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Realizing the canonical ensemble in highly entropic inhomogeneous materials

B. Joós* and Z. Zhou†

Ottawa Carleton Institute of Physics, University of Ottawa Campus, Ottawa, Ontario, Canada K1N-6N5
~Received 19 July 1999!

To properly model highly entropic inhomogeneous materials in the canonical ensemble by molecular dy-
namics simulations, it is necessary to choose algorithms which rigorously implement the ensemble. Approxi-
mate methods may have either very low efficiency or completely fail in the very soft regime. The calculation
of the shear modulus of the diluted central force network is used to illustrate this point. Four algorithms to
realize the canonical ensemble have been tested on two methods of evaluation of the shear modulus.

PACS number~s!: 65.50.1m, 02.70.Ns, 61.43.2j, 62.20.Dc
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I. INTRODUCTION

The canonical ensemble is the most commonly used
semble in the study of the equilibrium properties of mate
als. To realize it efficiently and correctly in computer sim
lations is therefore an important issue. A number
algorithms simulating, either rigorously or approximate
the canonical ensemble by molecular dynamics~MD! simu-
lations have been successfully applied to liquids and so
@1–13#. Despite the existence of the rigorous methods@4,10–
12# approximate methods are still widely used because
their simplicity and speed. In general they yield the sa
results within statistical error as the rigorous methods. Ho
ever, whether this equivalence still holds for the inhomo
neous soft systems is not clear. Soft inhomogeneous ma
als, such as crosslinked polymer melts, present partic
challenges to the simulation algorithms@14#. In a recent pa-
per @15# we reported that the usual criteria for the choice
the time step, the stability of the energy and the pressure
not always appropriate in the study of highly entropic ma
rials. In this paper we further confirm this point and inves
gate the appropriateness for these systems of several
accepted algorithms. Some of these have very low efficie
or even completely fail for soft materials.

The system studied is a two-dimensional~2D! diluted
central force network~DCFN! near its percolation threshold
We focus on the shear modulus which characterizes the
gidity of the system. The shear modulus was calculated u
two different methods. In the stress-strain method~SSM! the
shear modulus is obtained from the changes in the stres~or
pressure! tensor upon deformation. We call this a macr
scopic measurement and label itmss. In contrast, in the equi-
librium fluctuation method~EFM!, the shear modulus is ex
tracted from the microscopic fluctuations in the system.
label this second measurementme f . The efficiency of the
different MD algorithms will be investigated by comparin
the agreement betweenmss andme f . Four different MD al-
gorithms for the canonical ensemble are studied. They
the velocity rescaling algorithm~labeled A!, the damped
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force algorithm~B!, the rigorous Brownian dynamics algo
rithm ~C!, and the approximate Brownian dynamics alg
rithm ~D!. Of the four algorithms, only C generates a rigo
ous canonical ensemble. It is the only algorithm that can
applied successfully to all regimes, from the perfect rig
lattice to the very soft diluted lattice just above the perco
tion threshold. In contrast, the different approximate meth
work properly only in relatively rigid lattices.

The paper is organized as follows. After a brief introdu
tion to the four MD algorithms for the canonical ensemble
Sec. II, Sec. III, and Sec. IV describe respectively the me
ods to calculate the shear modulus and the model studie
Sec. V we present the results and follow up with a discuss
and conclusion in Sec. VI.

II. ALGORITHMS TO REALIZE
THE CANONICAL ENSEMBLE

We present here briefly the algorithms used in this wo
to realize the canonical ensembles.

A. Algorithm A: The rescaling of velocities

The simplest way to construct an approximate canon
ensemble is to scale the velocities at every time step to k
the total kinetic energy constant in accordance with the
quired temperatureT. The velocity Verlet algorithm@12# is
used to integrate the Newton’s equations of motion in t
work.

