GRID invariants obstruct decomposable Lagrangian cobordisms

John A. Baldwin¹ Tye Lidman² *C.-M. Michael Wong³

¹Department of Mathematics Boston College

²Department of Mathematics North Carolina State University

³Department of Mathematics Louisiana State University

AMS Spring Southeastern Sectional Meeting 2019

1 Background

- Lagrangian cobordisms between Legendrian links
- GRID invariants

2 Results

- Statement
- Applications

Lagrangian cobordisms in $\mathbb{R} \times \mathbb{R}^3$

- Recall: \mathbb{R}^3 with standard contact structure $\xi_{\rm std} = \ker(\alpha)$, where $\alpha = dz y dx$
- A link $\Lambda \subset \mathbb{R}^3$ is *Legendrian* if Λ is tangent to ξ_{std}
- Focus on the symplectization $(\mathbb{R} \times \mathbb{R}^3, d(e^t \alpha))$
- (Chantraine) An (exact) Lagrangian cobordism from Λ_{bot} to Λ_{top} is as follows:
 - An embedded Lagrangian submanifold $L \subset (\mathbb{R} \times \mathbb{R}^3, d(e^t \alpha))$
 - There is some real ${\cal T}>0$ such that

$$\begin{aligned} \mathcal{E}_{\rm top}(L) &:= L \cap ((T,\infty) \times \mathbb{R}^3) = (T,\infty) \times \Lambda_{\rm top}; \\ \mathcal{E}_{\rm bot}(L) &:= L \cap ((-\infty,-T) \times \mathbb{R}^3) = (-\infty,-T) \times \Lambda_{\rm bot}; \end{aligned}$$

- The rest of L is compact with boundary $\Lambda_{\rm top}$ and $-\Lambda_{\rm bot}$
- $e^t \alpha|_L = df$ is exact, with f constant on $\mathcal{E}_{top}(L) \cup \mathcal{E}_{bot}(L)$

Some (perhaps unintuitive) properties

- Λ_{bot} and Λ_{top} Legendrian isotopic \implies there exists a Lagrangian concordance (i.e. L is $\mathbb{R} \times S^1$)
- Lagrangian concordances are exact
- Differ from smooth cobordisms and concordances:
 - (Chantraine) If $\Lambda_{\rm bot}$ and $\Lambda_{\rm top}$ are knots, then

$$r(\Lambda_{top}) = r(\Lambda_{bot}), \quad tb(\Lambda_{top}) = tb(\Lambda_{bot}) - \chi(L)$$

- So a Lagrangian cobordism L cannot be inverted whenever g(L) > 0; can we invert Lagrangian concordances?
- (Chantraine) Not in general!
- So Lagrangian cobordism and concordance are not equivalence relations
- (Ekholm–Honda–Kálmán; Eliashberg–Ganatra–Lazarev) Can be generalized from cobordisms in ℝ × ℝ³ to cobordisms in a Weinstein cobordism from some (Y_{bot}, ξ_{bot}) to some (Y_{top}, ξ_{top})

Decomposable Lagrangian cobordisms

- (Chantraine; Ekholm–Honda–Kálmán) A Lagrangian cobordism is decomposable if it is a product of elementary cobordisms: Legendrian isotopy, births, and saddles
- In front diagrams: Legendrian Reidemeister moves and

• Note the direction of arrows!

Decomposable Lagrangian cobordisms

- (Chantraine; Ekholm–Honda–Kálmán) A Lagrangian cobordism is decomposable if it is a product of elementary cobordisms: Legendrian isotopy, births, and saddles
- (Conway–Etnyre–Tosun) In $\mathbb{R}\times\mathbb{R}^3,$ decomposable cobordisms are regular; converse unknown
 - Regular: tangent to the Liouville vector field
- Every decomposable Lagrangian cobordism is exact
- Open question: Is every exact Lagrangian cobordism decomposable?

Grid homology

(Manolescu–Ozsváth–Sarkar; Manolescu–Ozsváth–Szabó–Thurston)

Knot $K \subset S^3 \rightsquigarrow$ grid diagram $\mathbb{G} \rightsquigarrow$ grid complex $\widetilde{\mathrm{GC}}(\mathbb{G})$

• Computes link Floer homology:

$$\widetilde{\operatorname{GH}}(\mathbb{G}):=\operatorname{H}_*(\widetilde{\operatorname{GC}}(\mathbb{G}))\cong \widehat{\operatorname{HFK}}(S^3,K)\otimes V^{n-1},$$

where n is the grid size and V is 2-dimensional

- Write $\widehat{\operatorname{GH}}(\mathbb{G})$ for the $\widehat{\operatorname{HFK}}(S^3,K)$ part
- (Ozsváth–Szabó–Thurston) In fact, \mathbb{G} can encode a front diagram of a Legendrian knot $\Lambda(\mathbb{G})$ of smooth type m(K)!

