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Entropic rigidity of randomly diluted two- and three-dimensional networks
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Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

B. Joós and Z. Zhou
Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5

~Received 4 March 1999!

In recent work, we presented evidence that site-diluted triangular central-force networks, at finite tempera-
tures, have a nonzero shear modulus for all concentrations of particles above the geometric percolation con-
centrationpc . This is in contrast to the zero-temperature case where the~energetic! shear modulus vanishes at
a concentration of particlespr.pc . In the present paper we report on analogous simulations of bond-diluted
triangular lattices, site-diluted square lattices, and site-diluted simple-cubic lattices. We again find that these
systems are rigid for allp.pc and that nearpc the shear modulusm;(p2pc)

f , where the exponentf '1.3 for
two-dimensional lattices andf '2 for the simple-cubic case. These results support the conjecture of de Gennes
that the diluted central-force network is in the same universality class as the random resistor network. We
present approximate renormalization group calculations that also lead to this conclusion.
@S1063-651X~99!07109-3#

PACS number~s!: 82.20.Mj, 05.70.Fh, 64.60.Cn
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I. INTRODUCTION

Since the pioneering work of Feng and Sen@1# it has
become clear that, upon dilution atT50, a network of par-
ticles interacting only through central two-body forces g
nerically loses its ability to withstand shear at a concen
tion pr of particles that is higher than the geomet
percolation concentrationpc at which a spanning cluster firs
appears@2–4#. This phenomenon of rigidity percolation i
now quite well understood. However, recent work@5,6# has
shown that forTÞ0 there is a contribution to the she
modulus that is entropic in origin and which persists top
5pc . Conceptually this result is easy to understand by an
ogy with the physics of rubber elasticity — another primar
entropic phenomenon: Near percolation, diluted lattices
composed essentially of long chains of singly connected
ticles linked to each other at various junction points. The
chains are the direct analog of the polymer chains that
crosslinked in rubber to create a rigid amorphous mate
When the distance between junction points or crosslink
changed upon deformation of the sample, the entropy is
nerically decreased, resulting in an increase of free ene
and a restoring force. As soon as a sample percolates, the
a net shear restoring force. The connecting chain of parti
acts as a stretched spring.

Although this picture seems quite straightforward, the
are a number of interesting open questions about entr
elasticity. The first has a long history, dating back to t
work of de Gennes@7#. He argued, on the basis of a simp
analogy between Kirchhoff’s laws for resistor networks a
the force balance conditions for networks of springs, that
random resistor networks and diluted networks of sprin
should be in the same universality class. More precisely
the conductivitys of a diluted network of resistors vanishe
at the geometric percolation point ass;(p2pc)

t and the
shear modulus of a central-force networkm;(p2pc)

f then
the prediction isf 5t. Our earlier results@5# were consistent
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with this prediction but certainly could not rule out a sma
discrepancy. Moreover, for dimensionalityd52, t'n where
n is the percolation correlation length exponent so that
data do not distinguish between the possibilitiesf 5n and f
5t. We note that this is in striking contrast to the zer
temperature result, where the exponent that describes the
havior of m nearpr is quite different fromt @8#.

In this article we continue our investigation of dilute
central-force networks. We report on molecular dynam
simulations of site-diluted square lattices and bond-dilu
triangular lattices. The choice of these two systems was
tivated by a desire to reduce crossover effects. On the tr
gular lattice, rigidity percolation occurs forpr'0.6975~site
dilution! and pr'0.66 ~bond dilution! whereas geometric
percolation occurs atpc50.5 ~site! and pc52 sinp/18
'0.3473~bond!. The range of concentration over which r
gidity is entropic is therefore much greater for bond diluti
than for site dilution and one might expect that the d
would be less influenced by the proximity of the rigidi
percolation critical point. This effect is even more pr
nounced on the square lattice: The energy of a square
work is unchanged by an infinitesimal simple shear, i.e.,pr
51.0. Therefore, over the entire range of concentration
>p.pc'0.592 77@9# a nonzero shear modulus is due
entropy.

