GRID invariants obstruct decomposable Lagrangian cobordisms

John A. Baldwin ${ }^{1}$ Tye Lidman ${ }^{2} \quad{ }^{*}$ C.-M. Michael Wong ${ }^{3}$

${ }^{1}$ Department of Mathematics
Boston College
${ }^{2}$ Department of Mathematics North Carolina State University
${ }^{3}$ Department of Mathematics Louisiana State University

AMS Spring Southeastern Sectional Meeting 2019

Outline

(1) Background

- Lagrangian cobordisms between Legendrian links
- GRID invariants
(2) Results
- Statement
- Applications

Lagrangian cobordisms in $\mathbb{R} \times \mathbb{R}^{3}$

- Recall: \mathbb{R}^{3} with standard contact structure $\xi_{\text {std }}=\operatorname{ker}(\alpha)$, where $\alpha=d z-y d x$
- A link $\Lambda \subset \mathbb{R}^{3}$ is Legendrian if Λ is tangent to $\xi_{\text {std }}$
- Focus on the symplectization $\left(\mathbb{R} \times \mathbb{R}^{3}, d\left(e^{t} \alpha\right)\right)$
- (Chantraine) An (exact) Lagrangian cobordism from $\Lambda_{\text {bot }}$ to $\Lambda_{\text {top }}$ is as follows:
- An embedded Lagrangian submanifold $L \subset\left(\mathbb{R} \times \mathbb{R}^{3}, d\left(e^{t} \alpha\right)\right)$
- There is some real $T>0$ such that

$$
\begin{aligned}
& \mathcal{E}_{\mathrm{top}}(L):=L \cap\left((T, \infty) \times \mathbb{R}^{3}\right)=(T, \infty) \times \Lambda_{\mathrm{top}} \\
& \mathcal{E}_{\mathrm{bot}}(L):=L \cap\left((-\infty,-T) \times \mathbb{R}^{3}\right)=(-\infty,-T) \times \Lambda_{\mathrm{bot}}
\end{aligned}
$$

- The rest of L is compact with boundary $\Lambda_{\text {top }}$ and $-\Lambda_{\text {bot }}$
- $\left.e^{t} \alpha\right|_{L}=d f$ is exact, with f constant on $\mathcal{E}_{\text {top }}(L) \cup \mathcal{E}_{\text {bot }}(L)$

Some (perhaps unintuitive) properties

- $\Lambda_{\text {bot }}$ and $\Lambda_{\text {top }}$ Legendrian isotopic \Longrightarrow there exists a Lagrangian concordance (i.e. L is $\mathbb{R} \times S^{1}$)
- Lagrangian concordances are exact
- Differ from smooth cobordisms and concordances:
- (Chantraine) If $\Lambda_{\text {bot }}$ and $\Lambda_{\text {top }}$ are knots, then

$$
r\left(\Lambda_{\mathrm{top}}\right)=r\left(\Lambda_{\mathrm{bot}}\right), \quad t b\left(\Lambda_{\mathrm{top}}\right)=t b\left(\Lambda_{\mathrm{bot}}\right)-\chi(L)
$$

- So a Lagrangian cobordism L cannot be inverted whenever $g(L)>0$; can we invert Lagrangian concordances?
- (Chantraine) Not in general!
- So Lagrangian cobordism and concordance are not equivalence relations
- (Ekholm-Honda-Kálmán; Eliashberg-Ganatra-Lazarev) Can be generalized from cobordisms in $\mathbb{R} \times \mathbb{R}^{3}$ to cobordisms in a Weinstein cobordism from some ($Y_{\mathrm{bot}}, \xi_{\mathrm{bot}}$) to some ($Y_{\mathrm{top}}, \xi_{\mathrm{top}}$)

Decomposable Lagrangian cobordisms

- (Chantraine; Ekholm-Honda-Kálmán) A Lagrangian cobordism is decomposable if it is a product of elementary cobordisms: Legendrian isotopy, births, and saddles
- In front diagrams: Legendrian Reidemeister moves and

- Note the direction of arrows!

Decomposable Lagrangian cobordisms

- (Chantraine; Ekholm-Honda-Kálmán) A Lagrangian cobordism is decomposable if it is a product of elementary cobordisms: Legendrian isotopy, births, and saddles
- (Conway-Etnyre-Tosun) In $\mathbb{R} \times \mathbb{R}^{3}$, decomposable cobordisms are regular; converse unknown
- Regular: tangent to the Liouville vector field
- Every decomposable Lagrangian cobordism is exact
- Open question: Is every exact Lagrangian cobordism decomposable?

