From self-similar structures to self-similar groups

D. J. Kelleher¹ B. A. Steinhurst² *C.-M. M. Wong³

¹Department of Mathematics University of Connecticut

²Department of Mathematics Cornell University

³Department of Mathematics Princeton University

AMS Eastern Sectional Meeting, Fall 2010

Outline

- Self-Similar Groups/Actions
- Self-Similar Structures and P.C.F. Structures

2 Our Results

- Limit Spaces of Self-Similar Groups
- P.C.F. Structures on Limit Spaces
- The Inverse Problem

Rooted Trees and Self-Similar Actions (Nekrashevych)

- A finite set X, called the *alphabet*
- \bullet Rooted tree structure of $X^*,$ the set of all words
- $\bullet\,$ An automorphism of X^* preserves adjacency of vertices
- A *self-similar group* G is a subgroup of Aut X^{*} that acts on X^{*} "letter by letter"
- *G* contracting if can be represented by a finite *Moore* diagram

Rooted Trees and Self-Similar Actions (Nekrashevych)

- \bullet A finite set X, called the alphabet
- \bullet Rooted tree structure of $X^*,$ the set of all words
- An *automorphism* of X^* preserves adjacency of vertices
- A *self-similar group* G is a subgroup of Aut X^{*} that acts on X^{*} "letter by letter"
- *G* contracting if can be represented by a finite *Moore* diagram

Rooted Trees and Self-Similar Actions (Nekrashevych)

- \bullet A finite set X, called the *alphabet*
- \bullet Rooted tree structure of $X^*,$ the set of all words
- \bullet An automorphism of X^* preserves adjacency of vertices
- A *self-similar group* G is a subgroup of Aut X^{*} that acts on X^{*} "letter by letter"
- G contracting if can be represented by a finite Moore diagram

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

< ロト (四) (三) (三)

Moore Diagrams and Limit Spaces (Nekrashevych)

• Example: Binary adding machine $\mathsf{X} = \{0,1\}, \ a(0) = 1, \ a(1) = 0, \ G = \langle a \rangle$

Figure: Binary adding machine

 $a(11001) = 0 \ a(1001)$ = 00 \ a(001) = 001 \ e(01) = 00101

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

Moore Diagrams and Limit Spaces (Nekrashevych)

• Example: Binary adding machine

$$X = \{0, 1\}, a(0) = 1, a(1) = 0, G = \langle a \rangle$$

Figure: Binary adding machine

 $a(11001) = 0 \ a(1001)$ = 00 \ a(001) = 001 \ e(01) = 00101

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

Moore Diagrams and Limit Spaces (Nekrashevych)

• Example: Binary adding machine

$$X = \{0, 1\}, a(0) = 1, a(1) = 0, G = \langle a \rangle$$

Figure: Binary adding machine

$$a(11001) = 0 \ a(1001)$$

= 00 \ a(001)
= 001 \ e(01)
= 00101

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

Moore Diagrams and Limit Spaces (Nekrashevych)

• Example: Binary adding machine

$$X = \{0, 1\}, a(0) = 1, a(1) = 0, G = \langle a \rangle$$

Figure: Binary adding machine

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

Moore Diagrams and Limit Spaces (Nekrashevych)

• Example: Binary adding machine

$$X = \{0, 1\}, a(0) = 1, a(1) = 0, G = \langle a \rangle$$

Figure: Binary adding machine

- Left-infinite paths define an asymptotic equivalence relation \sim_G on $X^{-\omega}$; $\mathcal{J}_G = X^{-\omega} / \sim_G$ is the limit space of G
- Binary adding machine: (read from the right) $\overline{0}1w \sim_G \overline{1}0w$

Limit space is the circle

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

Hanoi Towers Group and Sierpiński Gasket

• Hanoi Towers Group:

Figure: Hanoi Towers Group

Self-Similar Groups/Actions Self-Similar Structures and P.C.F. Structures

Hanoi Towers Group and Sierpiński Gasket

• Hanoi Towers Group:

Figure: Hanoi Towers Group

• Limit space: Sierpiński Gasket

Figure: Sierpiński Gakset

イロト イポト イヨト イヨト

Self-Similar Structures (Kigami)

