Background Result Summary

An unoriented skein exact triangle for tangle Floer homology

Ina Petkova ¹ *C.-M. Michael Wong ²

¹Department of Mathematics Dartmouth College

²Department of Mathematics Columbia University

AMS Spring Eastern Sectional Meeting 2017

Ina Petkova, *C.-M. Michael Wong An unoriented skein exact triangle for TFH

Outline

Background

- Tangle Floer homology
- Skein exact triangles

Result 2

- Statement
- Sketch of proof

Background: Heegaard and knot Floer homology

• Heegaard Floer homology (Ozsváth–Szabó):

Y 3-manifold $\rightsquigarrow \widehat{\operatorname{HF}}(Y)$ abelian group W s.t. $\partial W = -Y_1 \sqcup Y_2 \rightsquigarrow F_W \colon \widehat{\operatorname{HF}}(Y_1) \to \widehat{\operatorname{HF}}(Y_2)$

• Knot Floer homology (Ozsváth–Szabó, Rasmussen):

 $L \subset Y \text{ link } \rightsquigarrow \ \widehat{\mathrm{HFK}}(Y,L) \ \text{ bigraded } \mathbb{F} \text{ module}$

• Both are defined by counting pseudo-holomorphic curves on a symmetric product of a Heegaard diagram Background: Heegaard and knot Floer homology

 $\widehat{\operatorname{HF}}(Y)$ and $\widehat{\operatorname{HFK}}(Y,L)$ have rich applications:

- $\widehat{\mathrm{HF}}(Y)$ detects the Thurston norm of Y (O–Sz, Juhász)
- $\widehat{\mathrm{HF}}(Y)$ detects the fiberedness of Y (O–Sz, Ghiggini–Ni, Juhász)
- $\widehat{\mathrm{HFK}}(Y,K)$ detects the genus of a knot K (O–Sz, Ni)
- $\widehat{\mathrm{HFK}}(Y, K)$ detects the fiberedness of K (O–Sz, Ghiggini–Ni, Juhász)
- $\widehat{\mathrm{HFK}}(S^3,K)$ categorifies the Alexander polynomial of K (O–Sz)
- Knot Floer homology gives concordance invariants (O–Sz, Ozsváth–Stipsicz–Szabó, Hom)
- Relations to Khovanov homology (O–Sz, Grigsby–Wehrli)

Background: Combinatorialization

- $\widehat{\mathrm{HF}}(Y)$ and $\widehat{\mathrm{HFK}}(Y,L)$ have been combinatorialized using *nice* Heegaard diagrams (Sarkar–Wang)
- In particular, this has given rise to grid homology $\widehat{\operatorname{GH}}(L)$ of a link $L \subset S^3$, defined by counting actual empty rectangles in a grid diagram of L (Manolescu–Ozsváth–Sarkar, Manolescu–Ozsváth–Szabó–Thurston)
- No pseudo-holomorphic curves involved
- Grid diagrams can be thought of as special genus-1 Heegaard diagrams

Background Result Summary

Tangle Floer homology Skein exact triangles

Background: Bordered Floer homology

• Bordered Floer homology (Lipshitz–Ozsváth–Thurston):

 $F \text{ surface } \rightsquigarrow \mathcal{A}(F) \text{ dg algebra over } \mathbb{F}_2$ $Y \text{ bordered 3-manifold } \rightsquigarrow \text{ a } (\mathcal{A}(\partial^0 Y), \mathcal{A}(\partial^1 Y))\text{-bimodule}$ $\widehat{\operatorname{CF}}(Y)$

- If $Y = Y_0 \cup \cdots \cup Y_n$, then the Heegaard Floer homology of Y can be recovered by $\widehat{\operatorname{CF}}(Y_0) \otimes \cdots \otimes \widehat{\operatorname{CF}}(Y_n)$
- Bordered Floer homology turns Heegaard Floer homology into a (2+1+1)-TQFT

Background: Tangle Floer homology

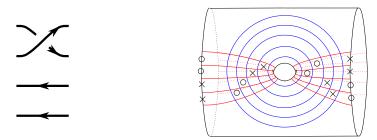
• Tangle Floer homology (Petkova–Vértesi):

P a sequence of points $\rightsquigarrow \mathcal{A}(P)$ dg algebra over \mathbb{F}_2 T an (m, n)-tangle in M, \rightsquigarrow a $(\mathcal{A}(\partial^0 T), \mathcal{A}(\partial^1 T))$ -bimodule with $\partial M = S^2 \sqcup S^2$ $\widetilde{\operatorname{CT}}(T)$

- If $L = T_0 \circ \cdots \circ T_n$, then the knot Floer homology of L can be recovered by $\widetilde{\operatorname{CT}}(T_0) \otimes \cdots \otimes \widetilde{\operatorname{CT}}(T_n)$
- Tangle Floer homology turns knot Floer homology into an embedded (0+1)-TQFT
- For $T \subset S^2 \times I$, can use nice Heegaard diagrams for each elementary tangle in T; these look similar to grid homology
- Decategorifies to the Reshetikhin–Turaev invariant for $U_q(\mathfrak{gl}(1|1))$ (Ellis–Petkova–Vértesi)

Tangle Floer homology: More details

In our context, an (m, n)-tangle is a 1-dimensional cobordism in S² × I between two finite sets of points {p₁,..., p_m} × {0} and {q₁,..., q_n} × {1}

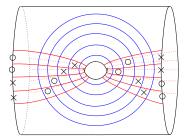


• To a tangle we associate a Heegaard diagram with two boundary components

Background Result Summarv

Tangle Floer homology Skein exact triangles

Tangle Floer homology: More details



- Generators of $\widetilde{\operatorname{CT}}(T)$ are one-to-one correspondences between α and β curves
- Differential counts empty rectangles; those that touch the boundary contribute to the algebra actions

