Ribbon homology cobordisms

Aliakbar Daemi ${ }^{1}$ Tye Lidman ${ }^{2}$
David Shea Vela-Vick ${ }^{3} \quad{ }^{*}$ C.-M. Michael Wong ${ }^{3}$

${ }^{1}$ Department of Mathematics and Statistics
Washington University in St. Louis
${ }^{2}$ Department of Mathematics
North Carolina State University
${ }^{3}$ Department of Mathematics
Louisiana State University
CMS Winter Meeting 2022

Ribbon cobordisms

- For compact 3-manifolds Y_{-}and Y_{+}(with same ∂), a cobordism

$$
W: Y_{-} \rightarrow Y_{+}
$$

is made up of $1-, 2$-, and 3 -handles

- Ribbon: does not have 3-handles
- Natural examples: Stein cobordisms between contact 3-manifolds

Why "ribbon"?

- Ans: Related to ribbon concordances of knots in S^{3}, which are concordances with 0 - and 1 -handles, but no 2 -handles

Observation
If $C: K_{-} \rightarrow K_{+}$is a (strongly homotopy-)ribbon concordance, then the exterior

- $Y_{ \pm}:=S^{3} \backslash K_{ \pm}$
- $W:=\left(S^{3} \times[0,1]\right) \backslash C$
gives a ribbon \mathbb{Z}-homology cobordism $W: Y_{-} \rightarrow Y_{+}$.
- Here, R-homology cobordism means that the maps

$$
H_{*}\left(Y_{-} ; R\right) \rightarrow H_{*}(W ; R) \leftarrow H_{*}\left(Y_{+} ; R\right)
$$

induced by inclusion are isomorphisms.

- W, like C, has no topology in interior (detected by homology)

Fundamental groups

- $Y_{ \pm}=S^{3} \backslash K_{ \pm}, W=\left(S^{3} \times[0,1]\right) \backslash C$

Theorem (Gordon 1981)
If $C: K_{-} \rightarrow K_{+}$is a (strongly homotopy-) ribbon concordance, then

$$
\pi_{1}\left(Y_{-}\right) \hookrightarrow \pi_{1}(W) \longleftarrow \pi_{1}\left(Y_{+}\right) .
$$

Proof.
Uses the residual finiteness of knot groups $\pi_{1}\left(Y_{ \pm}\right)$.

Several decades later...

Observation
Geometrization (Perelman 2006) implies residual finiteness for closed 3-manifold groups.

Theorem (Gordon 1981)
If $W: Y_{-} \rightarrow Y_{+}$is a ribbon homology cobordism, then

$$
\pi_{1}\left(Y_{-}\right) \hookrightarrow \pi_{1}(W) \longleftarrow \pi_{1}\left(Y_{+}\right) .
$$

- Roughly: $\pi_{1}\left(Y_{-}\right)$is "no bigger" than $\pi_{1}\left(Y_{+}\right)$
- How can we use this?

Main results

Observation
$\pi_{1}(Y)$ determines the Thurston geometry of Y (if it has one).

Theorem (Daemi-Lidman-Vela-Vick-W.)
If $W: Y_{-} \rightarrow Y_{+}$is a ribbon \mathbb{Q}-homology cobordism, then

- The Thurston geometries of Y_{-}and Y_{+}satisfy a hierarchy.

Ribbon homology cobordisms and Thurston geometries

Main results

Theorem (Daemi-Lidman-Vela-Vick-W.)
If $W: Y_{-} \rightarrow Y_{+}$is a ribbon \mathbb{Q}-homology cobordism, then

- The Thurston geometries of Y_{-}and Y_{+}satisfy a hierarchy.
- How else can we squeeze information from π_{1} ?
- Idea: Representations of $\pi_{1}\left(Y_{ \pm}\right)$

Main results

Theorem (Daemi-Lidman-Vela-Vick-W.)
If $W: Y_{-} \rightarrow Y_{+}$is a ribbon \mathbb{Q}-homology cobordism, then

- The Thurston geometries of Y_{-}and Y_{+}satisfy a hierarchy.
- The dimension of the G-representation variety of Y_{-}is at most that of Y_{+}, for a compact Lie group G, and

$$
\mathcal{R}_{G}\left(Y_{-}\right) \longleftarrow \mathcal{R}_{G}(W) \hookrightarrow \mathcal{R}_{G}\left(Y_{+}\right)
$$

- Agol (2022) famously used this idea to prove:

Theorem (Conjecture (Gordon 1981); Agol 2022)

Ribbon concordance is a partial order.

- Note: Also true for G-character variety
- Any specific G ? For example, $\mathrm{SU}(2)$
- Next idea: The $\mathrm{SU}(2)$-representations of $\pi_{1}(Y)$ are related to the instanton Floer homology $\mathrm{I}^{\sharp}(Y)$

Main results

Theorem (Daemi-Lidman-Vela-Vick-W.)
If $W: Y_{-} \rightarrow Y_{+}$is a ribbon \mathbb{Q}-homology cobordism, then

- The Thurston geometries of Y_{-}and Y_{+}satisfy a hierarchy.
- The dimension of the G-representation variety of Y_{-}is at most that of Y_{+}.
- $\mathrm{I}^{\sharp}(W): \mathrm{I}^{\sharp}\left(Y_{-}\right) \rightarrow \mathrm{I}^{\sharp}\left(Y_{+}\right)$is injective.
- Note: Conjecturally, $\mathrm{I}^{\sharp}(Y) \cong \widehat{\mathrm{HF}}(Y)$ (Heegaard Floer)
- Next idea: Similarly for Heegaard Floer homology!