Grid homology

- (Manolescu-Ozsváth-Sarkar; Manolescu-Ozsváth-Szabó-Thurston)

$$
\text { Knot } K \subset S^{3} \rightsquigarrow \text { grid diagram } \mathbb{G} \rightsquigarrow \text { grid complex } \widetilde{\mathrm{GC}}(\mathbb{G})
$$

- Computes link Floer homology:

$$
\widetilde{\mathrm{GH}}(\mathbb{G}):=\mathrm{H}_{*}(\widetilde{\mathrm{GC}}(\mathbb{G})) \cong \widehat{\operatorname{HFK}}\left(S^{3}, K\right) \otimes V^{n-1},
$$

where n is the grid size and V is 2-dimensional

- Write $\widehat{\mathrm{GH}}(\mathbb{G})$ for the $\widehat{\operatorname{HFK}}\left(S^{3}, K\right)$ part
- (Ozsváth-Szabó-Thurston) In fact, \mathbb{G} can encode a front diagram of a Legendrian knot $\Lambda(\mathbb{G})$ of smooth type $m(K)$!

Grid homology and Legendrian GRID invariants

X						O			
	\bigcirc						\times		
		\times						-	
						\times^{\bullet}			-
							0		
\bigcirc								$\times{ }^{*}$	
			\times					0	
	\times^{\bullet}				\bigcirc				
				0					
				\times	${ }^{\bullet}$				
				.	\times^{*}				
		-		,					

$$
\mathbb{G} \rightsquigarrow K=10_{132}
$$

Two generators of $\widetilde{\mathrm{GC}}(\mathbb{G})$:

$$
\begin{aligned}
\mathrm{w} & =\text { red } \\
\mathrm{x} & =\text { blue }
\end{aligned}
$$

$\widetilde{\partial}$ counts empty rectangles

$$
\widetilde{\partial} w=x+\cdots
$$

Grid homology and Legendrian GRID invariants

$$
\mathbb{G} \rightsquigarrow K=10_{132}
$$

Two generators of $\widetilde{\mathrm{GC}}(\mathbb{G})$:

$$
\begin{aligned}
\mathrm{w} & =\text { red } \\
\mathrm{x} & =\text { blue }
\end{aligned}
$$

$\widetilde{\partial}$ counts empty rectangles

$$
\tilde{\partial} \mathrm{w}=\mathrm{x}+\cdots
$$

Grid homology and Legendrian GRID invariants

$$
\begin{aligned}
& \mathbb{G} \rightsquigarrow K=10_{132} \\
& \mathbb{G} \rightsquigarrow \Lambda(\mathbb{G})=\Lambda_{1}
\end{aligned}
$$

Λ_{1} has smooth type

$$
m(K)=m\left(10_{132}\right)
$$

$$
\mathrm{x}^{+}=\text {blue }
$$

$$
\mathrm{x}^{+} \in \widetilde{\mathrm{GC}}(\mathbb{G})
$$

$$
\mathbf{x}^{-}=\text {magenta }
$$

$$
\mathrm{x}^{-} \in \widetilde{\mathrm{GC}}(\mathbb{G})
$$

Grid homology and Legendrian GRID invariants

X							\bigcirc				
	\bigcirc							\times			
		\times							\bigcirc		
							\times				\bigcirc
								\bigcirc		\times	
\bigcirc									\times		
			$\times{ }^{\text {a }}$							\bigcirc	
	$\times{ }^{\text {a }}$					\bigcirc					
					0						x
			\bigcirc		\times						
				0		\times					
		O		\times							

$$
\begin{aligned}
& \mathbb{G} \rightsquigarrow K=10_{132} \\
& \mathbb{G} \rightsquigarrow \Lambda(\mathbb{G})=\Lambda_{1}
\end{aligned}
$$

Λ_{1} has smooth type

$$
m(K)=m\left(10_{132}\right)
$$

$$
\mathrm{x}^{+}=\text {blue }
$$

$$
\mathrm{x}^{+} \in \widetilde{\mathrm{GC}}(\mathbb{G})
$$

$$
\mathbf{x}^{-}=\text {magenta }
$$

$$
\mathrm{x}^{-} \in \widetilde{\mathrm{GC}}(\mathbb{G})
$$

Grid homology and Legendrian GRID invariants

X								O				
	0								\times			
		X								\bigcirc		
								\times				\bigcirc
									\bigcirc		X	
\bigcirc										\times		
			X								\bigcirc	
	\times						O					
					\bigcirc							X
			\bigcirc		-							
				0			x					
		\bigcirc		X								

$$
\begin{aligned}
& \mathbb{G} \rightsquigarrow K=10_{132} \\
& \mathbb{G} \rightsquigarrow \Lambda(\mathbb{G})=\Lambda_{1}
\end{aligned}
$$

