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Rooted Trees and Self-Similar Actions (Nekrashevych)

A finite set X, called the alphabet
Rooted tree structure of X∗, the set of all words
An automorphism of X∗ preserves adjacency of vertices
A self-similar group G is a subgroup of Aut X∗ that acts on
X∗ “letter by letter”
G contracting if can be represented by a finite Moore
diagram
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Moore Diagrams and Limit Spaces (Nekrashevych)

Example: Binary adding machine
X = {0, 1} , a(0) = 1, a(1) = 0, G = 〈a〉

a−1 e a(0, 1)
(1, 0)

(0, 0)

(1, 1)

(0, 1)
(1, 0)

Figure: Binary adding machine

a(11001) = 0 a(1001)
= 00 a(001)
= 001 e(01)
= 00101
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Moore Diagrams and Limit Spaces (Nekrashevych)

Example: Binary adding machine
X = {0, 1} , a(0) = 1, a(1) = 0, G = 〈a〉

a−1 e a(0, 1)
(1, 0)

(0, 0)

(1, 1)

(0, 1)
(1, 0)

Figure: Binary adding machine

Left-infinite paths define an asymptotic equivalence relation
∼G on X−ω; JG = X−ω/ ∼G is the limit space of G
Binary adding machine: (read from the right)

01w ∼G 10w
Limit space is the circle
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Hanoi Towers Group and Sierpiński Gasket

Hanoi Towers Group:

1

a01

a12 a02

(2, 2)

(0, 1) (1, 0)

(0, 0)

(1, 2)

(2, 1)

(1, 1)

(0, 2)

(2, 0)

Figure: Hanoi Towers Group
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Figure: Hanoi Towers Group

Limit space: Sierpiński Gasket

Figure: Sierpiński Gakset
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Self-Similar Structures (Kigami)

Fi : K → K continuous injection for each i ∈ X, mapping
K to a smaller part of itself
A surjection π : X−ω → K from the code space X−ω to K,
marking the image of Fi by i
L = (K,X, {Fi}i∈X) is a self-similar structure on K

For a point a ∈ K, π−1(a) contains the “addresses” of a
Example: Sierpiński Gasket (Usual Structure)
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When Does a Limit Space Have a Self-Similar
Structure?

A self-similar structure L = (JG,X, {Fi}i∈X) on a limit
space JG, such that p = π

Limit space of the binary adding machine, the circle, does
not have a self-similar structure

Theorem (1)

The limit space JG has a self-similar structure if and only if it
satisfies the following condition:
For every left-infinite path e = . . . e2e1 in the nucleus ending at
a non-trivial state and for every w ∈ X∗, there exists a
left-infinite path f = . . . f2f1 in the nucleus ending at a state g,
such that the label of the edge fn is the same as the label of en,
and g(w) = w.
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When Does a Limit Space Have a P.C.F. Self-Similar
Structure? (Slide I)

Limit space: finitely ramified in the group-theoretical sense
if the intersection of distinct tiles of the same level is finite
Self-similar structure:

finitely ramified in the fractal sense if the intersection of the
images of Fi is finite
post-critically finite (p.c.f.) if

1 the set of addresses of the intersection of Fi is finite
2 each address in this set has a recurring tail

Significance: Can define Laplacian on the space

(Bondarenko and Nekrashevych) A contracting group G is
p.c.f. if there exists a finite number of left-infinite paths in
its nucleus that end at a non-trivial state
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When Does a Limit Space have a P.C.F. Self-Similar
Structure? (Slide II)

Lemma (Bondarenko and Nekrashevych 2003)

The limit space JG is finitely ramified in the group-theoretical
sense if and only if G is p.c.f.

Theorem (2)

The self-similar structure L = (JG,X, {Fi}i∈X) on the limit
space JG of a contracting G is p.c.f. if and only if G is p.c.f.

Point 1: Finitely ramified in the group-theoretical sense is
the same as in the fractal sense when JG has a self-similar
structure
Point 2: Justifies use of the term “p.c.f. group”
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P.C.F. Structures on Limit Spaces
The Inverse Problem

When Does a Limit Space have a P.C.F. Self-Similar
Structure? (Slide III)

Corollary
A limit space JG has a p.c.f. self-similar structure if and only if
G satisfies the condition in Theorem (1) and is p.c.f.

Corollary
The self-similar structure on a limit space is p.c.f. if and only if
it is finitely ramified.