Main results

Theorem (Daemi-Lidman-Vela-Vick-W.)
If $W: Y_{-} \rightarrow Y_{+}$is a ribbon R-homology cobordism, then

- The Thurston geometries of Y_{-}and Y_{+}satisfy a hierarchy.
- The dimension of the G-representation variety of Y_{-}is at most that of Y_{+}.
- $\mathrm{I}^{\sharp}(W): \mathrm{I}^{\sharp}\left(Y_{-}\right) \rightarrow \mathrm{I}^{\sharp}\left(Y_{+}\right)$is injective.
- $\widehat{F}_{W}: \widehat{\mathrm{HF}}\left(Y_{-}\right) \rightarrow \widehat{\mathrm{HF}}\left(Y_{+}\right)$is injective. $(R=\mathbb{Z} / 2)$
- Note: We also prove analogous results for I, SHI, KHI, equivariant I, and $\mathrm{HF}^{-}, \mathrm{HF}^{+}, \mathrm{HF}^{\infty}, \mathrm{SFH}, \widehat{\mathrm{HFK}}, \widehat{\mathrm{HFI}}$
- Some of these require conditions to make sense, or have weaker conclusion: $F\left(Y_{-}\right)$isomorphic to summand of $F\left(Y_{+}\right)$

Sketch of proof for Floer homologies

- Doubling trick:

Attaching $S^{1} \times D^{3} \rightsquigarrow \quad X:=\left(Y_{-} \times[0,1]\right) \sharp\left(S^{1} \times S^{3}\right)$
Attaching $D^{2} \times S^{2} \rightsquigarrow D(W):=W \cup_{Y_{+}}(-W)$

Application: Seifert fibered homology spheres

Theorem (Daemi-Lidman-Vela-Vick-W.)
$Y_{-}=\Sigma\left(a_{1}, \ldots, a_{n}\right), Y_{+}=\Sigma\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)$. Suppose there exists a ribbon \mathbb{Q}-homology cobordism from Y_{-}to Y_{+}. Then

- $\left|\lambda\left(Y_{-}\right)\right| \leq\left|\lambda\left(Y_{+}\right)\right|$;
- Either Y_{-}and Y_{+}both bound negative-definite plumbings, or both bound positive-definite plumbings; and
- $n \leq m$.

Proof.
First two items follow from $\widehat{\mathrm{HF}}$ or I^{\sharp}. Last item requires calculating the dimension of $\mathrm{SU}(2)$-character varieties.

Application: Seifert fibered homology spheres

Theorem (Daemi-Lidman-Vela-Vick-W.)
$Y_{-}=\Sigma\left(a_{1}, \ldots, a_{n}\right), Y_{+}=\Sigma\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)$. Suppose there exists a ribbon \mathbb{Q}-homology cobordism from Y_{-}to Y_{+}. Then

- $\left|\lambda\left(Y_{-}\right)\right| \leq\left|\lambda\left(Y_{+}\right)\right|$;
- Either Y_{-}and Y_{+}both bound negative-definite plumbings, or both bound positive-definite plumbings; and
- $n \leq m$.

Corollary

$K_{-}, K_{+} \subset S^{3}$ Montesinos knots with det $=1$. Suppose the number of rational tangles in K_{-}with denominator at least $2>$ that in K_{+}. Then there are no strongly homotopy-ribbon concordances from K_{-}to K_{+}.

Application: Ribbon concordance to small knots

Theorem (Daemi-Lidman-Vela-Vick-W.)
There are no strongly homotopy-ribbon concordances from composite knots K_{-}to small knots K_{+}.

Proof.
For $K \subset S^{3}$, Sivek-Zentner: \exists a 1-parameter family of irreps
$\pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{SU}(2)$. For composite knots, can use conjugation to get a 2 -parameter family. Thus, the $\mathrm{SU}(2)$-representation varieties of $K_{ \pm}$have dimension ≥ 2; cannot be small.

Application: Dehn surgery

Theorem (Daemi-Lidman-Vela-Vick-W.)
Suppose that Y is an irreducible \mathbb{Q}-homology sphere, K is a null-homotopic knot in Y, and $Y_{0}(K) \cong N \sharp\left(S^{1} \times S^{2}\right)$. Then $N \cong Y$.

Proof.
Idea: A natural \mathbb{Z}-ribbon homology cobordism from N to Y, which leads to an isomorphism of π_{1}.

- For $Y \cong S^{3}$, Gabai's proof of Property R/Poénaru Conjecture
- For aspherical Y, get a homotopy equivalence, and thus a homeomorphism by the Borel Conjecture in dimension 3
- For lens spaces Y, \mathbb{Z}-homology cobordant implies homeomorphic
- For spherical Y that are not lens spaces, analyze Sylow 2-subgroups of $\pi_{1}(Y)$ to reduce to lens spaces

Thank you!

Attaching $S^{1} \times D^{3} \rightsquigarrow \quad X:=\left(Y_{-} \times[0,1]\right) \sharp\left(S^{1} \times S^{3}\right)$
Attaching $D^{2} \times S^{2} \rightsquigarrow \quad D(W):=W \cup_{Y_{+}}(-W)$