B. Algorithm B: The damped force algorithm

Another simple way to yield an approximate canonic
ensemble is the damped force method@6,7#. It involves the
integration of a set of Hamiltonian equations of motion

dxi

dt
5

pi

mi
,

dpi

dt
52

]F

]xi
2

api

mi
, ~2.1!

wheremi is the mass of the particle,F is the interparticle
interaction potential,a is the damping factor determined b
requiring thatdTint /dt50, i.e., keeping the instantaneou
temperatureTint constant. With

i-
:
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Tint5
1

~dN2d21!kB
(
i 51

N pi
2

mi
, ~2.2!

whereN is the number of particles,d the dimension of the
system,

a5

(
i 51

N

miFi•pi

(
i 51

N

pi
2

, ~2.3!

whereFi52]F/]xi is the force on particlei. Note thata is
not a constant. This method yields a distribution of states
phase space@7,12#

P~r ,p!}d~Tint2T!d~P!expS 2F

kBT D , ~2.4!

where P is the total linear momentum. Therefore, th
method generates configurational properties in the canon
ensemble. The momentum distribution is, however, not
nonical, but it was believed that the equivalence of e
sembles guarantees that the differences in most average
be of the order ofO(1/N) @12#. This may not be true for
response functions. The ‘‘leapfrog’’ Verlet algorithm@12,16#
was used to integrate the equations of motion in this wo
At small time step, this method should be equivalent to
method of the rescaling of velocities@12#.

C. Algorithm C: The rigorous Brownian dynamics algorithm

The principle of the Brownian dynamics algorithm@3,12#
is to integrate the following equation of motion for ea
particle i:

mi

d2xi

dt2
52

]F

]xi
2miG

dxi

dt
1W i~ t !, ~2.5!

where the friction parameterG and the random noise term
W i(t) couple the system to a heat bath. The random fo
acts on each particle and is related to the friction by
fluctuation dissipation theorem

^W i~ t !•W j~ t8!&52 dkB TGd i j d~ t2t8!,

^W i~ t !&50, ~2.6!

G is related to the diffusion coefficientD by G5kBT/mD
and is irrelevant for static properties. We usedG50.5 for
almost all of our work.W i(t) is specified by a Gaussia
distribution @12#. This method yields a rigorous canonic
ensemble@12#.

D. Algorithm D: The approximate Brownian
dynamics algorithm

To implement the Gaussian distribution is time consu
ing. For a rigid system, the Gaussian distribution can
in
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replaced by a uniform random number distribution witho
affecting some properties@17#. However, as we will report,
such an approximation does not work well in the soft regi
because of ergodicity breaking.

III. CALCULATION OF THE SHEAR MODULUS

Here is a brief description of the two methods used
obtain the elastic constant for pure shear deformation. Th
an area preserving deformation, where the system is e
gated in one direction, and appropriately compressed in
other direction. The formulas are specifically written for t
2D system. The first method is the stress-strain met
~SSM!. The modulus for pure shear is obtained from t
changes in the applied stress tensorSab ~negative for com-
pression! under a strain represented by the Lagrangian st
tensorh @15,18#

mss[
S11~h!2S22~h!2@S11~0!2S22~0!#

4h11
. ~3.1!

Note that Eq.~3.1! requiresSab(0) which may be aniso-
tropic. What is actually calculated is

mss[
S11~h!2S22~h!

4h11
, ~3.2!

which assumes thatSab(0)50. The off-diagonal elements
of Sab(0) are small and of no concern. There are, howev
due to finite size effects, non-negligible diagonal eleme
Saa(0). The simplest way to eliminate these frozen-
stresses in the undeformed sample is to perform the de
mation of every sample in the two Cartesian directions
turn, as we did in this work. The deformation of a sample
one Cartesian direction is therefore called a realization
every sample yields two realizations.

The second method is the equilibrium fluctuation meth
~EFM! which calculates directly the elastic constants fro
the microscopic fluctuations of the system over time witho
the need to impose deformations. All elastic constants
obtained from a single run. Note that within the linear stre
strain regime, elastic constants should be basically const
and therefore deformed and undeformed states yield
same results. This property greatly simplifies the compari
between the two methods since we can calculate bothme f
and mss simultaneously in a deformed state as we did
most samples in this work. In this method, the modulusme f
for pure shear for a 2D system is given by@14#

me f5
c111c222c122c21

4
~3.3!

wherecab are the condensed Voigt notation of elastic sti
ness coefficients@19,20# defined by

Sab~h!5Sab~0!1cabsthst ~3.4!

for a system without internal torques@19–21#. For a central
force system the isothermal elastic stiffness coefficients
be calculated from@19#
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cabst5
1