- $F_i: K \to K$ continuous injection for each $i \in X$, mapping K to a smaller part of itself
- A surjection $\pi : X^{-\omega} \to K$ from the code space $X^{-\omega}$ to K, marking the image of F_i by i
- $\mathcal{L} = (K, X, \{F_i\}_{i \in X})$ is a self-similar structure on K
- For a point $a \in K$, $\pi^{-1}(a)$ contains the "addresses" of a
- Example: Sierpiński Gasket (Usual Structure)

Self-Similar Structures (Kigami)

- F_i: K → K continuous injection for each i ∈ X, mapping K to a smaller part of itself
- A surjection $\pi : \mathsf{X}^{-\omega} \to K$ from the code space $\mathsf{X}^{-\omega}$ to K, marking the image of F_i by i
- $\mathcal{L} = (K, \mathsf{X}, \{F_i\}_{i \in \mathsf{X}})$ is a self-similar structure on K
- For a point $a \in K$, $\pi^{-1}(a)$ contains the "addresses" of a
- Example: Sierpiński Gasket (Usual Structure)

Self-Similar Structures (Kigami)

- F_i: K → K continuous injection for each i ∈ X, mapping K to a smaller part of itself
- A surjection $\pi : \mathsf{X}^{-\omega} \to K$ from the code space $\mathsf{X}^{-\omega}$ to K, marking the image of F_i by i
- $\mathcal{L} = (K, \mathsf{X}, \{F_i\}_{i \in \mathsf{X}})$ is a self-similar structure on K
- For a point $a \in K$, $\pi^{-1}(a)$ contains the "addresses" of a
- Example: Sierpiński Gasket (Usual Structure)

Figure: Sierpiński Gasket

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

When Does a Limit Space Have a Self-Similar Structure?

- A self-similar structure $\mathcal{L} = (\mathcal{J}_G, X, \{F_i\}_{i \in X})$ on a limit space \mathcal{J}_G , such that $p = \pi$
- Limit space of the binary adding machine, the circle, does not have a self-similar structure

Theorem (1

The limit space \mathcal{J}_G has a self-similar structure if and only if it satisfies the following condition:

For every left-infinite path $e = \ldots e_2 e_1$ in the nucleus ending at a non-trivial state and for every $w \in X^*$, there exists a left-infinite path $f = \ldots f_2 f_1$ in the nucleus ending at a state g, such that the label of the edge f_n is the same as the label of e_n , and g(w) = w.

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

When Does a Limit Space Have a Self-Similar Structure?

- A self-similar structure $\mathcal{L} = (\mathcal{J}_G, X, \{F_i\}_{i \in X})$ on a limit space \mathcal{J}_G , such that $p = \pi$
- Limit space of the binary adding machine, the circle, does not have a self-similar structure

Theorem (1

The limit space \mathcal{J}_G has a self-similar structure if and only if it satisfies the following condition:

For every left-infinite path $e = \ldots e_2 e_1$ in the nucleus ending at a non-trivial state and for every $w \in X^*$, there exists a left-infinite path $f = \ldots f_2 f_1$ in the nucleus ending at a state g, such that the label of the edge f_n is the same as the label of e_n , and g(w) = w.

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

When Does a Limit Space Have a Self-Similar Structure?

- A self-similar structure $\mathcal{L} = (\mathcal{J}_G, X, \{F_i\}_{i \in X})$ on a limit space \mathcal{J}_G , such that $p = \pi$
- Limit space of the binary adding machine, the circle, does not have a self-similar structure

Theorem (1)

The limit space \mathcal{J}_G has a self-similar structure if and only if it satisfies the following condition:

For every left-infinite path $e = \ldots e_2 e_1$ in the nucleus ending at a non-trivial state and for every $w \in X^*$, there exists a left-infinite path $f = \ldots f_2 f_1$ in the nucleus ending at a state g, such that the label of the edge f_n is the same as the label of e_n , and g(w) = w.

