
Modelling Simul. Mater. Sci. Eng.7 (1999) 383–395. Printed in the UK PII: S0965-0393(99)02926-5

Convergence issues in molecular dynamics simulations of
highly entropic materials

Z Zhou and B Jóos†
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Abstract. When studying the structural properties of highly entropic materials, the usual criteria
for the choice of the time step, the stability of the energy and the pressure, are not always appropriate
as they may lead to a time step which is an order of magnitude too large. Two different methods,
the stress–strain and equilibrium fluctuation methods, are used to calculate the shear modulus and
compared to illustrate this point.

1. Introduction

The molecular dynamics (MD) simulation method, which solves the classical equations of
motion numerically for a set of particles, has been widely used to probe both the microscopic
and the macroscopic properties of materials.

One of the most important issues in MD is the rate of convergence. The equations of
motion are solved by a discretized integration. The choice of the integration step, or time step
δt must be small compared to the time scale of microscopic changes in the system. On the
other hand, the simulation time which is finite by essence, must be long enough to sample
most of the phase space. As a consequence, choosing a time step that is too small is inefficient
since it leads to very long computational times. To choose the most efficient time step and time
duration in a simulation, the most common approach is to monitor the variations with time
of some of the more easily obtained macroscopic quantities, such as the energy, pressure and
lattice parameters. Fortunately, in many systems such as crystals, gases and simple liquids,
these quantities, as well as other physical quantities of interest, settle down very fast, so the
optimum time step and time duration can be determined without difficulty. However, whether
such an approach is also appropriate for inhomogeneous soft systems, especially those that do
not have a well defined ground state configuration, is not clear.

We present in detail one example where the usual procedures lead to a time step that is an
order of magnitude too large to faithfully follow the fluctuations in the system. The system
in question is a crosslinked polymer melt (CPM). Its shear modulus was calculated using two
different methods. In the first method the shear modulus is obtained from the changes in the
stress (or pressure) tensor. We call this a macroscopic measurement and label itµss. In contrast,
in the second method, the shear modulus is extracted from the microscopic fluctuations in the
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system. We label this second measurementµef. The effect of the choice of the time step
on the simulation of the system’s properties will be investigated by comparing the agreement
between the two methods.

Requiring that the results from both methods converge to the same values is suggested as
a means of selecting the optimum time step.

We also see in these systems a noticeably different convergence rate for quantities of
different order of the derivative of the free energy.

Similar results are found for another system, a diluted two-dimensional (2D) central force
network.

2. Calculation of the shear modulus

Here, we present a brief description of the two methods used to obtain the elastic constant
for pure shear deformation. This is a volume preserving deformation, where the system is
elongated in one direction, and appropriately compressed in the other two directions. The type
of deformation observed when rubber is elongated. The first method is the stress-strain method
(SSM). The modulus for pure shear is obtained from the changes in the applied stress tensor
Sαβ (negative for compression) under a strain represented by the Lagrangian strain tensorη [1]

µss≡ (S11(η)− S11(0))− (1/3)tr(S(η)− S(0))
2η11

. (1)

Note that equation (1) requiresSαβ(0) which may be anisotropic. What is actually calculated
is

µss≡ S11(η)− (1/3)trS(η)
2η11

(2)

which assumes thatSαβ(0) = 0. The off-diagonal elements ofSαβ(0) are small and of no
concern. There are, however, due to finite size effects non-negligible diagonal elementsSαα(0).
The simplest way to eliminate these frozen-in stresses in the undeformed sample is to perform
the deformation of every sample in the three Cartesian directions in turn, for each crosslinking
[1], as we did in this work. The deformation of a sample in one Cartesian direction is, therefore,
called a realization and every sample yields three realizations.