Since these systems are two dimensional, they also h
the propertyt'n and therefore the present simulations a
again unable to distinguish between the aforementioned
tential exponent equalitiesf 5n and f 5t. Partly because of
this ambiguity, we have also carried out molecular dynam
~MD! simulations for diluted simple-cubic lattices. In thre
dimensions,n'0.879@10# whereast'2.0 @11#. Therefore, it
should be possible to rule out one of the aforemention
exponent equalities. As well, the simple-cubic lattice sha
with the square lattice the propertypr51.0 and there is
therefore a considerable range of concentrations 1.0>p
.pc'0.31 over which rigidity is entropic in origin.
3129 © 1999 The American Physical Society
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3130 PRE 60M. PLISCHKE, D. C. VERNON, B. JOO´ S, AND Z. ZHOU
Since simulations of relatively small systems are in
pable of producing unambiguous conclusions on issues s
as universality classes, we have also carried out renorma
tion group calculations on a number of regular fracta
These structures are designed to model the geometry o
backbone of the percolating cluster nearpc @12–14#. All of
these calculations support the conclusionf 5t.

The structure of this article is as follows. In Sec. II w
describe the models and computational procedures. Re
of the simulations are presented in Sec. III and a descrip
of the renormalization group calculations follows in Sec. I
Several experiments done on disordered materials are
cussed in Sec. V. We conclude with a brief discussion
outlook for future work in Sec. VI.

II. MODEL AND COMPUTATIONAL METHODS

The three systems simulated consist of particles tethe
to each other through the potential energy

V~r i j !5
1

2
k@ ur i2r j u2r 0#2, ~2.1!

where, in the undiluted casep51, the verticesi, j label
nearest neighbor sites on a square, triangular, or sim
cubic lattice with equilibrium spacing ofr 0. In the site-
diluted system at concentrationp only the remaining neares
neighbor pairs interact with potential energy~2.1!; bond di-
lution implies setting a fraction of the nearest neighbor int
actions to zero. Since only nearest neighbors interact,
there are no hard core repulsions, these models are~in the
two-dimensional case! phantom rather thanself-avoiding
membranes in the language used to describe tethered m
branes@15#. The implication is that, even with only two de
grees of freedom per particle, these systems would crum
in order to increase their configurational entropy if t
boundaries of the nets were not fixed@16#. This is relevant
because it implies that even an undiluted square net, w
every particle at its ground state position, is effectively un
entropic tension whenTÞ0. It is well known that square
lattices under tension~at T50) have a nonzero shear mod
lus @17# whereas at zero tension they are soft. Thus it is
surprising that our finite-temperature simulations yield
nontrivial shear modulus for both diluted and undilut
square lattices.

To obtain the shear modulus, we have carried out mole
lar dynamics simulations for both systems. For the triangu
networks, we imposed a pure shear deformationLx→(1
1e)Lx , Ly→(12e)Ly on the computational box. Thi
transformation preserves the area of the cell to first ordere
and within linear elasticity theory for isotropic materials, t
shear modulus is given by

m5
pxx2pyy

4e
. ~2.2!

Here pxx and pyy are the diagonal elements of the press
tensor which are easily calculated in a MD simulation us
the virial theorem. In practice, we have taken both posit
and negative valuese560.005 for each sample and ave
aged the results over both simulations. Periodic bound
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conditions were used throughout and as an initial conditi
all particles were affinely displaced from their equilibriu
positions. The bulk of these constant energy simulatio
were carried out for mean temperatures of bothT
50.005kr0

2/kB andT50.001kr0
2/kB for pL2 particles withL

ranging from 16 to 128 andp in the entropic regime 0.66
.p.0.3473. For a givenp, the fluctuations from sample to
sample of the shear modulus are very substantial an
proved necessary to average over many realizations to ob
well-converged results. For the smallest (L516) samples,
and the lowestp, 60 realizations averaged over both positi
and negative shears were used, while for the larger sam
at highp, as few as ten realizations were required.

Since systems with the symmetry of the square or simp
cubic lattice are not isotropic solids, the elastic constant g
erning the pure shear deformation used above is not the s
modulus — the symmetry of a square does not require th
elastic constants to be equal. For these systems, we
instead imposed a simple shear deformation by shifting
boundaries of the computational box toxmin(y)5ey,
xmax(y)5ey1Lr 0 where the undeformed box is a square
size Lr 03Lr 0 or cube of volume (Lr 0)3. In this case, the
shear modulus is given by

m5
@pxy~e!2pxy~0!#

e
, ~2.3!

wherepxy is the off-diagonal element of the pressure tens
In this equation, we have subtractedpxy(0), which repre-
sents the frozen stresses for a given realization of the di
der. Clearly, this quantity is zero by symmetry forp51 and
should average to zero even for diluted lattices. However,
a finite number of samples, convergence is much more ra
if these frozen stresses are subtracted sample by sample
these systems, we carried out Brownian MD@18#, primarily
at a temperatureT50.01kr0

2/kB with a time step dt
50.016Ak/m and a deformation parametere50.05 which is
still in the linear regime. For the square lattice, the samp
ranged in size fromL516 to L5128 and concentration
from p51 to p50.595. For the simple-cubic lattice, w
were able to simulate systems of size 8<L<32 for concen-
trations 0.315<p<1.0. In the next section, we describe th
results obtained.