3

When Does a Limit Space Have a P.C.F. Self-Similar Structure? (Slide I)

- Limit space: *finitely ramified in the group-theoretical sense* if the intersection of distinct tiles of the same level is finite
- Self-similar structure:
 - finitely ramified in the fractal sense if the intersection of the images of F_i is finite
 - post-critically finite (p.c.f.) if
 - \bigcirc the set of addresses of the intersection of F_i is finite
 - each address in this set has a recurring tail
 - Significance: Can define Laplacian on the space
- (Bondarenko and Nekrashevych) A contracting group G is p.c.f. if there exists a finite number of left-infinite paths in its nucleus that end at a non-trivial state

イロト イポト イヨト イヨト

3

When Does a Limit Space Have a P.C.F. Self-Similar Structure? (Slide I)

- Limit space: *finitely ramified in the group-theoretical sense* if the intersection of distinct tiles of the same level is finite
- Self-similar structure:
 - finitely ramified in the fractal sense if the intersection of the images of F_i is finite
 - post-critically finite (p.c.f.) if
 - (1) the set of addresses of the intersection of F_i is finite
 - 2 each address in this set has a recurring tail
 - Significance: Can define Laplacian on the space
- (Bondarenko and Nekrashevych) A contracting group G is p.c.f. if there exists a finite number of left-infinite paths in its nucleus that end at a non-trivial state

イロト イポト イヨト イヨト

3

When Does a Limit Space Have a P.C.F. Self-Similar Structure? (Slide I)

- Limit space: *finitely ramified in the group-theoretical sense* if the intersection of distinct tiles of the same level is finite
- Self-similar structure:
 - finitely ramified in the fractal sense if the intersection of the images of F_i is finite
 - post-critically finite (p.c.f.) if
 - the set of addresses of the intersection of F_i is finite
 each address in this set has a recurring tail

Significance: Can define Laplacian on the space

• (Bondarenko and Nekrashevych) A contracting group G is p.c.f. if there exists a finite number of left-infinite paths in its nucleus that end at a non-trivial state

ヘロト 人間ト ヘヨト ヘヨト

When Does a Limit Space Have a P.C.F. Self-Similar Structure? (Slide I)

- Limit space: *finitely ramified in the group-theoretical sense* if the intersection of distinct tiles of the same level is finite
- Self-similar structure:
 - finitely ramified in the fractal sense if the intersection of the images of F_i is finite
 - post-critically finite (p.c.f.) if
 - the set of addresses of the intersection of F_i is finite
 each address in this set has a recurring tail
 Significance: Can define Laplacian on the space
- (Bondarenko and Nekrashevych) A contracting group G is p.c.f. if there exists a finite number of left-infinite paths in its nucleus that end at a non-trivial state

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

When Does a Limit Space have a P.C.F. Self-Similar Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space \mathcal{J}_G is finitely ramified in the group-theoretical sense if and only if G is p.c.f.

Theorem (2)

The self-similar structure $\mathcal{L} = (\mathcal{J}_G, X, \{F_i\}_{i \in X})$ on the limit space \mathcal{J}_G of a contracting G is p.c.f. if and only if G is p.c.f.

- Point 1: Finitely ramified in the group-theoretical sense is the same as in the fractal sense when \mathcal{J}_G has a self-similar structure
- Point 2: Justifies use of the term "p.c.f. group"

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

イロト 不得下 イヨト イヨト 二日

When Does a Limit Space have a P.C.F. Self-Similar Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space \mathcal{J}_G is finitely ramified in the group-theoretical sense if and only if G is p.c.f.

Theorem (2)

The self-similar structure $\mathcal{L} = (\mathcal{J}_G, \mathsf{X}, \{F_i\}_{i \in \mathsf{X}})$ on the limit space \mathcal{J}_G of a contracting G is p.c.f. if and only if G is p.c.f.

- Point 1: Finitely ramified in the group-theoretical sense is the same as in the fractal sense when \mathcal{J}_G has a self-similar structure
- Point 2: Justifies use of the term "p.c.f. group"

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

When Does a Limit Space have a P.C.F. Self-Similar Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space \mathcal{J}_G is finitely ramified in the group-theoretical sense if and only if G is p.c.f.

Theorem (2)

The self-similar structure $\mathcal{L} = (\mathcal{J}_G, \mathsf{X}, \{F_i\}_{i \in \mathsf{X}})$ on the limit space \mathcal{J}_G of a contracting G is p.c.f. if and only if G is p.c.f.