Grid homology and Legendrian GRID invariants

Grid homology and Legendrian GRID invariants

Grid homology and Legendrian GRID invariants

 $\mathbb{G} \rightsquigarrow K = 10_{132}$

 $\mathbb{G} \rightsquigarrow \Lambda(\mathbb{G}) = \Lambda_1$ $\Lambda_1 \text{ has smooth type}$ $m(K) = m(10_{132})$

 $\begin{aligned} \mathbf{x}^+ &= \text{ blue} \\ \mathbf{x}^+ \in \widetilde{\mathrm{GC}}(\mathbb{G}) \end{aligned}$

 $\mathbf{x}^- =$ magenta $\mathbf{x}^- \in \widetilde{\mathrm{GC}}(\mathbb{G})$

Grid homology and Legendrian GRID invariants

$$\mathbb{G} \rightsquigarrow K = 10_{132}$$

$$\mathbb{G} \rightsquigarrow \Lambda(\mathbb{G}) = \Lambda_1$$

$$\Lambda_1 \text{ has smooth type}$$

$$m(K) = m(10_{132})$$

$$\mathbf{x}^+ =$$
 blue
 $\mathbf{x}^+ \in \widetilde{\mathrm{GC}}(\mathbb{G})$

 $\mathbf{x}^- =$ magenta $\mathbf{x}^- \in \widetilde{\mathrm{GC}}(\mathbb{G})$

Grid homology and Legendrian GRID invariants

$$\mathbb{G} \rightsquigarrow K = 10_{132}$$

$$\mathbb{G} \rightsquigarrow \Lambda(\mathbb{G}) = \Lambda_1$$

$$\Lambda_1 \text{ has smooth type}$$

$$m(K) = m(10_{132})$$

$$\mathbf{x}^+ =$$
 blue
 $\mathbf{x}^+ \in \widetilde{\mathrm{GC}}(\mathbb{G})$

$$\mathbf{x}^- = \text{magenta}$$

 $\mathbf{x}^- \in \widetilde{\mathrm{GC}}(\mathbb{G})$

Legendrian GRID invariants

- (Ozsváth–Szabó–Thurston) $\widehat{\lambda}^+(\mathbb{G}) := [\mathbf{x}^+] \in \widehat{\operatorname{GH}}(\mathbb{G})$ and
 - $\widehat{\lambda}^-(\mathbb{G}) := [\mathbf{x}^-] \in \widehat{\operatorname{GH}}(\mathbb{G})$ are invariants of the Legendrian link $\Lambda(\mathbb{G})$
 - In other words, if $\Lambda(\mathbb{G}_{bot})$ and $\Lambda(\mathbb{G}_{top})$ are related by Legendrian isotopies and Reidemeister moves, then the isomorphism $\Phi \colon \widehat{GH}(\mathbb{G}_{top}) \to \widehat{GH}(\mathbb{G}_{bot})$ sends $\widehat{\lambda}^{\pm}(\mathbb{G}_{top})$ to $\widehat{\lambda}^{\pm}(\mathbb{G}_{bot})$
- (Ng–Ozsváth–Thurston) $\widehat{\lambda}^{\pm}(\mathbb{G})$ are effective:
 - ${\scriptstyle \bullet }$ For example, $m(10_{132})$ has two Legendrian representatives with

$$\begin{aligned} tb(\Lambda_1) &= tb(\Lambda_2), \quad r(\Lambda_1) = r(\Lambda_2) \\ \widehat{\lambda}^+(\Lambda_1) &= 0, \quad \widehat{\lambda}^+(\Lambda_2) \neq 0 \\ \widehat{\lambda}^-(\Lambda_1) &\neq 0, \quad \widehat{\lambda}^-(\Lambda_2) = 0 \end{aligned}$$

• (Baldwin–Vela-Vick–Vértesi) GRID is equivalent to the LOSS invariants: $\widehat{\lambda}^{\pm}(\Lambda) \iff \widehat{\mathcal{L}}(\pm\Lambda) \in \widehat{\mathrm{HFK}}(-S^3, K)$

Legendrian GRID invariants

Legendrian GRID invariants

Statement of main result

Theorem (with Baldwin and Lidman; in preparation)

Suppose that there exists a decomposable Lagrangian cobordism from Λ_{bot} to Λ_{top} in $\mathbb{R} \times \mathbb{R}^3$. If $\Lambda(\mathbb{G}_{bot}) = \Lambda_{bot}$ and $\Lambda(\mathbb{G}_{top}) = \Lambda_{top}$, then there exists a homomorphism

$$\widehat{F} \colon \widehat{\operatorname{GH}}(\mathbb{G}_{\operatorname{top}}) \to \widehat{\operatorname{GH}}(\mathbb{G}_{\operatorname{bot}})$$

that sends $\widehat{\lambda}^{\pm}(\mathbb{G}_{top})$ to $\widehat{\lambda}^{\pm}(\mathbb{G}_{bot})$.

Corollary

Suppose that $\hat{\lambda}^{\pm}(\mathbb{G}_{bot}) \neq 0$ and $\hat{\lambda}^{\pm}(\mathbb{G}_{top}) = 0$. Then there is no decomposable Lagrangian cobordism from Λ_{bot} to Λ_{top} .