A K (
i , j

Dxa~ i j !Dxb~ i j !Dxs~ i j !Dxt~ i j !
1

r 2 S F92
F8

r D L
2

1

kBTA K dS (
i , j

Dxa~ i j !Dxb~ i j !
F8

r D dS (
i , j

Dxs~ i j !Dxt~ i j !
F8

r D L 2
1

2A S 2K (
i , j

Dxa~ i j !Dxb~ i j !
F8

r L dst

2K (
i , j

Dxa~ i j !Dxs~ i j !
F8

r L dbt2K (
i , j

Dxa~ i j !Dxt~ i j !
F8

r L dbs2K (
i , j

Dxb~ i j !Dxt~ i j !
F8

r L das

2K (
i , j

Dxb~ i j !Dxs~ i j !
F8

r L datD 1
NkBT

A
dabdst . ~3.5!
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The stress tensor is given by

Sab5
1

A K (
i , j

Dxa~ i j !Dxb~ i j !
F8

r L 2
NkBT

A
dab ,

~3.6!

where the ^•••& designate configurational averages a
d(X)5X2^X&, Dxa( i j ) and r are defined as

Dxa~ i j !5xa~ i !2xa~ j !, ~3.7!

r 25uDxa~ i j !u2. ~3.8!

A represents the area of the system. The first term in
~3.5! is referred to as the ‘‘Born term.’’ It is the only nonzer
term for homogeneous materials at zero temperature an
the absence of stress. The second term is the ‘‘fluctua
term’’ and is always negative. The third term is the ‘‘stre
term.’’ The last is sometimes called the ‘‘kinetic term’’@22#.
We should emphasize that the areaA which appears in Eqs
~3.5! and ~3.6! must be the current~stressed! one @19#, in-
stead of the area of the stress-free state. The EFM provid
way to obtain all elastic constants from a single run and
the advantage that no actual deformations are made, s
symmetry breaking occurs. The EFM has been success
applied to crystalline materials@22–24# and to soft materials
such as crosslinked polymer melts and diluted lattice n
works @15,25#.

Exact values of the elastic constants at finite tempera
are not usually available. However, the two methods sho
yield the same value. Hence, we can define the correct va
of the shear modulus as the common limit ofmss andme f .

IV. THE SYSTEM STUDIED

The system studied is the 2D diluted central force n
work, which has been used to show that the onset of
chanical rigidity occurs at a concentration of bonds and s
which is significantly larger than the percolation thresho
@26#. It is simply a triangular network of springs of equ
equilibrium lengthr 0 which is diluted by removing sites o
bonds randomly. In this system, the nearest neighbors in
act via the circularly symmetric potentialVnn(r i j )5 1

2 k(r i j
2r 0)2 and more distant neighbors are noninteracting.
this system, geometric percolation occurs at a concentra
of sites pc50.5 and rigidity percolation~at T50) at pr
q.
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'0.6975@26#. From here onp will mean the site concentra
tion. The regime of interest for this study is the intervalpc
,p,pr where, at zero temperature, the system is not rig
but at finite temperature develops a finite shear modulus
entropic origin whose onset ispc @18#. The unit of time is
t05Am/k and the unit of temperaturekr0

2/kB . The size of
the system in most of our work is 16316 sites. Systems o
size 32332 were also studied, but the results do not chan
our conclusions. The simulations were done with perio
boundary conditions at a temperatureT50.005kr0

2/kB . We
imposed a pure shear deformationLx→lLx andLy→Ly /l,
whereLx and Ly are the lengths of the cell along the tw
Cartesian coordinate axes. So by definition for a small de
mation h115l21. We chosel51.001 for p>0.85 for
safety. At low concentration, we chosel51.01 in most situ-
ations.

To investigate the possibility of ergodicity breaking, w
monitored for some samples the behavior of the variance
the skewness of the temperature distribution as was don
Refs. @27,28# for the Brownian dynamics algorithm. In th
canonical ensemble, we should have withdTint5Tint2T
@27#:

variance Rvar[
Nd^~dTint!

2&

2^Tint&
2

51, ~4.1!

skewness Rskew[
ANd^~dTint!

3&

A8^~dTint!
2&3/2

51, ~4.2!

with Tint5
1

d~N21!kB
(
i 51

N pi
2

mi
. ~4.3!

Note that there is a slight difference between Eqs.~2.2! and
~4.3! because the temperature is allowed to fluctuate in
Brownian dynamics algorithm. The violation of Eqs.~4.1!
and ~4.2! would indicate ergodicity breaking.

The shear modulus of the perfect triangular lattice at z
temperature and hydrostatic pressure is given exactly bm
[C445A3/4(423r 0 /a)k @19,29#, where a is the lattice
constant.m5A3/4k50.433013k for a5r 0.