- Point 1: Finitely ramified in the group-theoretical sense is the same as in the fractal sense when \mathcal{J}_G has a self-similar structure
- Point 2: Justifies use of the term "p.c.f. group"

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

(日) (四) (日) (日)

When Does a Limit Space have a P.C.F. Self-Similar Structure? (Slide III)

Corollary

A limit space \mathcal{J}_G has a p.c.f. self-similar structure if and only if G satisfies the condition in Theorem (1) and is p.c.f.

Corollary

The self-similar structure on a limit space is p.c.f. if and only if it is finitely ramified.

• Example: The Kameyama fractal is not a limit space.

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When Does a Limit Space have a P.C.F. Self-Similar Structure? (Slide III)

Corollary

A limit space \mathcal{J}_G has a p.c.f. self-similar structure if and only if G satisfies the condition in Theorem (1) and is p.c.f.

Corollary

The self-similar structure on a limit space is p.c.f. if and only if it is finitely ramified.

• Example: The Kameyama fractal is not a limit space.

Motivation

- A contracting group produces a limit space, which may have a self-similar structure
- Question: Given a self-similar structure, can we find a contracting group that produces a limit space with this structure? When?
- Focus: P.c.f. self-similar structures
- Necessary condition: If $\pi(\dots x_2 x_1) = \pi(\dots y_2 y_1)$, then $\pi(\dots x_{n+1} x_n) = \pi(\dots y_{n+1} y_n)$ for all n
- Equivalently: the *induced shift map* $\mathbf{s} : \mathcal{J}_G \to \mathcal{J}_G$ defined by $\mathbf{s} = F_i^{-1}$ for each image of F_i , exists and is continuous
- Why? It has to be a limit space!

Motivation

- A contracting group produces a limit space, which may have a self-similar structure
- Question: Given a self-similar structure, can we find a contracting group that produces a limit space with this structure? When?
- Focus: P.c.f. self-similar structures
- Necessary condition: If $\pi(\dots x_2 x_1) = \pi(\dots y_2 y_1)$, then $\pi(\dots x_{n+1} x_n) = \pi(\dots y_{n+1} y_n)$ for all n
- Equivalently: the *induced shift map* $s : \mathcal{J}_G \to \mathcal{J}_G$ defined by $s = F_i^{-1}$ for each image of F_i , exists and is continuous
- Why? It has to be a limit space!

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

Motivation

- A contracting group produces a limit space, which may have a self-similar structure
- Question: Given a self-similar structure, can we find a contracting group that produces a limit space with this structure? When?
- Focus: P.c.f. self-similar structures
- Necessary condition: If $\pi(\dots x_2 x_1) = \pi(\dots y_2 y_1)$, then $\pi(\dots x_{n+1} x_n) = \pi(\dots y_{n+1} y_n)$ for all n
- Equivalently: the *induced shift map* $\mathbf{s} : \mathcal{J}_G \to \mathcal{J}_G$ defined by $\mathbf{s} = F_i^{-1}$ for each image of F_i , exists and is continuous
- Why? It has to be a limit space!

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces **The Inverse Problem**

Construction (Slide I)

• For a p.c.f. self-similar structure \mathcal{L} satisfying the necessary condition, $\pi(\ldots x_2 x_1) = \pi(\ldots y_2 y_1)$ implies that

$$a \quad \pi(\dots x_2 x_1 w) = \pi(\dots y_2 y_1) \text{ for all } w \in \mathsf{X}^*$$

- Write down the "equivalence classes" induced by \mathcal{L} systematically:
 - By (1) and (2), $\pi(\ldots x_{N+1}x_Nw) = \pi(\ldots y_{N+1}y_Nw)$ where $x_N \neq y_N$, which accounts for the original equation. Therefore, assume $x_1 \neq y_1$.
 - Then $\dots x_2 x_1, \dots y_2 y_1 \in C$. C is finite, so there are only finitely many such equations.
 - \mathcal{L} p.c.f. implies that elements in \mathcal{C} have a recurring tail, so we can write $\pi(\overline{z}x_n \dots x_2 x_1 w) = \pi(\overline{z}y_n \dots y_2 y_1 w)$. Also, $z_k \neq x_n$ or y_n , and z is the shortest recurring word.

