PHYSICAL REVIEW B VOLUME 56, NUMBER 6 1 AUGUST 1997-lI

Mechanisms of membrane rupture: From cracks to pores
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The rupture kinetics under isotropic tension of solid membranes with central-force interactions are studied as
a function of temperature and the range of the interparticle interactions. At zero temperature, rupture occurs
homogeneously at the mechanical instability point. At low temperature, rupture is heterogeneous, mainly by
the nucleation of a single crack, branching out into several cracks. This is accompanied by a homogeneous
expansion, and the critical rupture tension drops very rapidly with increasing temperature. At high temperature,
rupture involves the nucleation of dislocation dipoles, merging to form pores, and the critical rupture tension
varies almost linearly with temperature. The temperalyreseparating these two regimes, is higher the shorter
the range of interaction, for potentials of equal depth. We find that under isotropic tension, the crack favors the
path along the direction with lowest surface energy, in contrast to that observed under uniaxial tension. The
identification of the rupture point is facilitated by the fact that the elastic constants, in particular the bulk
modulus, usually show precursor effects. Transverse fluctuations can play an important role as evidenced by a
one-dimensional model of self-assembled particles in a ring, pressurized by an ideal gas. These fluctuations are
dominant at high temperature, where the rupture pressure is only weakly dependent on temperature.
[S0163-182607)02330-9

I. INTRODUCTION Most of the work is on two-dimensiond2D) flat mem-
branes which do not have a third degree of freedom. To
Under the application of increasing stress, a membrangxamine the effects of out-of-plane fluctuations, we intro-
will eventually rupture. The rupture of membranes has beefluce a simple model of self-assembling particles which we
extensively studied experimentally especially for biologicalUSe O consider one-dimension@D) closed membranes
membranes:® But the kinetics are not well understood. Pre- (two-dimensional vesiclgs These exhibit two very distinct

vious existing theoretical studies have concentrated usuallgfg'mes of rupture. The high-temperature behavior is in par-

: X X cular interesting with the critical rupture pressure having
on the mechanical forces ignoring the effects of tempera”ttIe dependence on temperature.

7y8 . .
ture. Recgntly,_pores, which are a common feature in the The paper is organized as follows. We first introduce the
rupture of biological membranes, have been the focus of WQodel of the 2D flat membrandSec. 1). Section Il dis-

. . . . 0
statistical-mechanics studiés: cusses, for these systems, mechanical instability criteria,

In contrast to bulk materials where the usual conditionsyhjle in Sec. IV the results of the molecular-dynamics simu-
are the application of uniaxial tensile stress, a more relevangyions are presented. Section V presents the 1D closed mem-
situation for membranes is isotropic stress. In this paper W§ anes ie. 2D vesicles. We conclude in Sec. VI with a
show, with molecular-dynamic§MD) simulations, how, yiscussion.

with increasing temperature, monolayers with central-force

interactions, go from rupture through the formation of cracks II. THE TWO-DIMENSIONAL MODEL

to processes dominated by the formation of pores. The kinet- . ) ) ]
ics are found to be very sensitive to the range of the inter- The model consists of monolayers of particles interacting
particle interaction. In brief, crack propagation is prevalentWith central forces. Several potentials are considered.

in the system with nearest-neighbor interaction. And the op- One of the simplest interactions is the nearest-neighbor
posite is true for the longest-range force system, with diecewise linear force potenu(alPLFFb.whlch yleIQS a linear
Lennard-Jones-typéLJ) potential of the form (~8—r 4 restoring fprce between nearest-neighbor particles. The po-
whose range is about five atomic spacings. A crack propagdéntial is given by

tion regime is hard to identify in the latter system. The in- 1

termediate range LJ monolayérJM) shows both regimes. =k(r—dg)?—kw? r<dgp+w,

In this paper we also consider the relationship between 2
rupture and. mechanical instability, by stugjying the variation ¢ ((r)=
of the elastic constants with stress. We find that the rupture
point is below the mechanical instability point except at
zero-temperature where the two points coincide. Precursor 0 r>do+2w,
effects in the bulk modulus and the internal pressure are @
observed close to rupture. In the zero temperature studwherer is the distance between atonak, is the equilibrum
some simple analytical expressions are obtained for the elatattice spacing in the stress-free state, ands taken to be
tic stiffness coefficients for systems with three kinds of in-0.15d, as in Ref. 11 For this value af the dislocation core
teraction, at zero temperature and under isotropic tension. has only one broken bond. Smaller valueswolead to more