The nonbreakable bonds of the system introduce a se
quenched random variables. From the perspective of
present calculations, the most important effect of t
quenched random variables is that it is necessary to ave
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measured quantities over different realizations of the sa
concentration. At high concentration of sites (p.0.8),
10–30 samples are enough to give high accurate res
However, at low concentration (p<0.60) typically more
than 250 samples are required and the lower the conce
tion, the larger the number of samples. The rule to choose
number of samples for those converged results in this w
is that by increasing the number of samples, the uncerta
in the average results is about 3%, in a range of about
samples. In contrast, for those nonconverged results, 50–
samples are in general enough to provide a clear answer
whether convergence will occur. On the other hand,
strong fluctuations in the system at low density make c
vergence very slow and so fairly long running times are
quired. At high density (p.0.8), 105 time steps are in gen
eral enough to get good convergence. But at low densit
requires in general 1–2 million time steps and we ran m
of our samples up to 2 million time steps.

To facilitate the reading of the presentation of the resu
that follows, Table I gives our best values form for the
16316 system at the four values ofp that were used as tes
of the algorithms: 1, 0.85, 0.6, and 0.51. These four val
cover the whole range from crystalline to disordered a
very soft. p50.5 is the percolation threshold, at whichm
50.

V. RESULTS

A. Algorithm A: The velocity rescaling scheme

The results for algorithm A have been given in Ref.@15#.
In summary, at high density, good agreement betweenmss

and me f is obtained for the time stepDt50.05t0. For in-
stance, at density p50.85,mss50.1846k, and me f
50.1870k. However, at low density where the entropy
significant, even a much smaller time step,Dt50.005t0, did
not give convergent results. This is the case, for instance
the densityp50.6, whereme f andmss have different trends
as shown in Fig. 1~a!. Good agreement was obtained wi
Dt50.0016t0 @see Fig. 1~b!#. After an extrapolation using
m(t)5m(`)1a/t, we found me f5me f(`)50.00865k and
mss50.00878k. The agreement betweenme f and mss im-
proved with increasing number of samples. Figure 2 sho
clearly thatme f andmss go to a common limit when the time
step is decreased.

TABLE I. Our best values of the average elastic modulusm for
pure shear deformation for 16316 two-dimensional site diluted tri
angular lattices, with nearest neighbor linear restoring forces
units of the force constantk, at T50.005kr0

2/kB , and with periodic
boundary conditions (p is the site occupancy probability!.

p m ~units of k)

1 0.433260.0002
0.85 0.185760.0014
0.6 0.0085960.00006
0.51 0.0012760.00002
0.5 0.00
e
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B. Algorithm B: The damped force algorithm

In previously published work on dense systems, tim
steps typically of the order ofDt50.1t0 to Dt50.05t0 have
been used@25,30,31#. In diluted systems atp50.6, with Dt

in

FIG. 1. Algorithm A: velocity rescaling scheme.~a! Average
mss andme f for 150 samples vs time atp50.6. Total running time:
106 time steps withDt50.005t0. ~b! Averagemss andme f for 260
samples vs time atp50.6. Total running time: 23106 time steps
with Dt50.0016t0.

FIG. 2. Averagemss ~solid symbols! and me f ~open symbols!
with error bars vs time step for the velocity rescaling sche
~circles! ~Algorithm A! and the rigorous Brownian dynamics algo
rithm ~squares! ~Algorithm C! at p50.6. We do not plot error bars
for the nonconverged data. The latter are limited to the very sm
time step values with convergence forD50.0016t0, the only veloc-
ity rescaling data point with an error bar.
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50.02t0, we get me f'0.00824k and mss'0.00839k. It is
much better than what was obtained using A, in which b
me f and mss diverge at the sameDt, but it is not good
enough. Therefore, we reduced the time step toDt
50.005t0 and gotme f50.00852k andmss50.00840k.

However, atp50.51, usingDt50.005t0 we found again
a large disagreement betweenmss(50.00128k) and
me f(50.00243k) though both of them converged well. Re
ducing the time step further toDt50.0016t0, we got mss
50.00128k but me f50.00360k. Note thatmss agrees well
with the value obtained from C~see next section! but me f is
overestimated, as with D~see Sec. V D! at higher density
(p50.85). Also we can note that reducingDt further did not
reduce the gap betweenmss andme f .