Proof.

By explicit construction/computation on the band move and death.

9/14

Comparison with similar results

- (Golla–Juhász '18) The LOSS invariant obstructs regular Lagrangian concordances in a Weinstein cobordism from (Y_{bot}, ξ_{bot}) to (Y_{top}, ξ_{top})
 - The functorial map from $\widehat{\mathrm{HFK}}(-Y_{\mathrm{top}},K_{\mathrm{top}})$ to $\widehat{\mathrm{HFK}}(-Y_{\mathrm{bot}},K_{\mathrm{bot}})$
 - We expect (but do not prove) our map also to be the functorial map
- (Baldwin–Sivek '14) The monopole analogue of the LOSS invariant obstructs Lagrangian concordances in the symplectization $\mathbb{R} \times Y$
 - No assumption on decomposability or regularity!
 - (Baldwin-Sivek '16) The monopole LOSS invariant is equivalent to the LOSS invariant

First example

• For Λ_1, Λ_2 as before, with smooth type $m(10_{132})$:

$$\begin{aligned} b(\Lambda_1) &= tb(\Lambda_2), \quad r(\Lambda_1) = r(\Lambda_2) \\ \widehat{\lambda}^+(\Lambda_1) &= 0, \quad \widehat{\lambda}^+(\Lambda_2) \neq 0 \\ \widehat{\lambda}^-(\Lambda_1) &\neq 0, \quad \widehat{\lambda}^-(\Lambda_2) = 0 \end{aligned}$$

- There is no decomposable Lagrangian concordance
 - from Λ_2 to Λ_1 (obstructed by $\widehat{\lambda}^+(\Lambda_i)$)

f

- from Λ_1 to Λ_2 (obstructed by $\widehat{\lambda}^-(\Lambda_i)$)
- First half of statement originally proven by Golla-Juhász
 - Obstructed by $\widehat{\mathcal{L}}(\Lambda_i) \quad \leftrightarrow \quad \widehat{\lambda}^+(\Lambda_i)$

Applications

An example with positive genus

Applications

An example with positive genus

An example with positive genus

- Changing one of the new crossings reverts Λ_i' back to Λ_i
- So there exists a smooth cobordism of genus one between $m(10_{132})$ and $m(12n_{199})$
- For $i, j \in \{1, 2\}$,

$$tb(\Lambda'_j) = tb(\Lambda_i) + 2, \quad r(\Lambda'_j) = r(\Lambda_i)$$

$$\widehat{\lambda}^+(\Lambda_1) = 0, \quad \widehat{\lambda}^+(\Lambda_2) \neq 0; \qquad \widehat{\lambda}^+(\Lambda'_1) = 0, \quad \widehat{\lambda}^+(\Lambda'_2) \neq 0$$

$$\widehat{\lambda}^-(\Lambda_1) \neq 0, \quad \widehat{\lambda}^-(\Lambda_2) = 0; \qquad \widehat{\lambda}^-(\Lambda'_1) \neq 0, \quad \widehat{\lambda}^-(\Lambda'_2) = 0$$

- Any Lagrangian cobordism from Λ_i to Λ'_i has genus one
- There is no decomposable Lagrangian cobordism of genus one
 - from Λ_2 to Λ_1' (obstructed by $\widehat{\lambda}^+$)
 - from Λ_1 to Λ_2' (obstructed by $\widehat{\lambda}^-$)

An infinite family

• (Chongchitmate–Ng) In the smooth knot types $m(10_{145})$, $m(10_{161})$, and $12n_{591}$, there exist Legendrian representatives Λ_3 , Λ_4 , such that

$$tb(\Lambda_3) = tb(\Lambda_4) + 2, \quad r(\Lambda_3) = r(\Lambda_4)$$
$$\widehat{\lambda}^+(\Lambda_4) \neq 0, \quad \widehat{\lambda}^-(\Lambda_4) \neq 0$$

 \bullet The double stabilization $S_+(S_-(\Lambda_3))$ has same tb and r as Λ_4 , but

$$\widehat{\lambda}^+(S_+(S_-(\Lambda_3))) = 0, \quad \widehat{\lambda}^-(S_+(S_-(\Lambda_3))) = 0,$$

so there is no decomposable Lagrangian concordance from Λ_4 to $S_+(S_-(\Lambda_3))$

• Combining with the "clasping" trick before, we get an infinite family of examples with arbitrary genus

Summary and Outlook

- Lagrangian cobordisms are heavily restricted by tb and r, but these classical invariants are not complete
- The GRID invariants provide further obstructions for decomposable Lagrangian cobordisms in $\mathbb{R}\times\mathbb{R}^3$
- Questions:
 - Does grid homology satisfy naturality? If so, can we harness it in the context of Lagrangian cobordisms?
 - Could the GRID invariants provide an example of a non-decomposable Lagrangian cobordism?
 - Do the branched GRID invariants (joint with Vela-Vick) provide more obstructions?

Thank you!

