MAT 1308 A Assignment 1 (Due TUE. Jan. 25th, 17:30) Student Number:

NAME:

Problem 1: What is TRUE and what is FALSE? Circle the true statements!

(a)
$$-\frac{1}{5} = \frac{-1}{5} = -(\frac{1}{5}) = \frac{1}{-5}$$

(g)
$$1 = \sqrt[3]{-1}$$

(b)
$$(\frac{-1}{3})^2 = 3^2$$
 (h) $\frac{\frac{2}{3}}{5} = \frac{2}{3} \times \frac{5}{7}$ (c) $\frac{4^2}{4} = 2$ (i) $\frac{1}{2} \times \frac{3}{5} = \frac{1 \times 5}{2 \times 3}$

(h)
$$\frac{\frac{2}{3}}{5} = \frac{2}{3} \times \frac{1}{5}$$

(c)
$$\frac{4^2}{4} = 2$$

(i)
$$\frac{1}{2} \times \frac{3}{5} = \frac{1 \times 5}{2 \times 5}$$

(d)
$$\frac{1\times 3}{2\times 3} = \frac{1}{6}$$

(d)
$$\frac{1\times3}{2\times3} = \frac{1}{2}$$
 (j) $\sqrt[2]{(-2)^2} = 2$

(e)
$$[-1, \infty) = \{x \in \mathbf{R} | -1 < x\}$$

(k)
$$\sqrt[3]{(-2)^3} = 2$$

(f)
$$\pi \in \mathbf{Q}$$

(1)
$$2^{\frac{1}{2}} = \sqrt{2}$$

Problem 2: Fill in the following computations:

(a)
$$\frac{1}{5} - \frac{3}{2} = \frac{1 \times \dots}{5 \times \dots} - \frac{3 \times \dots}{2 \times \dots} = \frac{1 \times \dots - 3 \times \dots}{5 \times \dots} = \frac{\dots}{\dots}$$

(b)
$$1 + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{4+1}{4} = \frac{1}{4}$$

(c)
$$2 - \frac{1}{3} = \frac{2 \times ...}{3} - \frac{1}{3} = \frac{6 - ...}{...} = \frac{...}{...}$$

(d)
$$4^{-2} = \frac{...}{...}$$

Problem 3: Fill in by using one of the symbols: $\bigcap, \bigcup, \subset, \in, \notin, \supset, \notin$.

$$(-\infty,0)\dots[1,+\infty)=\emptyset.$$

$$\frac{1}{2}$$
... $\{1, 2, 3, 4, 5\}$.

$$\{-1, \frac{-1}{5}, 0, 3, \sqrt{2}\} \dots \mathbf{Q} = \{-1, \frac{-1}{5}, 0, 3\}.$$

$$(-3,1)\dots(0,5)=(0,1).$$

$$\{2\}\dots N$$
.

$$0.15 \dots \mathbf{Q}$$
.

$$\{0.15\}\dots N$$
.

Problem 4: Compute:

(a)
$$\frac{1}{1+\frac{1}{1+3}} =$$

(b)
$$\frac{1}{x+2} + \frac{2}{x-1} =$$

Problem 5: Rationalize:

$$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}=$$

Problem 6: Simplify:

$$i)(2a^{\frac{1}{2}}b^2)^2$$
 $ii)\sqrt[2]{16y^2}$

$$(ii) \sqrt[2]{16y^2}$$

Problem 7: SOLVE:

(a)
$$1 + |1 - 2x| > 2$$
.

(b)
$$\frac{1}{x+3} \le \frac{1}{x-2}$$
.

(c)
$$\frac{2}{x} = \frac{1}{x} + 2$$
.

(d)
$$\frac{(x-2)(3-x)}{2x-1} < 0$$
.

(e)
$$x^2 - 3x - 6 > 0$$
.

(f)
$$2x - x^2 = 2 + 2x^2$$
.

More space for Problem 7.

Problem 8: (I) Find the domain for each of the following functions:

(a)
$$f(x) = x^2 - 1$$
.

(b)
$$g(x) = \frac{1}{|x+1|}$$

(c)
$$h(x) = \frac{x}{\sqrt{x^2 - 1}}$$

(d)
$$k(y) = \frac{|y-1|}{|y|-1}$$

(e)
$$s(x) = \sqrt{x^2 - 2x + 1}$$

(f)
$$p(x) = \frac{x-1}{x-1}$$

(II) Find
$$f \circ g(0)$$
 et $f \circ k(0)$.

(III) Find the equation of the line that cuts (intersects) the graph of f(x) at x = 1 and x = 2.

More space for Problem 8.

Problem 9: Let y = f(x) be a function. We shift up the graph of f(x) 2 units, and then we shift (horizontally) 3 units to the left. The resulting graph belongs to the function g(x) = f(x+a) + b. FIND a and b.

ANSWERS: a = and b =

Problem 10: Find c such that the equation

$$4x^2 - 12x + c = 0$$

has a unique solution.

Problem 11: Below you will find the graph of a function f(x).

- (a) Use this graph to compute: f(0), f(3) and f(-1).
- (b) Is f an even function? Justify your answer.
- (c) Graph on the same graph the following functions (you may use other colors): g(x) = 2f(x), h(x) = f(x) + 4, s(x) = f(x-1) and k(x) = -f(x).