C. Algorithm C: The rigorous Brownian dynamics algorithm

The very low efficiency and the likely failure of algo
rithms A and B in the critical regime stimulated us to try t
rigorous method C. First, we found that using C, the varia
of the temperature satisfied Eq.~4.1! to within 1% in 50 000
time steps and the skewness satisfied Eq.~4.2! to within 5%
in 100 000 time steps foreveryrealization atp50.6. Dt was
equal to 0.05t0 and the equilibration time to 20 000 tim
steps. The uncertainty in̂Tint& itself is stabilized to,5/1000
within a few thousand time steps even withDt50.25t0. Av-
eraging over many samples would yield an even better ag
ment. Therefore, there was no evidence of ergodicity bre
ing in this system.

For p51, Dt50.25t0 still gives almost perfect results
We found thatme f50.4332k and mss50.4333k up to 105

time steps. Atp50.85, usingDt50.05t0, we found that
me f50.1843k and mss50.1871k. These values agree we
with the results of algorithm A. Moreover, we found that
p50.6, from Dt50.25t0 to 0.025t0, the uncertainty in the
total energy and in the pressure, which are, respectiv
,0.1% and,3%, showed no significant change in a sing
realization.me f and mss vs time steps atp50.6 are also
shown in Fig. 2.

Again, we find clearly thatme f andmss go to a common
limit with decreasing time step. UsingDt50.25t0, bothmss
and me f converged well but to clearly different limits,me f
50.00648k andmss50.00781k, as shown in curves~a! and
~b! of Fig. 3. At Dt50.15t0, the agreement is improve
greatly but the limits are still clearly different:me f
50.00746k and mss50.00794k. The relative difference is
greater than 6% and does not decrease with increasing n
ber of samples. AtDt50.1t0, the agreement is improve
further, but we can still observe different trends:me f
50.00804k andmss50.00836k. However, atDt50.05t0, we
got me f50.00879k and mss50.00868k. These values agre
well with the results from the velocity rescaling and t
damped force algorithms. The results as shown in curves~c!
and~d! of Fig. 3, show a clear trend towards a common lim
Using Dt50.025t0, we got me f50.00865k and mss
50.00853k, values close to those obtained withDt50.05t0.
We also found that withDt50.05t0 and Dt50.025t0, 20
samples are enough to show good agreement betweenme f
and mss. But to get an accurate result, i.e., a converg
result with'3% accuracy and little change with increasi
number of samples, requires about 140 samples at both
h

e

e-
k-

y,

m-

.

t

e

steps. The properly converging sequences ofme f andmss vs
time steps at this value ofp50.6 are shown in Fig. 2.

These results support further the conclusion that the
lowableDt should be smaller than the value which stabiliz
the total energy and pressure or the value required in
perfect lattice@15#. Moreover, the optimum time step is sig
nificantly larger than for the previous two algorithms, com
pensating for the slowness of the computer algorithm.

To explore whether the time step is sensitive to the d
sity for this algorithm and whether it is possible to makemss
agree withme f in all regimes, we carried out simulations
p50.51. We found that usingDt50.1t0 the agreement be
tween the two methods is not satisfactory,me f'0.00126k
but mss'0.00142k, and the gap does not decrease with
increase in the number of samples. However, withDt
50.05t0, the agreement is good,me f50.00126k and mss
50.00129k as shown in curves~e! and~f! of Fig. 3, and the
results were stable with 240 samples. The number of sam
required for a good result is significantly larger than atp
50.6 ('140). The correlation length increases rapidly w
decreasingp. The agreement atp50.51 is remarkable con
sidering that the shear modulus at this density is very sm

We can therefore conclude that the rigorous Brown
dynamics algorithm guarantees correctmss and me f values,
and the time step is not sensitive to the density of sites in
system. We found however that a reasonable deforma
may be necessary for convergence, especially formss. At

FIG. 3. Algorithm C: rigorous Brownian dynamics@curves~a!
to ~f!#. Algorithm A: velocity rescaling scheme@curves~g! and~h!#.
As a rulemss have solid symbols andme f open symbols. Algorithm
C. Curve ~a! is the averagemss for 160 samples vs time atp
50.60. Total running time: 53105 time steps withDt50.25t0. The
portion from 50000t0 to 125000t0 is not shown because bothmss

andme f are essentially constant. Curve~b! is the averageme f cor-
responding to~a!. Curve~c! is the averagemss for 260 samples vs
time going up to 83105 time steps atp50.60 with Dt50.05t0.
Curve ~d! is the averageme f corresponding to~c!. Curve~e! is the
averagemss for 360 samples vs time for up to 106 time steps atp
50.51. Dt50.05t0. Curve ~f! is the averageme f corresponding to
~e!. Algorithm A. Curve~g! is the averagemss for 50 samples vs
time up to 106 time steps atp50.60. Dt50.02t0. Curve~h! is the
averageme f corresponding to~g!.
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p50.6, with a very small deformationl51.001, proper
equilibration was very slow. Even using a rather small tim
stepDt50.01t0 , mss is not convergent andme f50.00804k
is obviously smaller than it should be.