Background Result Summary Tangle Floer homolo Skein exact triangles

Unoriented skein exact triangle for knot Floer homology



Theorem (Manolescu)

Over \mathbb{F}_2 , if L_{∞} , L_0 , L_1 are links in S^3 identical except near a point as shown, then there exists a skein exact triangle

 $\widehat{\mathrm{HFK}}(L_{\infty}) \otimes V^{m-\ell_{\infty}} \to \widehat{\mathrm{HFK}}(L_0) \otimes V^{m-\ell_0} \to \widehat{\mathrm{HFK}}(L_1) \otimes V^{m-\ell_1}$

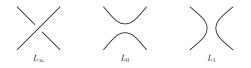
where ℓ_k is the number of components of L_k , $m = \max{\{\ell_k\}}$, and V is 2-dimensional.

• Proof by counting pseudo-holomorphic polygons on a special Heegaard diagram

Ina Petkova, *C.-M. Michael Wong An unoriented skein exact triangle for TFH

Background Result Summary Skein exact triangles

Unoriented skein exact triangle for knot Floer homology



Theorem (W)

Over \mathbb{Z} (and hence any commutative ring), for L_{∞}, L_0, L_1 as before, there exists a skein exact triangle

 $\widehat{\operatorname{GH}}(L_{\infty}) \otimes V^{m-\ell_{\infty}} \to \widehat{\operatorname{GH}}(L_0) \otimes V^{m-\ell_0} \to \widehat{\operatorname{GH}}(L_1) \otimes V^{m-\ell_1} \to \dots,$

where ℓ_k and V are as before and m is sufficiently large.

- Over \mathbb{F}_2 , implied by Manolescu's result; extension to over \mathbb{Z}
- Combinatorial proof by counting actual pentagons and triangles on a combined grid diagram

Ina Petkova , *C.-M. Michael Wong

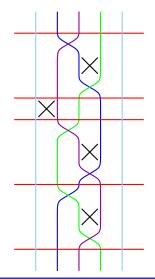
An unoriented skein exact triangle for TFH

Background Result Summary

Tangle Floer homology Skein exact triangles

Unoriented skein exact triangle for knot Floer homology

• Combinatorial proof by counting actual pentagons and triangles on a combined grid diagram



Background Result Summary Statement Statement Statement

Statement

• Does an unoriented skein exact triangle exist for tangle Floer homology?

Theorem (Petkova–W)

If T_{∞}, T_0, T_1 are tangles in $S^2 \times I$ identical except near a point as shown before, then there exists a module homomorphism $f_0: \widetilde{CT}(T_0) \to \widetilde{CT}(T_1)$ such that

$$\widetilde{\operatorname{CT}}(T_{\infty}) \cong \operatorname{Cone}(f_0 \colon \widetilde{\operatorname{CT}}(T_0) \to \widetilde{\operatorname{CT}}(T_1)),$$

where \cong denotes quasi-isomorphism, and Cone(f) the mapping cone of f.

• Note: For modules, statement in homology does not make sense

Statement Sketch of proof

Statement with δ -grading

- For both $\widehat{\mathrm{HFK}}(L)$ and $\widehat{\mathrm{GH}}(L)$, Maslov grading M and Alexander grading A are not respected by skein triangle
- Skein triangle for $\widehat{\mathrm{HFK}}(L)$ respects δ -grading, where $\delta = M A$ (Manolescu–Ozsváth)
- Skein triangle for $\widehat{\operatorname{GH}}(L)$ respects δ -grading (W)

Theorem (Petkova–W)

With respect to the δ -grading, $f_0 \colon \widetilde{\operatorname{CT}}(T_0) \to \widetilde{\operatorname{CT}}(T_1)$ is of degree $(e_0 - 1)/2$, and

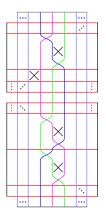
$$\widetilde{\operatorname{CT}}(T_{\infty}) \cong \operatorname{Cone}(f_0 \colon \widetilde{\operatorname{CT}}(T_0) \to \widetilde{\operatorname{CT}}(T_1)) \left[\frac{e_1 - 1}{2} \right],$$

where e_0 is the difference of the number of negative crossings in T_1 and T_0 , and e_1 that in T_{∞} and T_1 .

Background Result Summary Statement Sketch of proof

Sketch of proof

• Idea: Combine three Heegaard diagrams into one, and cut open to obtain



- Define homomorphisms between modules by counting pentagons and triangles
- Form the stated mapping cone
- Define homotopy morphisms by counting hexagons, quadrilaterals and heptagons
- Use a homological algebra lemma
- Similar to the closed case, but now have to take care of polygons touching the boundary, interacting with the algebras

Summary and Outlook

- Combinatorial tangle Floer homology is defined using grid-like Heegaard diagrams
- The proof of an unoriented skein exact triangle for grid homology carries over to tangle Floer homology, with the major difference being the algebra actions
- Skein relation for tangle Floer homology respects δ -grading
- In similar spirit:

Theorem (Petkova–W; work in progress)

If T_+, T_-, T_0 are oriented tangles in $S^2 \times I$ identical except near a point, then there exists a module homomorphism $P_{+,-}: \operatorname{CT}^-(T_+) \to \operatorname{CT}^-(T_-)$ such that

 $\operatorname{Cone}(P_{+,-}) \cong \operatorname{Cone}(U_1 - U_2 \colon \operatorname{CT}^-(T_0) \to \operatorname{CT}^-(T_0)),$