FIG. 1. Probabilityf perc(p) that the largest cluster percolates
both directions on site-diluted square lattices as a function of oc
pation probabilityp. The lines are a guide to the eye. The thr
curves intersect very close to the percolation probabilitypc

50.592 77 . . . .
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It is interesting to note that if the shear modulus is entir
of entropic origin, as we expect it to be in the square latt
following the arguments given at the beginning of this s
tion, thenm5pxx . Within computational error, we have ob
served this to be the case forp close to the percolation
threshold.

III. RESULTS

For systems of the size that we are able to simulate, fin
size effects are quite important. This is illustrated in Figs
and 2 where we have plotted the probabilityf perc(p) that a
spanning cluster exists as a function of the site occupa
probability for square and simple-cubic lattices. In the th
modynamic limit, this function is a step functionf perc(p)
5u(p2pc) and its departure from that form is an indicat
of the extent of finite-size effects.

In Fig. 3 we show the raw data for the shear modulus a
function of p for the bond-diluted triangular lattice, and i
Figs. 4 and 5 we show the same data for site-diluted squ
and simple-cubic lattices. The finite-size effects are clea
evident, especially forp'pc . The reader might wonde
whetherm(p,L→`)→0. As in the case of the site-dilute
triangular lattice@5#, the data when plotted as a function
L21 clearly show a finite intercept atL2150 for all p
.pc .

FIG. 2. Probability that the largest cluster percolates in all th
directions on site-diluted cubic lattices. We estimate thatpc

'0.310.

FIG. 3. Shear modulus as a function ofp for bond-diluted tri-
angular lattices and 16<L<128. The simulations for this data wer
done at a mean temperature ofT50.005kr0

2/kB .
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As mentioned in the Introduction, the shear modulus
two-dimensional randomly diluted networks behaves
m(p,T);(p2pc)

f with f '1.3, a value that is close to bot
n (4/3) and the conductivity exponentt ~1.3!. A rough esti-
mate of the exponentf in three dimensions can be obtaine
by fitting the raw data to the formm5a(p2pc)

f with a and
f fitting parameters. For the simple-cubic lattice, we takepc
50.31, the value obtained from the intersection of the cur
in Fig. 2. This type of fit yields estimates of the exponenf
52.060.2 when the data forL516 andL532 are used. The
solid line in Fig. 5 is a plot of (p2pc)

2 and it is clear that the
data are consistent with this functional form.

For the case of the two-dimensional lattices, it is nec
sary to carry out a finite-size scaling analysis to obtain
reasonably accurate estimate of the exponents. The finite
scaling ansatz reads

m~p,L !5L2 f /nF„L/j~p!…5L2 f /nF̃„L~p2pc!
n
…,

~3.1!

where the scaling functionF̃(x);xf /n for x@1 and F̃(x)
→const asx→0. In this expression,pc is taken to be the
percolation concentration of the infinite system. If this ans
holds, a plot ofL f /nm as a function ofL(p2pc)

n should
produce a collapse of the data for different values ofL. Such
plots are shown in Figs. 6–8 for the three systems inve
gated here. In all three cases we obtain a very respect
collapse of the data. Although all three data sets have c
siderable error bars associated with the estimates ofm there
are no clearly discernible trends and we conclude that in
thermodynamic limitm;(p2pc)

f with f '1.33 in two di-

e FIG. 4. Shear modulus as a function ofp for site-diluted square
lattices and 16<L<128.

FIG. 5. Shear modulus as a function ofp for site-diluted simple-
cubic lattices and 8<L<32.
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mensions andf '2.0 in three dimensions. The deviation
the data forL516 in Fig. 6 from a straight line at highp is
due to the crossover to the energetically rigid region, wh
begins atpr'0.66. The last point in theL516 data corre-
sponds top50.65, almost at the critical point, and som
realizations of the diluted lattice have significant rigid r
gions at lowerp, resulting in the increase in shear modul
observed. There is no energetically rigid region in either
square or simple-cubic lattice, so this effect does not app

To remove the effects of the energetic rigidity in the t
angular lattice, we plot the entropic contribution to the sh
modulus in Fig. 9. This is given by@6#

ms5TS ]m

]T D
p,L

. ~3.2!

