contradiction completes the
proof of Theorem 1.2.

9. Addendum. Although the above shows that the hypotheses of The-
orem 1.1 are not satisfied for λ = λ3, it is nevertheless useful to search for
further polynomial relations satisfied by the sequence (xi)i∈I , assuming that
λ = λ3, because these relations may continue to hold for smaller values of λ.
They may also suggest new constructions that will eventually produce some
ξ ∈ R with [Q(ξ) : Q] > 3 whose exponent λ̂3(ξ) is largest possible, in a
similar way to what is done in [6] for the exponent λ̂2(ξ).

I found several such relations. For brevity, I will simply indicate one of
them. It is linked with the polynomial map Ξ : (R4)3 → R4 given by

Ξ(x,y, z) = C(z,x)−Ψ+(y,x, z)− C(z,x)+Ψ−(y,x, z)
= −det(E(x, z,y), C(z,x))x− det(C(x, z), C(z,x))y

+ det(C(x,y), C(z,x))z.

This polynomial map has algebraic properties that are similar to the map
from (R3)2 to R3 that plays a central role in [6, Corollary 5.2] and sends
a pair (x,y) to [x,x,y] in the notation of [6, §2]. The present map sends
(Z4)3 to Z4, and it can be shown (or checked on a computer) that, for any
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x,y, z ∈ R4, the point w = Ξ(x,y, z) ∈ R4 satisfies

C(w,x) = det(C(z,x), C(z,y)) det(C(x,y), C(x, z))C(x, z),

C(x,w) = det(C(x,y), C(x, z))C(z,x),

Ξ(x, z,w) = det(C(w,x), C(x,w)) z

= det(C(z,x), C(z,y)) det(C(x,y), C(x, z))2

· det(C(x, z), C(z,x))z.
It can also be shown that, for x,y, z as in Proposition 4.2, the point w has

L(w)� ‖z‖2L(x)3L(y)L(z),
‖w‖ � ‖z‖2L(x)3L(y)L(z) + ‖x‖2‖z‖L(x)L(y)L(z)2.

Suppose that λ = λ3, and let j1 < j2 < j3 < · · · denote the elements of I
in increasing order. Without loss of generality, by dropping the first element
of I if necessary, we may assume that j2i−1 ∈ J and j2i /∈ J for each large
enough i. Then, upon setting yi = xji for each i ≥ 1, one finds using the
above estimates that, when i is large enough,

det(y2i−6,y2i−5,y2i−4, Ξ(y2i,y2i+1,y2i+2)) = 0.
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