D. Algorithm D: The approximate Brownian dynamics

Historically this is the first method we used to calcula
elastic constants in the DCFN and the serious discrepa
betweenmss and me f found with this method led us to try
other methods. Atp51 with Dt50.01t0, we found that
mss50.4318k,me f50.4293k. The agreement betweenmss
and me f is still rather good though not as good as with t
rigorous algorithm C. However, an obvious discrepancy
pears oncep,1. At p50.85 with Dt50.001t0, we gotmss
50.1864k but me f50.2187k. It is interesting to note thatmss
is still rather good butme f is obviously too large, similar to
the result obtained from algorithm B atp50.51. However, at
p50.6, Dt50.002t0, we got mss50.0066k and me f
50.0270k. We can see from Fig. 4 that bothmss and me f
converge well but to a different limit. Comparing with th
results from the three other algorithms, we can see that
method overestimatesme f but underestimatesmss at low p.
From the similarity between the results of B atp50.51 and
those of this algorithm atp50.85, it is reasonable to thin
that the source of the problem may be intrinsically the sa
and that it is ergodicity breaking. The same may apply
algorithm A.

With D, the temperature stabilizes to the required te
perature within a few thousand time steps foreveryrealiza-
tion. However, in contrast to C, both the variance and
skewness seriously violate Eqs.~4.1! and ~4.2! even atp
51.0. At p51.0, the discrepancy for the variance from E
~4.1! can be as large as 50% and for the skewness it is a
30%, even after averaging over 40 samples@see Figs. 5~a!
and 5~b!#. At p50.6, the discrepancy for the variance c
also be about 25% and for the skewness about 22%
shown in Figs. 5~c! and 5~d!. Moreover, we observed sys
tematic asymmetries in Kx5^((px

2/2m)& and Ky

FIG. 4. Algorithm D: Approximate Brownian dynamics. Ave
agemss andme f for 300 samples vs time up to 23106 time steps at
p50.6. Dt50.002t0.
e

cy

-

is

e,
o

-

e

.
ut

as

5^((py
2/2m)& even for the undeformed perfect lattice. A an

B work better because they at least generate correct can
cal distributions in the configuration space.

VI. DISCUSSION AND CONCLUSION

As it should be, the two methods to calculate the elas
constants, the macroscopic measurementmss and the micro-
scopic measurementme f , can be made to agree if we choo
the proper time step and/or the proper simulation algorith
From the results obtained in the above section and by ch
ing the shear modulus as the common limit ofmss andme f ,
we can obtain reliable and accurate values~see Table I!. We
may recall that convergence of one of the quantities is no
itself a reliable measure of accuracy, as the limit could
wrong.

The first factor affecting the convergence ofme f andmss
is the time step. Our present results confirm our earlier d
covery @15# that the usual criteria for the choice of the tim
step, i.e., the stabilities of the energy and the pressure are
always sufficient to ensure a faithful simulation of the pro
erties of a system. The optimum time step for soft mater
can be much smaller than for a rigid material. This can
explained by the fact that in the very inhomogeneous s
regime~highly diluted lattice! changes in configuration ma
require passage from one metastable state to another
some particles going through saddle points. These parti
may require a smallerDt and they determine the maximum
Dt allowed for the whole system. We found that as we d
creaseDt, all types of convergence situations are observ
for me f andmss. First, neithermss nor me f converge, corre-
sponding to a far too largeDt, as shown in curves~g! and~h!
of Fig. 3. Secondly, one quantity converges but the ot