Example: The Kameyama fractal is not a limit space.
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Limit Spaces of Self-Similar Groups
P.C.F. Structures on Limit Spaces
The Inverse Problem

Motivation

A contracting group produces a limit space, which may
have a self-similar structure
Question: Given a self-similar structure, can we find a
contracting group that produces a limit space with this
structure? When?
Focus: P.c.f. self-similar structures
Necessary condition: If π(. . . x2x1) = π(. . . y2y1), then
π(. . . xn+1xn) = π(. . . yn+1yn) for all n
Equivalently: the induced shift map s : JG → JG defined by
s = F−1

i for each image of Fi, exists and is continuous
Why? It has to be a limit space!
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P.C.F. Structures on Limit Spaces
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Construction (Slide I)

For a p.c.f. self-similar structure L satisfying the necessary
condition, π(. . . x2x1) = π(. . . y2y1) implies that

1 π(. . . xn+1xn) = π(. . . yn+1yn) for all n ∈ Z+

2 π(. . . x2x1w) = π(. . . y2y1) for all w ∈ X∗

Write down the “equivalence classes” induced by L
systematically:

By (1) and (2), π(. . . xN+1xNw) = π(. . . yN+1yNw) where
xN 6= yN , which accounts for the original equation.
Therefore, assume x1 6= y1.
Then . . . x2x1, . . . y2y1 ∈ C. C is finite, so there are only
finitely many such equations.
L p.c.f. implies that elements in C have a recurring tail, so
we can write π(zxn . . . x2x1w) = π(zyn . . . y2y1w). Also,
zk 6= xn or yn, and z is the shortest recurring word.
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Construction (Slide II)

Write down the “equivalence classes” induced by L
systematically (continued):

By (2) and induction, if
π(zxn . . . x2x1w) = π(zyn . . . y2y1w), then
π(zξn . . . ξ2ξ1w) = π(zxn . . . x2x1w) whenever ξj ∈ {xj , yj}
for all j.
Therefore, we can write all equivalence classes in the form

{zζn . . . ζ2ζ1w | z, w ∈ X∗, ζj ∈ Sj}
for fixed W, z ∈ X∗ and some Sj ∈ X; we introduce a
shorthand to denote this:

zSn . . . S2S1w.
Notice that each equivalence class is determined by

zSn . . . S2S1 = π−1(α)
for some α ∈ π(C), where |S1| > 1. We use α to label
zSn . . . S2S1.
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{zζn . . . ζ2ζ1w | z, w ∈ X∗, ζj ∈ Sj}
for fixed W, z ∈ X∗ and some Sj ∈ X; we introduce a
shorthand to denote this:

zSn . . . S2S1w.
Notice that each equivalence class is determined by

zSn . . . S2S1 = π−1(α)
for some α ∈ π(C), where |S1| > 1. We use α to label
zSn . . . S2S1.
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Construction (Slide III)

For each zSn . . . S2S1 = π−1(α), we define some generators:

gn

gn+1

gn+k−1

gn−1 · · · g1 1··· (i, σS1(i))(i, σS2(i))(i, σSn(i))
(zk, zk)

(z1, z1)(z2, z2)

(zk−1, zk−1)

Figure: The generators corresponding to α = Ψ(zSn . . . S2S1w)

The desired group GL is the group generated by all the
generators defined above for all α ∈ π(C)

Theorem (3)

GL produces a self-similar structure L′ that is isomorphic to L.
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Example: Unit Interval

For the usual self-similar structure, the induced shift map s
does not exist!
A twisted structure:

I = [0, 1]

F0(x) = −(1/2)x+ 1/2, F1(x) = (1/2)x+ 1/2

All equivalence classes determined by the equivalence class
π−1(1/2) = 1S2S1,

where S2 = {0} and S1 = {0, 1}, i.e. 100w ∼ 101w.
We define the group as follows:

g2 g1 1

(0, 1)

(1, 0)
(0, 0)

(1, 1)

Figure: The generators of GL
Compare with the Grigorchuk group
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Example: Sierpiński Gasket

202

000 100 120 220 221 021 011 111

200 020 121 211

210 010 101 201

110 001

112
212

002

012 102

022 122

222

Figure: Sierpiński Gasket (Twisted Structure)

s does not exist for usual structure; need a “twisted”
structure
Construction by our method: Yields Hanoi Towers Group!
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Example: Pentakun

Figure: Pentakun

s does exist, so our construction yields a group
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Example: Snowflake

Figure: Snowflake

s does not exist, so not possible to find a group
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Summary

We clarified the condition for a limit space to have a
self-similar structure.
We clarified the condition for a self-similar structure on a
limit space to be p.c.f.
We constructed a contracting group that produces a given
p.c.f. self-similar structure, and determined the necessary
and sufficient condition for this inverse problem to have a
solution.

Outlook:
The inverse problem for non-p.c.f. self-similar structures
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