The second method is the equilibrium fluctuation method (EFM) which calculates directly
the elastic constants from the microscopic fluctuations of the system over time without the need
to impose deformations. All elastic constants are obtained from a single run. We have chosen
the deformation carefully so that the systems remain in the linear stress-strain regime where
the elastic constants are constant. Therefore, the deformed and undeformed states should yield
the same results. By doing so computational time is greatly reduced since we can calculate
bothµef andµss simultaneously in the deformed state. This was done for most samples in
this work. In the EFM method, the modulusµef for pure shear for a three-dimensional (3D)
system is given by [1]

µef = 1
6[2c11− c12− c13− c21− c31 + 1

2(c22 + c23 + c32 + c33)] (3)

where thecαβ are the elastic stiffness coefficients [2, 3] in the condensed Voigt notation. The
elastic stiffness coefficients are defined by

Sαβ(η) = Sαβ(0) + cαβστ ηστ (4)

for a system without internal torques [2–4].
Correspondingly, for a 2D system under an area preserving deformation, the shear modulus

can be found from

µss≡ S11− S22

4η11
(5)
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and/or

µef = c11 + c22− c12− c21

4
. (6)

For a central force system the isothermal elastic stiffness coefficients can be calculated
from [2]

cαβστ = 1
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The stress tensor is given by

Sαβ = 1

V

〈∑
i<j

1xα(ij)1xβ(ij)
8′

r

〉
− NkBT

V
δαβ (8)

where〈. . .〉 indicate configurational averages andδ(A) = A−〈A〉,1xα(ij) andr are defined
as

1xα(ij) = xα(i)− xα(j) (9)

r2 =| 1xα(ij) |2 . (10)

x represents the coordinates ofN particles,8 the interparticle interaction potential andV the
volume of the system. The first term (positive) in equation (7) is referred to as the ‘Born term’.
In the absence of stress, and at zero temperature, it is the only term in a homogeneous system.
The second term (negative) is the ‘fluctuation term’. The third term is the ‘stress term’ and the
last is sometimes called the ‘kinetic term’ [5]. We should emphasize that the volumeV which
appears in equations (7) and (8) must be the current (stressed) one [2], instead of the volume
of the stress-free state. The dominant terms are the first two: the Born term is positive while
the fluctuation term is negative.

The EFM provides a way to obtain all elastic constants from a single run and has the
advantage that no actual deformations are made, so no symmetry breaking occurs. It should
be very accurate since the elastic constants are obtained from averages over all microscopic
fluctuations in the system, in contrast with the SSM which averages over the macroscopic
fluctuations of the finite sample. The EFM has been successfully applied to crystalline materials
where there is a well defined ground-state configuration in the system. However, for materials
which are intrinsically inhomogeneous with a large number of configurations close in energy,
such as glasses, metallic or polymeric and the CPM, it is not at all clear how well such a method
will work.
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3. The systems studied

3.1. The crosslinked polymer melt

We focus on the crosslinked polymer melt (CPM), the simplest model for rubber, because it has
not only a large number of possible configurations of equal or very similar energy, but it is also
a good example of a special class of materials which derive their elasticity not from potential
energy changes, but from changes in the entropy. In a process known as vulcanization [6],
crosslinks between molecules on different polymers in the melt convert the system from a fluid
to an amorphous solid with non-zero shear modulus. This solid phase is of interest because
of its remarkable elastic properties which are of technological and biological relevance. The
onset of rigidity is itself an interesting problem because of its connection to percolation and
the predictions that have been made by de Gennes on the variation of the shear modulus with
crosslink density [7]. The vulcanization transition has also received some recent attention with
the development of a replica theory by Goldbart and co-workers [8]. A recent review of these
topics can be found in [9].

In a recent collaborative work, in which we were involved [1], the shear modulus of CPMs
was calculated using the SSM. These were very time-consuming calculations. Averages were
made to converge using many realizations, which in spite of lengthy simulation times did not
individually converge. In the same paper [1], it was also reported that the EFM [2] failed to
measure a finite shear modulus even after a million time steps, when the SSM showed a rigid
solid. This discrepancy could not be explained since both methods ought to give the same
answer. In this paper we will clarify this problem.

Our model of polymers is the same as that used in an extensive set of calculations by
Kremer and Grest [10]. In their model, all particles in the system interact through a purely
repulsive truncated Lennard-Jones potential

8LJ(rij ) =

 4ε

[(
σ

rij

)12

−
(
σ

rij

)6

+
1

4

]
rij < 21/6σ

0 rij > 21/6σ

(11)

which ensures self-avoidance. On a given chain, there is an added attractive potential [11]
between nearest neighbours
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kR2

0 ln

[
1−

(
rij

R0

)2
]
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(12)

with R0 = 1.5σ andk = 30ε/σ 2. The combination of these two potentials prevents polymers
from passing through each other.

