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Ribbon cobordisms

For compact 3-manifolds Y− and Y+ (with same ∂), a
cobordism

W : Y− → Y+

is made up of 1-, 2-, and 3-handles
Ribbon: does not have 3-handles
Natural examples: Stein cobordisms between contact
3-manifolds



Why “ribbon”?

Ans: Related to ribbon concordances of knots in S3, which
are concordances with 0- and 1-handles, but no 2-handles

Observation
If C : K− → K+ is a (strongly homotopy-)ribbon concordance,
then the exterior

Y± := S3 \K±
W := (S3 × [0, 1]) \ C

gives a ribbon Z-homology cobordism W : Y− → Y+.

Here, R-homology cobordism means that the maps
H∗(Y−;R)→ H∗(W ;R)← H∗(Y+;R)

induced by inclusion are isomorphisms.
W , like C, has no topology in interior (detected by homology)



Fundamental groups

Y± = S3 \K±, W = (S3 × [0, 1]) \ C

Theorem (Gordon 1981)
If C : K− → K+ is a (strongly homotopy-) ribbon concordance,
then

π1(Y−) ↪→ π1(W )� π1(Y+).

Proof.
Uses the residual finiteness of knot groups π1(Y±).



Several decades later...

Observation
Geometrization (Perelman 2006) implies residual finiteness for
closed 3-manifold groups.

Theorem (Gordon 1981)
If W : Y− → Y+ is a ribbon homology cobordism, then

π1(Y−) ↪→ π1(W )� π1(Y+).

Roughly: π1(Y−) is “no bigger” than π1(Y+)
How can we use this?



Main results

Observation
π1(Y ) determines the Thurston geometry of Y (if it has one).

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon Q-homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.



Ribbon homology cobordisms and Thurston geometries



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon Q-homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.

How else can we squeeze information from π1?
Idea: Representations of π1(Y±)



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon Q-homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+, for a compact Lie group G, and

RG(Y−)� RG(W ) ↪→ RG(Y+).

Agol (2022) famously used this idea to prove:

Theorem (Conjecture (Gordon 1981); Agol 2022)
Ribbon concordance is a partial order.

Note: Also true for G-character variety
Any specific G? For example, SU(2)
Next idea: The SU(2)-representations of π1(Y ) are related to
the instanton Floer homology I](Y )



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon Q-homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+.
I](W ) : I](Y−)→ I](Y+) is injective.

Note: Conjecturally, I](Y ) ∼= ĤF(Y ) (Heegaard Floer)
Next idea: Similarly for Heegaard Floer homology!



Main results

Theorem (Daemi–Lidman–Vela-Vick–W.)
If W : Y− → Y+ is a ribbon R-homology cobordism, then

The Thurston geometries of Y− and Y+ satisfy a hierarchy.
The dimension of the G-representation variety of Y− is at
most that of Y+.
I](W ) : I](Y−)→ I](Y+) is injective.
F̂W : ĤF(Y−)→ ĤF(Y+) is injective. (R = Z/2)

Note: We also prove analogous results for I, SHI, KHI,
equivariant I, and HF−, HF+, HF∞, SFH, ĤFK, ĤFI
Some of these require conditions to make sense, or have
weaker conclusion: F (Y−) isomorphic to summand of F (Y+)



Sketch of proof for Floer homologies

Doubling trick:

Attaching S1 ×D3  X := (Y− × [0, 1]) ] (S1 × S3)
Attaching D2 × S2  D(W ) := W ∪Y+ (−W )



Application: Seifert fibered homology spheres

Theorem (Daemi–Lidman–Vela-Vick–W.)
Y− = Σ(a1, . . . , an), Y+ = Σ(a′1, . . . , a′m). Suppose there exists a
ribbon Q-homology cobordism from Y− to Y+. Then

|λ(Y−)| ≤ |λ(Y+)|;
Either Y− and Y+ both bound negative-definite plumbings, or
both bound positive-definite plumbings; and
n ≤ m.

Proof.
First two items follow from ĤF or I]. Last item requires
calculating the dimension of SU(2)-character varieties.



Application: Seifert fibered homology spheres

Theorem (Daemi–Lidman–Vela-Vick–W.)
Y− = Σ(a1, . . . , an), Y+ = Σ(a′1, . . . , a′m). Suppose there exists a
ribbon Q-homology cobordism from Y− to Y+. Then

|λ(Y−)| ≤ |λ(Y+)|;
Either Y− and Y+ both bound negative-definite plumbings, or
both bound positive-definite plumbings; and
n ≤ m.

Corollary
K−,K+ ⊂ S3 Montesinos knots with det = 1. Suppose the
number of rational tangles in K− with denominator at least 2 >
that in K+. Then there are no strongly homotopy-ribbon
concordances from K− to K+.



Application: Ribbon concordance to small knots

Theorem (Daemi–Lidman–Vela-Vick–W.)
There are no strongly homotopy-ribbon concordances from
composite knots K− to small knots K+.

Proof.
For K ⊂ S3, Sivek–Zentner: ∃ a 1-parameter family of irreps
π1(S3 \K)→ SU(2). For composite knots, can use conjugation to
get a 2-parameter family. Thus, the SU(2)-representation varieties
of K± have dimension ≥ 2; cannot be small.



Application: Dehn surgery

Theorem (Daemi–Lidman–Vela-Vick–W.)
Suppose that Y is an irreducible Q-homology sphere, K is a
null-homotopic knot in Y , and Y0(K) ∼= N ] (S1 × S2). Then
N ∼= Y .

Proof.
Idea: A natural Z-ribbon homology cobordism from N to Y , which
leads to an isomorphism of π1.

For Y ∼= S3, Gabai’s proof of Property R/Poénaru Conjecture
For aspherical Y , get a homotopy equivalence, and thus a
homeomorphism by the Borel Conjecture in dimension 3
For lens spaces Y , Z-homology cobordant implies
homeomorphic
For spherical Y that are not lens spaces, analyze Sylow
2-subgroups of π1(Y ) to reduce to lens spaces



Thank you!

Attaching S1 ×D3  X := (Y− × [0, 1]) ] (S1 × S3)
Attaching D2 × S2  D(W ) := W ∪Y+ (−W )


