Upper bounds for the Lagrangian cobordism relation on Legendrian links

Joshua M. Sabloff¹ David Shea Vela-Vick² *C.-M. Michael Wong³

¹Department of Mathematics and Statistics Haverford College

> ²Department of Mathematics Louisiana State University

> ³Department of Mathematics Dartmouth College

Nearly Carbon-Neutral Geometric Topology Conference 2021

Outline

1 Background

• Lagrangian cobordisms between Legendrian links

Results

- Upper bounds for the Lagrangian relation
- The Lagrangian cobordism genus

Lagrangian cobordisms in $\mathbb{R} \times Y$

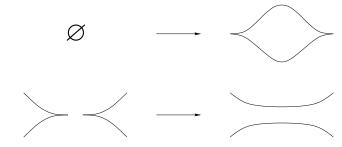
- Recall: Contact 3-manifold (Y, ξ) , with $\xi = \ker(\alpha)$; e.g. \mathbb{R}^3 with standard contact structure $\xi_{std} = \ker(\alpha_{std})$, where $\alpha_{std} = dz ydx$
- Tight vs. overtwisted contact manifolds
- A link $\Lambda \subset Y$ is Legendrian if Λ is tangent to ξ
- Symplectization $(\mathbb{R} \times Y, d(e^t \alpha))$
- (Chantraine) An *(exact) Lagrangian cobordism from* Λ_- *to* Λ_+ is as follows:
 - An embedded Lagrangian submanifold $L \subset (\mathbb{R} \times Y, d(e^t \alpha))$
 - There is some real T > 0 such that

$$\begin{split} \mathcal{E}_+(L) &:= L \cap ((T,\infty) \times Y) = (T,\infty) \times \Lambda_+; \\ \mathcal{E}_-(L) &:= L \cap ((-\infty,-T) \times Y) = (-\infty,-T) \times \Lambda_-; \end{split}$$

- The rest of L is compact with boundary Λ_+ and $-\Lambda_-$
- $e^t \alpha|_L = df$ is exact, with f constant on $\mathcal{E}_+(L) \cup \mathcal{E}_-(L)$

Decomposable Lagrangian cobordisms

- (Chantraine; Ekholm–Honda–Kálmán) A Lagrangian cobordism is decomposable if it is a product of elementary cobordisms: Legendrian isotopy, births, and saddles
- In front diagrams: Legendrian Reidemeister moves and



• Note the direction of arrows!

Decomposable Lagrangian cobordisms

- (Chantraine; Ekholm–Honda–Kálmán) A Lagrangian cobordism is *decomposable* if it is a product of elementary cobordisms: Legendrian isotopy, births, and saddles
- Every decomposable Lagrangian cobordism is exact
- Open question: Is every exact Lagrangian cobordism decomposable?

Some (perhaps unintuitive) properties

- Λ_- and Λ_+ Legendrian isotopic \implies there exists a Lagrangian concordance (i.e. L is $\mathbb{R} \times S^1$)
- Lagrangian concordances are exact
- Differ from smooth cobordisms and concordances:
 - (Chantraine) If Λ_- and Λ_+ are knots in \mathbb{R}^3 , then

$$r(\Lambda_+) = r(\Lambda_-), \quad tb(\Lambda_+) = tb(\Lambda_-) - \chi(L)$$

- So a Lagrangian cobordism L cannot be inverted whenever g(L)>0; can we invert Lagrangian concordances?
- (Chantraine) Not in general!
- So Lagrangian cobordism and concordance are not equivalence relations
- Instead, get a preorder \leq on Legendrian links
 - $\Lambda \preceq \Lambda$; $\Lambda_1 \preceq \Lambda_2$ and $\Lambda_2 \preceq \Lambda_3$ imply $\Lambda_1 \preceq \Lambda_3$
 - Questions: Is it a partial order? What can we say about the preorder?

Statement of main result

Theorem (with Sabloff and Vela-Vick)

Suppose that Λ and Λ' are oriented Legendrian links in a tight contact 3-manifold (Y,ξ) , with the same rotation number (with respect to some Seifert surfaces). Then there exist Λ_- and Λ_+ such that $\Lambda_- \leq \Lambda \leq \Lambda_+$ and $\Lambda_- \leq \Lambda' \leq \Lambda_+$.

• Common lower bound established by Boranda, Traynor, and Yan

Theorem (with Sabloff and Vela-Vick)

With the same hypothesis, there exist Λ_\pm and decomposable Lagrangian cobordisms L and L' from Λ_- to Λ_+ such that

- Λ appears as a collared slice of L, and Λ' appears as a collared slice of L'; and
- L and L' are exact-Lagrangian isotopic.

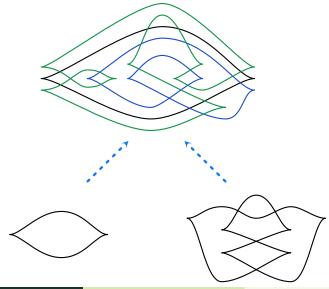
• There is a version for unoriented Lagrangian cobordisms

C.-M. Michael Wong, et al.