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces The Inverse Problem

Construction (Slide I)

• For a p.c.f. self-similar structure \mathcal{L} satisfying the necessary condition, $\pi(\ldots x_2 x_1) = \pi(\ldots y_2 y_1)$ implies that

$$angle \pi(\dots x_2 x_1 w) = \pi(\dots y_2 y_1) \text{ for all } w \in \mathsf{X}^*$$

- Write down the "equivalence classes" induced by \mathcal{L} systematically:
 - By (1) and (2), $\pi(\ldots x_{N+1}x_Nw) = \pi(\ldots y_{N+1}y_Nw)$ where $x_N \neq y_N$, which accounts for the original equation. Therefore, assume $x_1 \neq y_1$.
 - Then $\dots x_2 x_1, \dots y_2 y_1 \in C$. C is finite, so there are only finitely many such equations.
 - \mathcal{L} p.c.f. implies that elements in \mathcal{C} have a recurring tail, so we can write $\pi(\overline{z}x_n \dots x_2 x_1 w) = \pi(\overline{z}y_n \dots y_2 y_1 w)$. Also, $z_k \neq x_n$ or y_n , and z is the shortest recurring word.

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces **The Inverse Problem**

イロト 不得下 イヨト イヨト 二日

Construction (Slide I)

• For a p.c.f. self-similar structure \mathcal{L} satisfying the necessary condition, $\pi(\ldots x_2 x_1) = \pi(\ldots y_2 y_1)$ implies that

$$\ \, \mathbf{0} \ \, \pi(\dots x_{n+1}x_n) = \pi(\dots y_{n+1}y_n) \text{ for all } n \in \mathbb{Z}^+$$

$$angle \pi(\dots x_2 x_1 w) = \pi(\dots y_2 y_1) \text{ for all } w \in \mathsf{X}^*$$

- Write down the "equivalence classes" induced by ${\cal L}$ systematically:
 - By (1) and (2), $\pi(\ldots x_{N+1}x_Nw) = \pi(\ldots y_{N+1}y_Nw)$ where $x_N \neq y_N$, which accounts for the original equation. Therefore, assume $x_1 \neq y_1$.
 - Then $\dots x_2 x_1, \dots y_2 y_1 \in C$. C is finite, so there are only finitely many such equations.
 - \mathcal{L} p.c.f. implies that elements in \mathcal{C} have a recurring tail, so we can write $\pi(\overline{z}x_n \dots x_2 x_1 w) = \pi(\overline{z}y_n \dots y_2 y_1 w)$. Also, $z_k \neq x_n$ or y_n , and z is the shortest recurring word.

Construction (Slide II)

- Write down the "equivalence classes" induced by \mathcal{L} systematically (continued):
 - By (2) and induction, if $\pi(\overline{z}x_n \dots x_2x_1w) = \pi(\overline{z}y_n \dots y_2y_1w)$, then $\pi(\overline{z}\xi_n \dots \xi_2\xi_1w) = \pi(\overline{z}x_n \dots x_2x_1w)$ whenever $\xi_j \in \{x_j, y_j\}$ for all j.
 - Therefore, we can write all equivalence classes in the form $\{\overline{z}\zeta_n \dots \zeta_2\zeta_1 w \mid z, w \in \mathsf{X}^*, \zeta_j \in S_j\}$ for fixed $W, z \in \mathsf{X}^*$ and some $S_j \in \mathsf{X}$; we introduce a shorthand to denote this:

$$\overline{z}S_n\ldots S_2S_1w.$$

イロト イポト イヨト イヨト

3

• Notice that each equivalence class is determined by $\overline{z}S_n \dots S_2S_1 = \pi^{-1}(\alpha)$ for some $\alpha \in \pi(\mathcal{C})$, where $|S_1| > 1$. We use α to label $\overline{z}S_n \dots S_2S_1$.

