Ribbon homology cobordisms

Aliakbar Daemi¹ Tye Lidman²
David Shea Vela-Vick³ *C.-M. Michael Wong³

¹Department of Mathematics and Statistics Washington University in St. Louis

> ²Department of Mathematics North Carolina State University

³Department of Mathematics Louisiana State University

CMS Winter Meeting 2022

Ribbon cobordisms

• For compact 3-manifolds Y_- and Y_+ (with same ∂), a cobordism

$$W\colon Y_-\to Y_+$$

is made up of 1-, 2-, and 3-handles

- Ribbon: does not have 3-handles
- Natural examples: Stein cobordisms between contact 3-manifolds

Why "ribbon"?

• Ans: Related to *ribbon concordances* of knots in S^3 , which are concordances with 0- and 1-handles, but no 2-handles

Observation

If $C: K_- \to K_+$ is a (strongly homotopy-)ribbon concordance, then the exterior

- $Y_{\pm} := S^3 \setminus K_{\pm}$
- $\bullet \ W := (S^3 \times [0,1]) \setminus C$

gives a ribbon \mathbb{Z} -homology cobordism $W: Y_- \to Y_+$.

Here, R-homology cobordism means that the maps

$$H_*(Y_-; \mathbf{R}) \to H_*(W; \mathbf{R}) \leftarrow H_*(Y_+; \mathbf{R})$$

induced by inclusion are isomorphisms.

W, like C, has no topology in interior (detected by homology)

Fundamental groups

•
$$Y_{\pm} = S^3 \setminus K_{\pm}$$
, $W = (S^3 \times [0,1]) \setminus C$

Theorem (Gordon 1981)

If $C \colon K_- \to K_+$ is a (strongly homotopy-) ribbon concordance, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

Proof.

Uses the residual finiteness of knot groups $\pi_1(Y_{\pm})$.

Several decades later...

Observation

Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981)

If $W: Y_- \to Y_+$ is a ribbon homology cobordism, then

$$\pi_1(Y_-) \hookrightarrow \pi_1(W) \twoheadleftarrow \pi_1(Y_+).$$

- Roughly: $\pi_1(Y_-)$ is "no bigger" than $\pi_1(Y_+)$
- How can we use this?

Observation

 $\pi_1(Y)$ determines the Thurston geometry of Y (if it has one).

Theorem (Daemi-Lidman-Vela-Vick-W.)

If $W: Y_- \to Y_+$ is a ribbon \mathbb{Q} -homology cobordism, then

• The Thurston geometries of Y_- and Y_+ satisfy a hierarchy.

Ribbon homology cobordisms and Thurston geometries

Theorem (Daemi-Lidman-Vela-Vick-W.)

If $W: Y_- \to Y_+$ is a ribbon \mathbb{Q} -homology cobordism, then

- The Thurston geometries of Y_{-} and Y_{+} satisfy a hierarchy.
- How else can we squeeze information from π_1 ?
- Idea: Representations of $\pi_1(Y_\pm)$

Theorem (Daemi–Lidman–Vela-Vick–W.)

If $W: Y_- \to Y_+$ is a ribbon \mathbb{Q} -homology cobordism, then

- ullet The Thurston geometries of Y_- and Y_+ satisfy a hierarchy.
- The dimension of the G-representation variety of Y_- is at most that of Y_+ , for a compact Lie group G, and

$$\mathcal{R}_G(Y_-) \leftarrow \mathcal{R}_G(W) \hookrightarrow \mathcal{R}_G(Y_+).$$

• Agol (2022) famously used this idea to prove:

Theorem (Conjecture (Gordon 1981); Agol 2022)

Ribbon concordance is a partial order.

- Note: Also true for G-character variety
- Any specific G? For example, SU(2)
- Next idea: The SU(2)-representations of $\pi_1(Y)$ are related to the instanton Floer homology $I^{\sharp}(Y)$

Theorem (Daemi-Lidman-Vela-Vick-W.)

If $W: Y_- \to Y_+$ is a ribbon \mathbb{Q} -homology cobordism, then

- The Thurston geometries of Y_- and Y_+ satisfy a hierarchy.
- The dimension of the G-representation variety of Y_- is at most that of Y_+ .
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- Note: Conjecturally, $I^{\sharp}(Y) \cong \widehat{HF}(Y)$ (Heegaard Floer)
- Next idea: Similarly for Heegaard Floer homology!

Theorem (Daemi-Lidman-Vela-Vick-W.)