Λ_{1} has smooth type

$$
m(K)=m\left(10_{132}\right)
$$

$$
\mathrm{x}^{+}=\text {blue }
$$

$$
\mathrm{x}^{+} \in \widetilde{\mathrm{GC}}(\mathbb{G})
$$

$$
\mathbf{x}^{-}=\text {magenta }
$$

$$
\mathrm{x}^{-} \in \widetilde{\mathrm{GC}}(\mathbb{G})
$$

Legendrian GRID invariants

- (Ozsváth-Szabó-Thurston) $\widehat{\lambda}^{+}(\mathbb{G}):=\left[\mathbf{x}^{+}\right] \in \widehat{\mathrm{GH}}(\mathbb{G})$ and $\hat{\lambda}^{-}(\mathbb{G}):=\left[\mathbf{x}^{-}\right] \in \widehat{\mathrm{GH}}(\mathbb{G})$ are invariants of the Legendrian link $\Lambda(\mathbb{G})$
- In other words, if $\Lambda\left(\mathbb{G}_{\text {bot }}\right)$ and $\Lambda\left(\mathbb{G}_{\text {top }}\right)$ are related by Legendrian isotopies and Reidemeister moves, then the isomorphism

$$
\Phi: \overline{\mathrm{GH}}\left(\mathbb{G}_{\mathrm{top}}\right) \rightarrow \widehat{\mathrm{GH}}\left(\mathbb{G}_{\mathrm{bot}}\right) \text { sends } \hat{\lambda}^{ \pm}\left(\mathbb{G}_{\mathrm{top}}\right) \text { to } \widehat{\lambda}^{ \pm}\left(\mathbb{G}_{\mathrm{bot}}\right)
$$

- (Ng-Ozsváth-Thurston) $\widehat{\lambda}^{ \pm}(\mathbb{G})$ are effective:
- For example, $m\left(10_{132}\right)$ has two Legendrian representatives with

$$
\begin{array}{cl}
t b\left(\Lambda_{1}\right)=t b\left(\Lambda_{2}\right), & r\left(\Lambda_{1}\right)=r\left(\Lambda_{2}\right) \\
\hat{\lambda}^{+}\left(\Lambda_{1}\right)=0, & \hat{\lambda}^{+}\left(\Lambda_{2}\right) \neq 0 \\
\hat{\lambda}^{-}\left(\Lambda_{1}\right) \neq 0, & \hat{\lambda}^{-}\left(\Lambda_{2}\right)=0
\end{array}
$$

- (Baldwin-Vela-Vick-Vértesi) GRID is equivalent to the LOSS invariants: $\widehat{\lambda}^{ \pm}(\Lambda) \quad \leftrightarrow \quad \widehat{\mathcal{L}}(\pm \Lambda) \in \widehat{\operatorname{HFK}}\left(-S^{3}, K\right)$

Legendrian GRID invariants

Λ_{1} has smooth type $m\left(10_{132}\right)$

Legendrian GRID invariants

Λ_{2} has smooth type $m\left(10_{132}\right)$

Statement of main result

Theorem (with Baldwin and Lidman; in preparation)
Suppose that there exists a decomposable Lagrangian cobordism from $\Lambda_{\text {bot }}$ to $\Lambda_{\text {top }}$ in $\mathbb{R} \times \mathbb{R}^{3}$. If $\Lambda\left(\mathbb{G}_{\text {bot }}\right)=\Lambda_{\text {bot }}$ and $\Lambda\left(\mathbb{G}_{\text {top }}\right)=\Lambda_{\text {top }}$, then there exists a homomorphism

$$
\widehat{F}: \widehat{\mathrm{GH}}\left(\mathbb{G}_{\text {top }}\right) \rightarrow \widehat{\mathrm{GH}}\left(\mathbb{G}_{\text {bot }}\right)
$$

that sends $\widehat{\lambda}^{ \pm}\left(\mathbb{G}_{\text {top }}\right)$ to $\widehat{\lambda}^{ \pm}\left(\mathbb{G}_{\text {bot }}\right)$.

Corollary
Suppose that $\hat{\lambda}^{ \pm}\left(\mathbb{G}_{\mathrm{bot}}\right) \neq 0$ and $\widehat{\lambda}^{ \pm}\left(\mathbb{G}_{\text {top }}\right)=0$. Then there is no decomposable Lagrangian cobordism from $\Lambda_{\text {bot }}$ to $\Lambda_{\text {top }}$.

Proof.
By explicit construction/computation on the band move and death.