We denote the number of polymers in the system byM, the number of monomers on each
chain byN and the crosslink density, i.e. the number of crosslinks per chain, byn. In this
paper, we focus on the caseM = 100,N = 10 andn = 2 (the critical density of rigidity
nc ≈ 1.01 [9, 12]). With this choice of polymer length, there will be few entanglements since
the entanglement length of our system is of the order of 35 monomers [10]. Entropic effects
come from collisions and constraints in the vibrational amplitudes of the chains. The density
of the system isρσ 3 = 0.85. The simulations were done at a temperaturekBT/ε = 4.0 with a
constant temperature molecular dynamics code using a standard damped force velocity Verlet
algorithm [13, 14] and periodic boundary conditions.

The polymer melt was first equilibrated without crosslinks. The crosslinks were then
randomly placed as reported in [1]. Crosslinking between nearest neighbours on the same
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chain was not permitted nor was there more than one link between any pair of particles allowed.
To avoid having the system trapped in metastable states, we submitted it to a heating-quenching
process. The unit of time wast0 =

√
mσ 2/ε and three values of the time stepδt1 = 0.005t0,

δt2 = 0.0025t0 andδt3 = 0.00125t0 were used in the work. When using the last two time
steps, we first heated the system up tokBT/ε = 8.0, equilibrated it for 25 000 time steps
and then annealed it down tokBT/ε = 4.0 in 50 000 time steps. Most of the samples were
again equilibrated for 50 000 time steps before calculating the quantities of interest. We also
equilibrated several samples up to 200 000 time steps but found no significant effect on the
results. Barskyet al reported a relaxation time of 0.05t0 for the pressure tensor obtained from
its autocorrelation functions (see figure 2 in [1]). The relaxation time forµss measured from
the starting initial configuration is, however, of the order of 5t0 as shown in figure 3 of [1].
This is in accordance with what will be shown in section 4.1. 5t0 corresponds to 2000 and
4000 time steps forδt2 andδt3, respectively. Barsky and Plischke have also shown that there
is no evidence of ergodicity breaking or sectioning of phase space in this system [15].

The deformation of the MD cell is done at a strain rate of 10−4(λα − 1)Lα/δti , from
Lα → λαLα, whereLα with α = 1, 2 and 3 are the lengths of the cell along the three
Cartesian coordinate axes. We choseλ1 = λ, λ2 = λ3 = 1/

√
λ so thatλ1λ2λ3 ≡ 1, i.e.

we applied a pure shear or volume preserving deformation (η11 = λ − 1). We tookλ = 1.1
for most realizations. The deformation has to be large enough that the change in the stress
tensor can be well resolved, but small enough to remain within the linear stress-strain regime
(equation (4)). We found thatµ increases rapidly only forλ > 1.5, which gives us a large
workable interval of deformation.

3.2. The two-dimensional diluted central force network

The other system discussed is a 2D diluted central force network (DCFN), which has been
used to show that the onset of mechanical rigidity occurs at a concentration of bonds
and sites which is significantly larger than the percolation threshold [16]. It is simply a
triangular network of springs of equal equilibrium lengthr0 which is diluted by removing sites
randomly. In this system, the nearest neighbours interact via the circularly symmetric potential
Vnn(rij ) = 1

2k(rij − r0)2 and more distant neighbours are non-interacting. For this system,
geometric percolation occurs at a concentration of bondspc = 0.5 and rigidity percolation (at
T = 0) atpr ≈ 0.71. The regime of interest for this study is the intervalpc < p < pr where,
at zero temperature, the system is not rigid, but at finite temperature develops a finite shear
modulus of entropic origin [17].λ was chosen to be 1.001. The reason for choosing such a
small deformation is that we found that at very lowT , λ = 1.05 leads to a considerable (about
10%) discrepancy of bothµss andµss from the exact result for the perfect lattice,(

√
3/4)k, at

zeroT [18]. The unit of time ist ′0 =
√
k/m and the unit of temperature iskr2

0/kB. The size
of the system used to discuss the effect of time steps and time duration is 16× 16 sites.