Construction (Slide II)

- Write down the "equivalence classes" induced by \mathcal{L} systematically (continued):
 - By (2) and induction, if $\pi(\overline{z}x_n \dots x_2 x_1 w) = \pi(\overline{z}y_n \dots y_2 y_1 w)$, then $\pi(\overline{z}\xi_n \dots \xi_2 \xi_1 w) = \pi(\overline{z}x_n \dots x_2 x_1 w)$ whenever $\xi_j \in \{x_j, y_j\}$ for all j.
 - Therefore, we can write all equivalence classes in the form $\{\overline{z}\zeta_n \dots \zeta_2\zeta_1 w \mid z, w \in \mathsf{X}^*, \zeta_j \in S_j\}$ for fixed $W, z \in \mathsf{X}^*$ and some $S_j \in \mathsf{X}$; we introduce a shorthand to denote this:

$$\overline{z}S_n\ldots S_2S_1w.$$

• Notice that each equivalence class is determined by $\overline{z}S_n \dots S_2S_1 = \pi^{-1}(\alpha)$ for some $\alpha \in \pi(\mathcal{C})$, where $|S_1| > 1$. We use α to label $\overline{z}S_n \dots S_2S_1$. Background Information Our Results Summary The Inverse Problem

Construction (Slide III)

• For each $\overline{z}S_n \dots S_2S_1 = \pi^{-1}(\alpha)$, we define some generators:

Figure: The generators corresponding to $\alpha = \Psi(\overline{z}S_n \dots S_2S_1w)$

• The desired group $G_{\mathcal{L}}$ is the group generated by all the generators defined above for all $\alpha \in \pi(\mathcal{C})$

Theorem (3)

 $G_{\mathcal{L}}$ produces a self-similar structure \mathcal{L}' that is isomorphic to \mathcal{L} .

(日) (四) (日) (日)

э

Construction (Slide III)

• For each $\overline{z}S_n \dots S_2S_1 = \pi^{-1}(\alpha)$, we define some generators:

Figure: The generators corresponding to $\alpha = \Psi(\overline{z}S_n \dots S_2S_1w)$

• The desired group $G_{\mathcal{L}}$ is the group generated by all the generators defined above for all $\alpha \in \pi(\mathcal{C})$

Theorem (3)

 $G_{\mathcal{L}}$ produces a self-similar structure \mathcal{L}' that is isomorphic to \mathcal{L} .

(日) (四) (日) (日)

э

Construction (Slide III)

• For each $\overline{z}S_n \dots S_2S_1 = \pi^{-1}(\alpha)$, we define some generators:

Figure: The generators corresponding to $\alpha = \Psi(\overline{z}S_n \dots S_2S_1w)$

• The desired group $G_{\mathcal{L}}$ is the group generated by all the generators defined above for all $\alpha \in \pi(\mathcal{C})$

Theorem (3)

 $G_{\mathcal{L}}$ produces a self-similar structure \mathcal{L}' that is isomorphic to \mathcal{L} .

< ロト (四) (三) (三)

э

- For the usual self-similar structure, the induced shift map **s** does not exist!
- A twisted structure:

$$I = [0, 1]$$

$$F_0(x) = -(1/2)x + 1/2, F_1(x) = (1/2)x + 1/2$$

• All equivalence classes determined by the equivalence class $\pi^{-1}(1/2) = \overline{1}S_2S_1,$

where $S_2 = \{0\}$ and $S_1 = \{0, 1\}$, i.e. $\overline{1}00w \sim \overline{1}01w$.

• We define the group as follows:

A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =
 A =

Figure: The generators of $G_{\mathcal{L}}$

• Compare with the Grigorchuk group

- \bullet For the usual self-similar structure, the induced shift map s does not exist!
- A twisted structure:

$$I = [0, 1]$$

F₀(x) = -(1/2)x + 1/2, F₁(x) = (1/2)x + 1/2

• All equivalence classes determined by the equivalence class $\pi^{-1}(1/2) = \overline{1}S_2S_1,$

where $S_2 = \{0\}$ and $S_1 = \{0, 1\}$, i.e. $\overline{1}00w \sim \overline{1}01w$.