FIG. 5. Algorithm D: Approximate Brownian dynamics. Curv
~a! is the average ofRvar for 40 samples vs time up to 106 time steps
at p51 with Dt50.01t0. Curve ~b! is the average ofRskew corre-
sponding to curve~a!. Curve ~c! is the average ofRvar for 300
samples vs time up to 23106 time steps atp50.6 with Dt
50.002t0. Curve ~d! is the average ofRskew corresponding to
curve ~c!.
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does not, as shown in Fig. 1~a!. The next possibility is that
both mss and me f converge but not to a common limit, a
shown in curves~a! and ~b! of Figs. 3 and 4. Finally, both
mss and me f converge to a common limit. We found tha
once a common limit is achieved, increasing the numbe
samples may improve the accuracy but reducingDt further
gives little improvement. This makes us conclude that
agreement betweenme f andmss can be used as a criterion t
choose the proper time step and/or proper simula
method. This criterion is computationally efficient since bo
me f and mss can be calculated simultaneously in the sa
run as mentioned in Sec. III.

The optimumDt is algorithm sensitive and can differ b
an order of magnitude from one algorithm to the other
should not be surprising that the rigorous Brownian dyna
ics algorithm C allows a large time step. The key to imp
menting C is to realize a proper distribution of the rando
force@12#, and this distribution should be dependent more
the number of samplings~i.e., the running time in MD! than
on the time step. The corresponding random variables wh
appear in the numerical integration of the equations of m
tion are of the order ofO(Dt2), so they dominate the cut of
and round off errors in a rather large range of time steps
other words, the contact with the heat bath helps to stab
the system. Although for the same total number of steps
requires a computational time 2 to 3 times longer than al
rithms A and B~velocity rescaling and damped force, respe
tively!, its 10 to 30 times larger time step allows for bett
efficiency, not to mention the increased confidence that
algorithm provides. In contrast, of all the ways to realize
canonical ensemble, A may require the smallestDt because
it does not deal with the coordinates and the velocities
parallel, so some uncorrelated disturbances may be add
the integral of the equations of motion.

The same problem also exists in the microcanonical
semble. For the system withp50.6 andl51.01 and using
the velocity Verlet algorithm@12# to integrate the equation
of motion, we found that withDt from 0.05t0 to 0.02t0, the
uncertainty in the total energy and pressure remains alm
the same. However, atDt50.05t0 , me f andmss converge to
different limits;me f50.00940k andmss50.00806k with 260
samples. The increase in the number of samples does
reduce the gap betweenme f and mss. In contrast, withDt
50.02t0, we get me f50.00844k and mss50.00824k from
300 samples, a rather good agreement again and very c
to the values obtained from the Brownian dynamics.

The second factor affecting the convergence ofme f and
mss is the choice of the simulation algorithm. We found th
for soft inhomogeneous materials it should be necessar
implement the rigorous canonical ensemble to studymost
properties. The approximate algorithms cannot guarantee
correctness of the results even though they can conv
.
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well. Our results show that for the DCFN in the soft regim
the approximate Brownian dynamics algorithm D fails
give correct results for bothme f and mss. A and B fail for
me f at low density, but they can give correctmss even at
rather low density. Therefore, A and B perform better than
but not as well as C. The reliability of A and B decreas
however as the material becomes softer, as ever smaller
steps are required to maintain agreement betweenmss and
me f . This is not a satisfactory or reassuring situation.

The problem with the approximate algorithms must res
from ergodicity breaking. In the rigid regime, ergodici
breaking has little effect on the result since there is a sh
minimum in the free energy in phase space and most par
the phase space give a zero contribution to the ensem
average. The same seems to hold true for liquids for
opposite reason, a homogeneous distribution of state
phase space. However, for a soft inhomogeneous mate
there may exist a large number of configurations close
energy which need to be sampled with the correct statist
weight, and therefore the effect of ergodicity breaking b
comes non-negligible. For algorithms A and B, the poten
energy can fluctuate but the temperature cannot as meas
by the total kinetic energy. The dynamics of the collisions
the chains with each other may not be well represented
hence the entropy would not be correct. And algorithm
although it keeps the temperature fairly constant, has
large a variance and skewness, and hence makes a r
poor canonical ensemble.

It is not yet clear whymss is always better thanme f in the
approximate methods for the two systems that we have s
ied, the DCFN and the cross-linked polymer melts@14,15#.
One possible explanation is thatme f is a direct second de
rivative of the free energy, so it requires a correct repres
tation of the detailed structure of the phase space, and h
is more sensitive to ergodicity breaking. The difficulties e
countered with the shear modulus must occur for other
sponse functions as well, such as the specific heat.