Comparison with similar results

- (Golla-Juhász '18) The LOSS invariant obstructs regular Lagrangian concordances in a Weinstein cobordism from ($Y_{\text {bot }}, \xi_{\text {bot }}$) to ($Y_{\text {top }}, \xi_{\text {top }}$)
- The functorial map from $\widehat{\mathrm{HFK}}\left(-Y_{\text {top }}, K_{\text {top }}\right)$ to $\widehat{\mathrm{HFK}}\left(-Y_{\text {bot }}, K_{\text {bot }}\right)$
- We expect (but do not prove) our map also to be the functorial map
- (Baldwin-Sivek '14) The monopole analogue of the LOSS invariant obstructs Lagrangian concordances in the symplectization $\mathbb{R} \times Y$
- No assumption on decomposability or regularity!
- (Baldwin-Sivek '16) The monopole LOSS invariant is equivalent to the LOSS invariant

First example

- For Λ_{1}, Λ_{2} as before, with smooth type $m\left(10_{132}\right)$:

$$
\begin{array}{cl}
t b\left(\Lambda_{1}\right)=t b\left(\Lambda_{2}\right), & r\left(\Lambda_{1}\right)=r\left(\Lambda_{2}\right) \\
\hat{\lambda}^{+}\left(\Lambda_{1}\right)=0, & \hat{\lambda}^{+}\left(\Lambda_{2}\right) \neq 0 \\
\hat{\lambda}^{-}\left(\Lambda_{1}\right) \neq 0, & \hat{\lambda}^{-}\left(\Lambda_{2}\right)=0
\end{array}
$$

- There is no decomposable Lagrangian concordance
- from Λ_{2} to Λ_{1} (obstructed by $\widehat{\lambda}^{+}\left(\Lambda_{i}\right)$)
- from Λ_{1} to Λ_{2} (obstructed by $\hat{\lambda}^{-}\left(\Lambda_{i}\right)$)
- First half of statement originally proven by Golla-Juhász
- Obstructed by $\widehat{\mathcal{L}}\left(\Lambda_{i}\right) \leftrightarrow \widehat{\lambda}^{+}\left(\Lambda_{i}\right)$

An example with positive genus

Λ_{1}^{\prime} has smooth type $m\left(12 n_{199}\right)$

An example with positive genus

Λ_{2}^{\prime} has smooth type $m\left(12 n_{199}\right)$

An example with positive genus

- Changing one of the new crossings reverts Λ_{i}^{\prime} back to Λ_{i}
- So there exists a smooth cobordism of genus one between $m\left(10_{132}\right)$ and $m\left(12 n_{199}\right)$
- For $i, j \in\{1,2\}$,

\[

\]

- Any Lagrangian cobordism from Λ_{i} to Λ_{j}^{\prime} has genus one
- There is no decomposable Lagrangian cobordism of genus one
- from Λ_{2} to Λ_{1}^{\prime} (obstructed by $\hat{\lambda}^{+}$)
- from Λ_{1} to Λ_{2}^{\prime} (obstructed by $\hat{\lambda}^{-}$)

An infinite family

- (Chongchitmate-Ng) In the smooth knot types $m\left(10_{145}\right), m\left(10_{161}\right)$, and $12 n_{591}$, there exist Legendrian representatives Λ_{3}, Λ_{4}, such that

$$
\begin{gathered}
t b\left(\Lambda_{3}\right)=t b\left(\Lambda_{4}\right)+2, \quad r\left(\Lambda_{3}\right)=r\left(\Lambda_{4}\right) \\
\hat{\lambda}^{+}\left(\Lambda_{4}\right) \neq 0, \quad \hat{\lambda}^{-}\left(\Lambda_{4}\right) \neq 0
\end{gathered}
$$

- The double stabilization $S_{+}\left(S_{-}\left(\Lambda_{3}\right)\right)$ has same $t b$ and r as Λ_{4}, but

$$
\hat{\lambda}^{+}\left(S_{+}\left(S_{-}\left(\Lambda_{3}\right)\right)\right)=0, \quad \hat{\lambda}^{-}\left(S_{+}\left(S_{-}\left(\Lambda_{3}\right)\right)\right)=0
$$

so there is no decomposable Lagrangian concordance from Λ_{4} to $S_{+}\left(S_{-}\left(\Lambda_{3}\right)\right)$

- Combining with the "clasping" trick before, we get an infinite family of examples with arbitrary genus

Summary and Outlook

- Lagrangian cobordisms are heavily restricted by $t b$ and r, but these classical invariants are not complete
- The GRID invariants provide further obstructions for decomposable Lagrangian cobordisms in $\mathbb{R} \times \mathbb{R}^{3}$
- Questions:
- Does grid homology satisfy naturality? If so, can we harness it in the context of Lagrangian cobordisms?
- Could the GRID invariants provide an example of a non-decomposable Lagrangian cobordism?
- Do the branched GRID invariants (joint with Vela-Vick) provide more obstructions?

Thank you!

X						O			
	O						\times		
		\times						\bigcirc	
						$\times{ }^{\text {• }}$			
							0		
0								\times	
			\times						
	$\times{ }^{*}$				\bigcirc				
					0				
				\bigcirc	${ }^{\times}$				
					${ }^{\bullet}$				