• We define the group as follows:

Figure: The generators of $G_{\mathcal{L}}$

• Compare with the Grigorchuk group

- $\bullet\,$ For the usual self-similar structure, the induced shift map s does not exist!
- A twisted structure:

$$I = [0, 1]$$

$$F_0(x) = -(1/2)x + 1/2, F_1(x) = (1/2)x + 1/2$$

- All equivalence classes determined by the equivalence class $\pi^{-1}(1/2) = \overline{1}S_2S_1$, where $S_2 = \{0\}$ and $S_1 = \{0, 1\}$, i.e. $\overline{1}00w \sim \overline{1}01w$.
- We define the group as follows:

$$(1,1) \xrightarrow{(0,1)} (g_2) \xrightarrow{(0,0)} (g_1) \xrightarrow{(1,0)} (1$$

Figure: The generators of $G_{\mathcal{L}}$

• Compare with the Grigorchuk group

- $\bullet\,$ For the usual self-similar structure, the induced shift map s does not exist!
- A twisted structure:

$$I = [0, 1]$$

$$F_0(x) = -(1/2)x + 1/2, \ F_1(x) = (1/2)x + 1/2$$

• All equivalence classes determined by the equivalence class $\pi^{-1}(1/2) = \overline{1}S_2S_1,$

where $S_2 = \{0\}$ and $S_1 = \{0, 1\}$, i.e. $\overline{100w} \sim \overline{101w}$.

• We define the group as follows:

Figure: The generators of $G_{\mathcal{L}}$

• Compare with the Grigorchuk group

Background Information Limit Spaces of Self-Similar Groups Our Results P.C.F. Structures on Limit Spaces Summary The Inverse Problem

Example: Sierpiński Gasket

Figure: Sierpiński Gasket (Twisted Structure)

- s does not exist for usual structure; need a "twisted" structure
- Construction by our method: Yields Hanoi Towers Group!

Background Information Limit Spaces of Self-Similar Groups Our Results P.C.F. Structures on Limit Spaces Summary The Inverse Problem

Example: Sierpiński Gasket

Figure: Sierpiński Gasket (Twisted Structure)

- **s** does not exist for usual structure; need a "twisted" structure
- Construction by our method: Yields Hanoi Towers Group!

Background Information Limit Spaces of Self-Similar Groups Our Results P.C.F. Structures on Limit Spaces Summary The Inverse Problem

Example: Sierpiński Gasket

Figure: Sierpiński Gasket (Twisted Structure)

- **s** does not exist for usual structure; need a "twisted" structure
- Construction by our method: Yields Hanoi Towers Group!

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces **The Inverse Problem**

Example: Pentakun

Figure: Pentakun

• s does exist, so our construction yields a group

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces **The Inverse Problem**

Example: Pentakun

Figure: Pentakun

• s does exist, so our construction yields a group

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces **The Inverse Problem**

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A

Example: Snowflake

Figure: Snowflake

• s does not exist, so not possible to find a group

Limit Spaces of Self-Similar Groups P.C.F. Structures on Limit Spaces **The Inverse Problem**

Image: A mathematical states and a mathem

Example: Snowflake

Figure: Snowflake

• s does not exist, so not possible to find a group

Summary

- We clarified the condition for a limit space to have a self-similar structure.
- We clarified the condition for a self-similar structure on a limit space to be p.c.f.
- We constructed a contracting group that produces a given p.c.f. self-similar structure, and determined the necessary and sufficient condition for this inverse problem to have a solution.
- Outlook:
 - The inverse problem for non-p.c.f. self-similar structures

Summary

- We clarified the condition for a limit space to have a self-similar structure.
- We clarified the condition for a self-similar structure on a limit space to be p.c.f.
- We constructed a contracting group that produces a given p.c.f. self-similar structure, and determined the necessary and sufficient condition for this inverse problem to have a solution.

• Outlook:

• The inverse problem for non-p.c.f. self-similar structures

Summary

- We clarified the condition for a limit space to have a self-similar structure.
- We clarified the condition for a self-similar structure on a limit space to be p.c.f.
- We constructed a contracting group that produces a given p.c.f. self-similar structure, and determined the necessary and sufficient condition for this inverse problem to have a solution.
- Outlook:
 - The inverse problem for non-p.c.f. self-similar structures