In conclusion, this work demonstrates the importance
realizing a rigorous canonical ensemble for inhomogen
soft materials. Similar problems may also occur in the a
proximate constantT and constant pressure MD simulation
There are at least three other rigorous ways to realize
canonical ensemble in MD simulations@4,10,11#. The appeal
of Brownian dynamics for high entropy systems is its use
random numbers which permits an efficient sampling of
available phase space.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences a
Engineering Research Council of Canada. Stimulating d
cussions with Michael Plischke and Dan Vernon are gra
fully acknowledged.
@1# L.V. Woodcock, Chem. Phys. Lett.10, 257 ~1971!.
@2# W.T. Ashurst and W.G. Hoover, Phys. Rev. Lett.31, 206

~1973!.
@3# D.L. Ermak, ~unpublished!; D.L. Ermak and H. Buckholtz, J

Comput. Phys.35, 169 ~1980!.
@4# H.C. Andersen, J. Chem. Phys.72, 2384~1980!.
@5# W.G. Hoover, A.J.C. Ladd, and B. Moran, Phys. Rev. Lett.48,

1818 ~1982!.
@6# W. Hoover, Physica A118, 111 ~1983!.
@7# D.J. Evans and G.P. Morriss, Chem. Phys.77, 63 ~1983!;



D

tt.
.

PRE 61 2417REALIZING THE CANONICAL ENSEMBLE IN HIGHLY . . .
Phys. Lett.98A, 433 ~1983!.
@8# J.M. Haile and S. Gupta, J. Chem. Phys.79, 3067~1983!.
@9# H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A.

Nola, and J.R. Haak, J. Chem. Phys.81, 3684~1984!.
@10# S. Nose´, Mol. Phys.52, 255 ~1984!; J. Chem. Phys.81, 511

~1984!.
@11# W.G. Hoover, Phys. Rev. A31, 1695~1985!.
@12# M.P. Allen and D.J. Tildesley,Computer Simulation of Liquids

~Oxford University Press, New York, 1987!.
@13# J. M. Haile,Molecular Dynamics Simulation~Wiley, Toronto,

1992!.
@14# S.J. Barsky, M. Plischke, B. Joo´s, and Z. Zhou, Phys. Rev. E

54, 5370~1996!.
@15# Z. Zhou and B. Joo´s, Modell. Simul. Mater. Sci. Eng.7, 383

~1999!.
@16# D. Brown and J.H.R. Clarke, Mol. Phys.51, 1243~1984!.
@17# E.R. Duering, K. Kremer, and G.S. Grest, J. Chem. Phys.101,

8169 ~1994!.
@18# M. Plischke and B. Joo´s, Phys. Rev. Lett.80, 4907~1998!.
@19# Z. Zhou and B. Joo´s, Phys. Rev. B54, 3841~1996!.
@20# J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Le

71, 4182 ~1993!; J. Wang, J. Li, S. Yip, S. Phillpot, and D
Wolf, Phys. Rev. B52, 12 627~1995!.
i-

@21# T.H.K. Barron and M.L. Klein, Proc. Phys. Soc. London85,
523 ~1965!.

@22# D.R. Squire, A.C. Holt, and W.G. Hoover, Physica~Amster-
dam! 42, 388 ~1969!.

@23# J.R. Ray, M.C. Moody, and A. Rahman, Phys. Rev. B32, 733
~1985!.

@24# J.R. Ray, M.C. Moody, and A. Rahman, Phys. Rev. B33, 895
~1986!.

@25# B. Joós, Z. Zhou, and M.S. Duesbery, Phys. Rev. B50, 8763
~1994!.

@26# D.J. Jacobs and M.F. Thorpe, Phys. Rev. Lett.75, 4051
~1995!; D.J. Jacobs and M.F. Thorpe, Phys. Rev. E53, 3682
~1996!; C. Moukarzel and P.M. Duxbury, Phys. Rev. Lett.75,
4055 ~1995!.

@27# B.L. Holian, A.F. Voter, and R. Ravelo, Phys. Rev. E52, 2338
~1995!.

@28# R. Simonazzi and A. Tenenbaum, Phys. Rev. E54, 964
~1996!.

@29# Z. Zhou and B. Joo´s, Phys. Rev. B56, 2997~1997!.
@30# J.A. Combs, Phys. Rev. Lett.61, 714~1988!; Phys. Rev. B38,

6751 ~1988!.
@31# Z. Zhou and B. Joo´s, Surf. Sci.323, 311 ~1995!.