4. The impacts of the time step and the time duration

4.1. The crosslinked polymer melt

For the crosslinked polymer melt, it was found that in the constant energy ensemble [1, 15]
usingδt1 = 0.005t0 the energy can be stabilized to 1 part in 104 and the average pressure
tensor to 1 part in 103 over the length 6× 105δt1 of a run. Therefore,δt1 was used to calculate
µss and the order parameters [15] for various system sizes. Good convergence results were
obtained [1, 15]. This time step also gives a reasonable behaviour forµss andµef at very high
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Figure 1. The average ofµss andµef of 63 realizations up to 8× 105δt1 against time for CPM
with N = 10,M = 100 andn = 2.

crosslink densityn. For instance, in a system withM = 30,N = 20 andn = 12, we found
thatµef/µss = 0.974 from an average over 10 samples, as was reported in an earlier paper
[1]. However, in that paper [1] we also reported that at a moderaten, µef shows a very poor
behaviour and seems to always tend to zero. This is obviously inconsistent withµss. It raises
the question as to whether the EFM works properly for this kind of material. Note that the
problem is essentially caused by the ‘fluctuation term’ in the EFM which is the more sensitive.
So an accurate calculation of the fluctuations in the system is important.

There are several possible factors that may contribute to the disagreement. For instance,
a deformation of the cell that is too large will lead to a departure from the linear range of the
stress-strain relation so thatµss, the average shear modulus, will not necessarily be equal to
µef, the shear modulus of the deformed state. This source of error can be ruled out because, as
mentioned before, we have a large interval of workable deformations. Finite size effects may
be a possible source of disagreement, because they manifest themselves differently in the two
methods; the SSM is self-averaging whereas the EFM is not. More serious sources of error
are the size of the time step and the length of the run.

First, we found that, with time stepδt1,µssfor most individual realizations did not converge
to a well defined limit up to the completion time. It was, therefore, natural to reduce the time
step to stabilize it. We reduced it first fromδt1 = 0.005t0 to δt2 = 0.0025t0. This improved the
stability of the average energy and pressure tensor to 1 part in 105 and 1 part in 104, respectively.
We then performed simulations withn = 2 on 21 deformed samples (63 realizations) up to
8× 105δt2.

After averaging over all 63 deformed realizations, we obtained the results shown in figure 1.
The averageµss has a small variation and converges well to about 0.308ε/σ 3, but µef is
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Figure 2. The average ofµss andµef of two samples up to 1.2× 107δt2 against time for CPM
with N = 10,M = 100 andn = 5.

obviously smaller thanµss and its time evolution shows no clear trend. Convergence of the
µss for individual realizations did improve also by usingδt2 = 0.0025t0, but they still did not
converge to a well defined limit at the completion time of the run.

To verify the expressions for the EFM and also whether the magnitude of the deformation
is appropriate, we then performed simulations on a rather high crosslink densityn = 5 for two
samples and up to 1.2× 107δt2. At this density the system is quite rigid so thatµef should
agree well withµss if the deformation is small. Figure 2 shows the average results for these
two samples. The two methods basically agree. More samples would improve the agreement,
but it is not necessary to increase the running time.

Returning ton = 2, we ran four samples (12 realizations) up to 8×106δt2, and still found
very poor agreement betweenµss andµef. These 12 long runs show some common features:
(1) after several millionδt2, almost allµss (11 of 12 realizations) converge; (2) after several
millions δt2, almost allµef (11 of 12 realizations) are belowµss; (3) up to the end of the run,
mostµef values (10 of 12 realizations) are very close or below zero and show no clear trend.
A typical example is shown in figure 3. Finally, averaging over all four samples, we found
thatµss converges to 0.295ε/σ 3 after 6× 106δt2, which agrees well with the values obtained
from 21 moderate time samples, 0.308ε/σ 3. However,µef shows no clear trend even up to
8× 106δt2, as shown in figure 4, and has an analogous behaviour as that obtained from 21
moderate time runs (figure 1). This applies to every individual realization, as shown in figure 3.

Therefore, summing up to this point, we find that withδt2, the length of the simulation
runs, the number of realizations, and the magnitude of the deformation play no role in the
inconsistency betweenµss andµef. We then applied the EFM to the undeformed pure melts
(n = 0) running up to 5× 106δt2. The pure polymer melts must be a fluid with a zero shear
modulus. However,µef behaved very poorly again, as can be seen in figure 5(a).
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Figure 3. µssandµef of a typical realization up to 8× 106δt2 against time for CPM withN = 10,
M = 100 andn = 2.