The higherp values of theL516 data now fall closer to the
other data, as expected.

Our data are therefore consistent with the conjecture o
Gennes@7# that the random resistor network and the dilut
central-force network are in the same universality class —
marked contrast to the behavior of the zero-temperature
gidity near the rigidity percolation point. In the next sectio
we provide further evidence for this conclusion by constru
ing a renormalization group transformation for tw
dimensional networks.

FIG. 6. Finite-size scaling plot of the data of Fig. 3. Here w
have usedn54/3, pc50.347 30, andf 5n.

FIG. 7. Finite-size scaling plot of the data of Fig. 4. Here w
have usedn54/3, pc50.592 77, andf 5n. The solid line is a plot
of @(p2pc)L# f /n for L532.
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IV. RENORMALIZATION GROUP

There have been a number of approximate renormal
tion group ~RG! calculations for random resistor network
near the percolation point. Early work by Stinchcombe a
Watson@19# and Bernasconi@20# was based on real spac
RG transformations for small finite clusters. These a
proaches produced two recursion relations, one for the p
ability p that a renormalized bond would be occupied a
one for the distribution of conductivitiesP(s). Thus, one
obtains both the correlation length exponentn and the con-
ductivity exponent t, both to respectable accuracy@20#.
Later, a different approach was developed based on the
that the geometry of the system at percolation can be m
eled quite accurately by a regular fractal, such as a Sierpi
gasket@12#, modified Koch curve@13#, or other hierarchical
lattices@14#. Since these hierarchical lattices are expected
be relevant only at the percolation point, there is no recurs
relation for the probabilityp and generically only a linea
relation betweens8 ands. Using the value of the~presumed
known! correlation length exponentn, one can then calculate
the exponentt. In d52, one obtains a best estimatet
'1.322 @14#, in very good agreement with Monte Carl
simulations.

If one replaces the resistors on the network with a se
Gaussiansprings, i.e., springs with Hamiltonian

H~ i , j !5bH5K$r i2r j%
2 ~4.1!

FIG. 8. Finite-size scaling plot for the simple-cubic lattice wi
pc50.31, n50.879, andf 52.0. The solid line shows the expecte
asymptotic form of the scaling function.

FIG. 9. Finite-size scaling plot of the entropic contribution
the shear modulus of a bond-diluted triangular lattice, in arbitr
units.
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between any pair of sites connected by a resistor, one
produce a renormalized value of~distribution for! K by inte-
grating out some of ther i ’s. This recursion relation is exactl
the same as the recursion relation for the conductivities,
we arrive at de Gennes’s conclusion@7# by a different route.
However, the technical flaw in de Gennes’s argument is
it breaks down for arbitrary central-force fields. For a gene
potential energyV(r i j ), including Eq.~2.1!, the equations of
motion do not separate and the formal equivalence betw
Kirchhoff’s laws and mechanical equilibrium is lost.

Because of this difficulty, we have examined how t
non-Gaussian Hamiltonian~2.1! varies under renormaliza
tion for some of the regular fractals mentioned above. H
we report results only for the hierarchical lattice of Ref.@14#
which is sketched in Fig. 10. We defineW0(r i j )
5 exp$2H0(r i j )% where

H0~r i j !5bV~r i j !5K@ ur i2r j u2r 0#2, ~4.2!

where we taker 051 andK51 and wherei, j are any pair of
nearest neighbor vertices on the highest generation of
hierarchical lattice. Integrating overr2 , r3, and the other
coordinates at the ends of the smallest loops in the hig
generation produces the next highest generation with a B
zmann weightW15 exp$2H1% describing the interaction be
tween the remaining particles. This procedure can clearly
continued indefinitely. However, as is evident from Fig. 1
one step is sufficient. In this figure, we show the results o
single such numerical integration. Plotted together w
W0(r ) is W1(r ), normalized to unity atr 50. The striking
feature of these curves is that the equilibrium length sc
r 051 of the starting Hamiltonian has completely disa
peared: The solid curve is a fit of the functionW1 to a Gauss-
ian peaked atr 50. The fit is essentially perfect, leading

FIG. 10. Three generations of the hierarchical lattice of@14#.

FIG. 11. One step in the renormalization of the HamiltonianH0.
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the conjecture that a general central-force potential, on
hierarchical lattice, under renormalization iterates toward
Hamiltonian~4.1! and therefore that the rigidity problem a
finite T and the random resistor problem are indeed in
same universality class. The same results are obtained fo
other regular fractals mentioned above.