Statement of main result

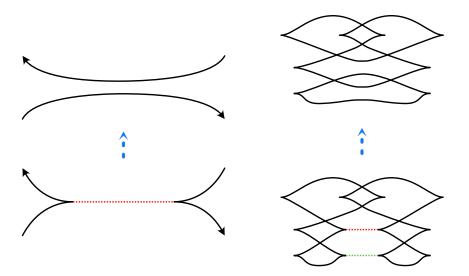


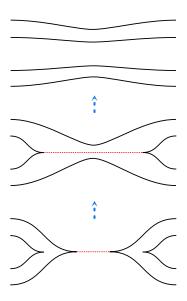
Statement of main result

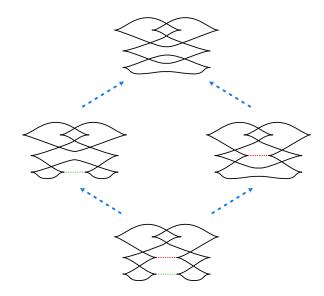


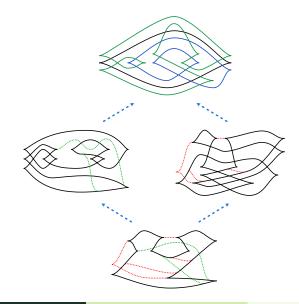
Upper bounds for the Lagrangian relation

- Inspired by Lazarev's recent result for upper bounds of formally isotopic Legendrians in a contact (2n+1)-manifold with $n\geq 2$
- First, find a common lower bound Λ_- for Λ and Λ' by pinching
- \bullet Insight: Record the cobordisms from Λ_- to Λ and Λ' by a Legendrian graph
 - Legendrian ambient surgery (e.g. Dimitroglou Rizell) recovers cobordism
 - Caution: Cannot do this for all cobordisms
- ullet Thus, need to make sure the cobordisms from Λ_- are recordable
 - In \mathbb{R}^3 , refine the Boranda–Traynor–Yan diagrammatic approach
 - In general tight (Y, ξ) , use convex surface theory
- Finally, combine the two Legendrian graphs to build both Λ_+ and the cobordisms to it









The Lagrangian cobordism genus

Lagrangian quasi-cobordisms

• Our result allows us to define the following:

Definition

A Lagrangian quasi-cobordism between Legendrian links Λ and Λ' consists of an ordered set of n+1 Legendrian links

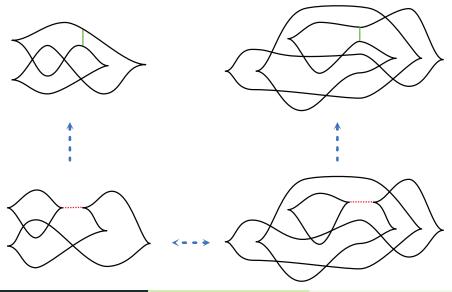
$$(\Lambda = \Lambda_0, \Lambda_1, \dots, \Lambda_n = \Lambda')$$

an ordered set of n nontempty Legendrian links

$$(\Lambda_1^*,\ldots,\Lambda_n^*)$$

such that Λ_i^* is an upper or lower bound for the pair $(\Lambda_{i-1}, \Lambda_i)$, and all the Lagrangian cobordisms that realize these upper and lower bounds.

Lagrangian quasi-cobordisms



Lagrangian cobordism genus

Definition

The *Euler characteristic* of a Lagrangian quasi-cobordism is the sum of the Euler characteristics of the constituent Lagrangians, and its *genus* is computed from the Euler characteristic. The *relative Lagrangian genus* $q_L(\Lambda, \Lambda')$ is the minimum genus of any

The relative Lagrangian genus $g_L(\Lambda, \Lambda')$ is the minimum genus of any Lagrangian quasi-cobordism between Λ and Λ' .

Corollary (with Sabloff and Vela-Vick)

Any two Legendrian links with the same rotation number are Lagrangian quasi-cobordant.

Basic properties

- $g_s(\Lambda, \Lambda') \leq g_L(\Lambda, \Lambda')$
- When is equality achieved?
- Not always, by considering double stabilizations
- But $g_s(\Lambda, \Lambda') = g_L(\Lambda, \Lambda')$ if Λ is Lagrangian fillable, and $\Lambda \preceq \Lambda'$
- Some open questions:
 - Is there a pair Λ and Λ' that are Lagrangian quasi-concordant but not Lagrangian concordant?
 - Can $g_L(\Lambda, \Lambda') g_s(\Lambda, \Lambda')$ be arbitrarily large when Λ and Λ' both have maximal Thurston–Bennequin invariant?
 - Is there a version of this theory for Maslov-0 Lagrangians, which would allow the use of Legendrian contact homology?

Thank you!