It seemed that the time step was still too large to properly follow the fluctuations in the
system. There is a configuration fluctuation term in the expression ofµef (see equation (7)).
A time step that is too large may lead to non-physical configuration fluctuations which depress
µef. Some parts of the system appear to be constantly in unstable states. Therefore, we reduced
the time step further fromδt2 to δt3 = 0.00125t0 and applied the EFM to the undeformed pure
melts up to 107δt3. Figure 5(b) shows the average ofµef over two realizations. We can see that
µef goes from being greater than one at the beginning to about zero at about 2×106δt3 = 2500t0
and then oscillates toward zero. Individual realizations show the same behaviour but have a
slightly larger oscillation.

The fact that by usingδt3 we gotµef = 0 for every realization of the pure melt provides
strong evidence that the EFM can also work properly for this model system but it requires
a very small time step. Long relaxation times are required due to the viscous nature of the
material. An analogy is the behaviour of viscoelastic materials which under a periodic stress
of frequency higher than some critical value show no deformation. The threshold frequency
corresponds to the inverse of the response time of the substance and the material takes a long
time to equilibrate. A careful preparation of the system can help matters. For this reason we
applied a heating-quenching technique to the system as mentioned in section 2. However, this
also suggests that one should be very careful in explaining the results obtained from moderate
time runs. For example, if we stopped the simulation after 1.6× 106δt3 = 2000t0, we would
conclude that the pure melt has a finiteµef ≈ 0.35ε/σ 3 instead of zero.

Finally we ran four deformed samples (12 realizations) withn = 2 up to 8× 106δt3.
Figure 6 shows the average results over these four samples withµef ≈ µss = 0.280ε/σ 3.
The disagreement betweenµss andµef is greatly reduced butµef still converges considerably



Convergence issues in molecular dynamics simulations 391

Figure 4. The average ofµss andµef of four samples up to 8× 106δt2 against time for CPM with
N = 10,M = 100 andn = 2.

slower thanµss. We can expect that more samples will improve the agreement further but
longer times are of little help. We ran one realization up to 3.2× 107δt3, as shown in figure 7,
but this individualµef is not yet stable even after such a long time. This is similar to what is
observed forn = 5 with time stepδt2. It is reasonable to think that a further reduction in the
time step would have a larger impact on the convergence ofµef than increasing the length of
the runs with the current time step. The reduction in time step seems to also have an effect
onµsswhich decreases somewhat with decreasing time steps (from 0.308ε/σ 3 to 0.280ε/σ 3),
but more runs would be required to confirm this.

There is a clear correspondence in this system between the convergence rate of a quantity
and the order of the derivative of the free energy upon which it depends. We found that for
an individual realization, the energy settles down to 1 part in 105 within 104δt3, the pressure
tensor to 1 part in 104 within 5× 104δt3. In contrast,µss settles down to 5 parts in 102 within
2× 106δt3, as shown in figure 7, butµef has still not converged at 107δt3. The pressure is the
first derivative of the free energy,µef corresponds to the second derivative of the free energy
andµss is somewhere between the first and the second derivative of the free energy.µss is
obtained from a finite deformation and, therefore, is an average rate of stress response with
respect to strain from the initial to the final state.

4.2. The two-dimensional diluted central force network

For the DCFN described in section 3.2, similar results are found. In studies of melting of the
perfect lattice, with a cut-off harmonic potential known as the piecewise-linear restoring force
potential, Combs [19] used a time step 0.1t ′0. In work on vacancy annealing kinetics [20, 21],
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Figure 5. (a) The variation ofµef up to 5× 106δt2 against time for pure polymer melts,N = 10,
M = 100 andn = 0; (b) the variation of averageµef over two realizations up to 107δt3 against
time for pure melt.

and membrane rupture [18] on the same system, we used, respectively, 0.1 and 0.05t ′0. The
behaviour of these systems in all respects was perfectly reasonable. In the DCFN at high
density,δt = 0.05t ′0 still works well. For instance, at densityp = 0.85 andT = 0.005kr2