It is interesting to carry out a similar calculation for clu
ters that are more characteristic of diluted latticesabovethe
rigidity percolation point. In Fig. 12 we show one of th
bond configurations that occurs in the real space RG ca
lation of Ref.@20#. Integrating out the coordinatesr2 andr3

in W0, we obtain the renormalized Boltzmann weig
W1(r14). This is shown in Fig. 13 together withW0(r ) for
K5k/2kBT55.0. What is notable is the appearance of a s
ondary peak atr 15A3r 0. The two peaks are due to the fa
that the set of springs with the topology shown has two p
sible configurations with all lengths equal. The first, sho
in Fig. 12, has vertices 1 and 4 separated byA3r 0. However,
the configuration in which vertex 4 is on top of vertex 1 al
has all spring lengths equal. The peak atr 150 is due to this
configuration. AsT is lowered orK increased, the secon
peak becomes more pronounced, and at zero tempera
contains the entire Boltzmann weight: The phase space
the problem separates into two regions corresponding to
two configurations of the set of springs, and if the syst
starts in the extended configuration, it must remain in it. O
interpretation is that at zero temperature, forp.pr , the flow
in a RG transformation is towardp51 where structures suc
as that of Fig. 12 dominate. At the same time, the charac
istic lengthr 0 which represents the ground state lattice co
stant flows towardbr0 whereb is the change in length scal
due to the RG transformation@21#.

FIG. 12. Multiply connected cluster used in the real space ren
malization group calculation of Ref.@20#.

FIG. 13. Original Boltzmann weightW0 and renormalized
weight W1 for the transformation of Fig. 9.
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V. EXPERIMENTS

A number of experiments have been done to measure
elastic moduli of different amorphous solids, with varyin
results. All of these experiments are done with thre
dimensional samples and therefore the prediction that
exponentf '2.0 is what is being tested.

The best agreement with the predictions discussed he
found in an experiment done on a gel formed from tet
ethoxysilane~TEOS! in a solution of water and ethanol@22#.
These authors foundf 52.060.1, as well as other exponen
reasonably close to those of conductivity percolation. Th
exponents were found only close to the gelation point;
from this point, a crossover to the vector elasticity expone
was seen. In this experiment, the time from the gelation tr
sition was measured, andp was taken to be proportional t
this time. This assumption is supported by another exp
ment showing that the degree of condensation is proportio
to time near the gelation transition@23#.

This good agreement is encouraging as the silica gel s
ied is a soft material, where the entropic effects are likely
be important. Also, the gelation transition and the struct
of the gel are reasonably well described by percolat
theory.

Another experiment, done on a porous ceramic mate
@24#, also found reasonable agreement with our predictio
In this experiment, the conductivity and elastic exponents
a set of porous ceramics of lead zirconate-titanate prep
by tape casting and sintering were determined. Since b
conductivity and elastic exponents were measured, the a
ogy between the two can be tested in the same material.
conductivity and Young’s modulus were measured as a fu
tion of the volume fractionv, which is taken to correspond t
p in the percolation problem. The conductivity exponent
was found to be 2.2760.25, and the elastic exponent wasf
52.260.2. The fact that the conductivity and elasticity e
ponents are similar is encouraging, as is the fact that th
quantities vanish at the same critical volume fraction.
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VI. DISCUSSION

In this article we have presented compelling evidence t
at nonzero temperature the shear modulus~and presumably
other moduli! of diluted central-force networks remain finit
for all concentrations above the geometric percolation c
centration. This is true even for energetically soft lattic
such as the square and simple-cubic lattices for which
rigidity percolation concentration isp51. Strictly speaking,
rigidity percolation is therefore aT50 effect although con-
siderable softening of the elastic constants nearpr does oc-
cur at finite temperature.

We have also presented evidence that the critical beha
of the moduli at the percolation point is the same as tha
the conductivity of a random resistor network of the sa
dimensionality, thus lending support to a conjecture of
Gennes@7#.

Central-force networks are somewhat special from an
ergetic perspective since the inclusion of bond-bend
forces reduces the rigidity percolation point to the geome
percolation point. The exponentt that characterizes the criti
cal behavior of the elastic moduli~at T50) of systems with
bond-bending forces is also known to be significantly larg
than that of random resistor networks@8#. However, at finite
temperatures we expect that these systems will have
same entropic contribution to the free energy as central-fo
networks. Since the exponentf that characterizes the beha
ior of entropic elasticity is smaller thant we conjecture that
entropic effects will dominate and that the behavior found
the calculations presented here is in fact general and in
pendent of microscopic detail. However, this remains a s
ject for future investigation.
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