If $W: Y_- \to Y_+$ is a ribbon R-homology cobordism, then

- The Thurston geometries of Y_- and Y_+ satisfy a hierarchy.
- The dimension of the G-representation variety of Y_- is at most that of Y_+ .
- $I^{\sharp}(W) \colon I^{\sharp}(Y_{-}) \to I^{\sharp}(Y_{+})$ is injective.
- $\widehat{F}_W \colon \widehat{\mathrm{HF}}(Y_-) \to \widehat{\mathrm{HF}}(Y_+)$ is injective. $(R = \mathbb{Z}/2)$
- Note: We also prove analogous results for I, SHI, KHI, equivariant I, and HF[−], HF⁺, HF[∞], SFH, HFK, HFI
- Some of these require conditions to make sense, or have weaker conclusion: $F(Y_{-})$ isomorphic to summand of $F(Y_{+})$

Sketch of proof for Floer homologies

Doubling trick:

$$\begin{array}{lll} \text{Attaching } S^1 \times D^3 & \leadsto & X := (Y_- \times [0,1]) \, \sharp \, (S^1 \times S^3) \\ \text{Attaching } D^2 \times S^2 & \leadsto & D(W) := W \cup_{Y_+} (-W) \end{array}$$

Application: Seifert fibered homology spheres

Theorem (Daemi-Lidman-Vela-Vick-W.)

 $Y_- = \Sigma(a_1, \ldots, a_n)$, $Y_+ = \Sigma(a_1', \ldots, a_m')$. Suppose there exists a ribbon \mathbb{Q} -homology cobordism from Y_- to Y_+ . Then

- $\bullet |\lambda(Y_{-})| \leq |\lambda(Y_{+})|;$
- Either Y_- and Y_+ both bound negative-definite plumbings, or both bound positive-definite plumbings; and
- \bullet $n \leq m$.

Proof.

First two items follow from \widehat{HF} or I^{\sharp} . Last item requires calculating the dimension of SU(2)-character varieties.

Application: Seifert fibered homology spheres

Theorem (Daemi-Lidman-Vela-Vick-W.)

 $Y_- = \Sigma(a_1, \ldots, a_n)$, $Y_+ = \Sigma(a_1', \ldots, a_m')$. Suppose there exists a ribbon \mathbb{Q} -homology cobordism from Y_- to Y_+ . Then

- $\bullet |\lambda(Y_{-})| \leq |\lambda(Y_{+})|;$
- Either Y_- and Y_+ both bound negative-definite plumbings, or both bound positive-definite plumbings; and
- \bullet $n \leq m$.

Corollary

 $K_-,K_+\subset S^3$ Montesinos knots with $\det=1$. Suppose the number of rational tangles in K_- with denominator at least 2> that in K_+ . Then there are no strongly homotopy-ribbon concordances from K_- to K_+ .

Application: Ribbon concordance to small knots

Theorem (Daemi-Lidman-Vela-Vick-W.)

There are no strongly homotopy-ribbon concordances from composite knots K_- to small knots K_+ .

Proof.

For $K\subset S^3$, Sivek–Zentner: \exists a 1-parameter family of irreps $\pi_1(S^3\setminus K)\to \mathrm{SU}(2)$. For composite knots, can use conjugation to get a 2-parameter family. Thus, the $\mathrm{SU}(2)$ -representation varieties of K_\pm have dimension ≥ 2 ; cannot be small.

Application: Dehn surgery

Theorem (Daemi–Lidman–Vela-Vick–W.)

Suppose that Y is an irreducible \mathbb{Q} -homology sphere, K is a null-homotopic knot in Y, and $Y_0(K) \cong N \sharp (S^1 \times S^2)$. Then $N \cong Y$.

Proof.

Idea: A natural \mathbb{Z} -ribbon homology cobordism from N to Y, which leads to an isomorphism of π_1 .

- For $Y \cong S^3$, Gabai's proof of Property R/Poénaru Conjecture
- For aspherical Y, get a homotopy equivalence, and thus a homeomorphism by the Borel Conjecture in dimension 3
- \bullet For lens spaces Y, $\mathbb{Z}\text{-homology}$ cobordant implies homeomorphic
- For spherical Y that are not lens spaces, analyze Sylow 2-subgroups of $\pi_1(Y)$ to reduce to lens spaces

Thank you!

$$\begin{array}{lll} \text{Attaching } S^1 \times D^3 & \leadsto & X := (Y_- \times [0,1]) \, \sharp \, (S^1 \times S^3) \\ \text{Attaching } D^2 \times S^2 & \leadsto & D(W) := W \cup_{Y_+} (-W) \end{array}$$