0/kB,
the agreement betweenµss andµef from 30 samples up to 106δt is almost perfect, and is
very similar to the result of CPM at high crosslinking density. However, at low density
where the entropy is significant,δt = 0.05t ′0 was clearly too large, yielding at the same
temperature as before depressedµss values, sometimes even negative values, and enhanced
µef values, the reverse of that observed in the CPM. For instance, at the densityp = 0.6,
usingδt = 0.05t ′0 we found thatµef > 0.05 butµss < −0.06. With δt = 0.005t ′0 up to
106 time steps and an average over 150 samples, the agreement between the two calculations
is still very poor, andµss andµef even have different trends, as shown in figure 8(a). The
same poor agreement and different trends betweenµss andµef were observed for this system
with δt = 0.01t ′0 up to 106 time steps and an average over 100 samples. In this system the
ground-state configuration for a given sample is well defined, and so not the source of the
error. Good agreement was obtained whenδt = 0.0016t ′0 was used, as shown in figure 8(b),
and after an extrapolation usingµef(t) = µef(∞) + (a/t), µss(t) = µss(∞) + (a′/t), we
foundµef = µef(∞) = 0.00865k andµss = 0.00878k. Agreement betweenµef andµss

improves with increasing numbers of samples. In a recent letter on rigidity near the threshold
δt = 0.0016t ′0 was used [17].

These results add weight to our findings on the crosslinked polymer melt showing that the
difficulties encountered there are not unique. In the DCFN we found thatµef goes down but
µssgoes up when the time step is reduced, the opposite behaviour to that observed in the CPM.
At δt = 0.01t ′0 up to 106 time steps and an average over 100 samples, eitherµef or µss does
not converge well but we see thatµef > 0.01k andµss< 0.0075k. At δt = 0.005t ′0 up to 106
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Figure 6. The average ofµss andµef of 12 realizations up to 8× 106δt3 against time for CPM
with N = 10,M = 100 andn = 2.

Figure 7. µssandµef of a typical realization up to 3.2×107δt3 against time for CPM withN = 10,
M = 100 andn = 2.

time steps and an average over 150 samples,µss does not converge well andµss < 0.0075k
as shown in figure 8(a). However,µef converges to the extrapolated value≈ 0.010k; this is a
significantly larger value than that found withδt = 0.0016t ′0.
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Figure 8. (a) The average ofµss andµef of 150 samples up to 106 time steps against time for
site-diluted triangular networks atp = 0.6. The time step is 0.005t ′0. (b) The average ofµss and
µef of 260 samples up to 2× 106 time steps against time for site-diluted triangular networks at
p = 0.6. The time step is 0.0016t ′0.

5. Conclusions

As expected, the two methods used to calculate the elastic constants can be made to agree by
decreasing the time step. The EFM method measuring fluctuations is, in particular, sensitive to
the time step for the system without a well defined ground-state configuration, the crosslinked
polymer melt (CPM). The minimum acceptable time step in this kind of system is smaller than
for the stress-strain method. This is clearly illustrated by our results.

Whichever method is more efficient and stable depends on the system studied. However,
good convergence should not be mistaken with accuracy, in particular, when individual
realizations do not converge. The agreement of the two methods and properly simulated
fluctuations increase confidence in the final results.

We conclude by stating that the usual criteria for the choice of the time step, i.e. the
stability of the energy and the pressure are not always sufficient to ensure a faithful simulation
of the properties of a system, especially if fluctuations are large, as is the case in crosslinked
polymer networks (CPM) close to the onset of rigidity. When studying quantities which are a
function of the fluctuations or dynamical properties, the proper time step may be one order of
magnitude smaller than the one usually chosen. Requiring agreement between a macroscopic
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measurementµss and a microscopic average, obtained through a fluctuation-dissipation type
formulaµef can become a new convergence criteria for structural properties.

Note added in proof. We looked for ergodicity breaking in DCFN using the method described in [22, 23] but did not
find any. The critical time steps are sensitive to the method used to maintain the temperature at a constant.

Acknowledgments

This work has been supported by the Natural Sciences and Engineering Research Council of Canada. Stimulating
discussions with Michael Plischke are gratefully acknowledged.

References

[1] Barsky S J, Plischke M, Joós B and Zhou Z 1996Phys. Rev.E 545370
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