1
—EK(r—dO—ZW)Z do+W<r$d0+2W,
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broken bonds in the core. There is no strong core repulsion o 1, o o o

in this potential, and under moderate compressive pressure Capor=Capor=5 (Sapdert Sordap™ Sacdpr™ Sardps

there are only nearest-neighbor interactions between atoms.
Another simple potential, the LJ potentidlJP) or 6-12

potential is also well known. It is given by

77

The LJP provides a reasonable description of the properties 1 W

of rare gases, via computer simulations, if the parameters éaﬂo’TE_( —) (5)

and o are chosen appropriately. There is a negative well of Vo\ 1apdNor =0

depth e at 2Y%s, responsible for cohesion in condensed

phases. And there is a steeply repulsive wall at short dis-

tances less than~ o, due to nonbonded overlap between theWwith W being the strain energyVv depends on the ensemble

electron clouds. The cutoff for the LIP in our simulationsused. It refers to the Helmholtz free eneifgyor the isother-

was chosen to be,=3.00. The LJP is simply viewed here mal elastic constants of the canonical ensemble, i.e., the

as a model potential with a hard core and a range exceedingVN ensemble in computer simulation¥ s the tempera-

nearest neighbor. ture,V the volume, andN the number of particlesor to the
The LJP and PLFP have been extensively used althouginternal energyE for the adiabatic elastic constants of the

for different purposes. The PLFP has been used mostly imicrocanonical ensemblé/, is the reference value of the

simulations of the plasticity of solids:*Whereas the LIP yolumeV, i.e., before deformation, ang, ; the Lagrangian
was used extensively in attempts to understand the nature of . 23-25 ° .

the melting transition in two dimensiongor reviews see Suain tensof==The S,, are equal to the applied stress,
Refs. 15—1}. More recently the melting behavior of the negative for compression. For a system under hydrostatic

PLFP was also considerédl.Due to their simplicity, the pressurep, oSaﬁz—péaﬁ, the C,4,. are equal to elastic
PLFP and LJP systems are still the first systems which cometiffness coefficients->which govern stress-strain relations,
to mind when a simple model for structural properties ofgnd
materials is being sought:?°
In addition to the above two potentials, we have also con-
sidered monolayers with a 4-8 potenti@-8P), to explore 1( 92G )
n=0

- osﬁrtsaa_osﬁogar)s (4)

where theéalgm are second-order elastic constants defined

dLip(r)=4e 2) by

(6)

further the effect of the range of the interaction potential:

o' 8 o' 4
-]
The advantages of the 4-8P are that it is easy to compare g_application to 2D system under hydrostatic pressure
with the LJP and PLFP and that it has a longer range than
either of the other two potentials. The potential has a nega- For an isotropic 2D System under hydrostatic pressure,
tive well of depthe’ at 24", The cutoff was chosen to be there are 0n|y two independeﬁtxﬂgﬂ which, in condensed
rc=3-01'sc_f_’- ) ) notation, areN=Cy1,5=C1s and u=Cy,,5=Cy4. In the ca-

To facilitate comparisons, the three potentials have beefonical ensemble with central force interactions, they can be
chosen to have the same deptiv?, and the same minimum cglculated from the expressidAs
(0=2"Y%d,, o'=2"Y4d,). For the PLFP, the depth is set
by the value ofw which has been taken as Odi5 conse-

Cupor=or| ———
apor VO (777a,3(777m

¢s-gilr)=4€’ (3 whereG is Gibbs free energy or the enthalpy.

quently, for the LJP and 4-8R= ¢’ =0.0225¢d3. 1 &' &'
A= > —(Ax?)( 2 ——(Ay)?
kBT<A> 1<) r i<j r
I1l. MECHANICAL INSTABILITY CRITERIA &' &' 1
AND THE CALCULATION OF ELASTIC CONSTANTS - < > T(AX)ZE T(Ay)2> ] + )
1<j i<j
Elasticity theory can make predictions based on stability o 1 &
criteria as to when a membrane should rupture. « z S (AX)2(AY)? ) — 2 T (AX)(Ay)?
i<jr (A\Sir
A. General form 1 NkgT
22 - 2 re )+
It has been shown recently? that under constant load- 2(A)\ i< (A)

ing, a system is stable if the following tens0y,g,,, is posi-
tive definite: =Cotp, @)
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TABLE I. r; and=x?y? for triangular lattice up to the 11th neighbor3 is the number of neighbors

Neighbor 1st 2nd  3rd 4th 5th 6th 7th 8th 9th 10th 11th
Z 6 6 6 12 6 6 12 6 12 12 6
ri/d 1 V32 V7 3 Ji2 J13 4 J19 V21 5
Exizyizld4 0.75 6.75 12 375 60.75 108 2535 192 8055 843.75 468.75
1 o' 2 @' 2 wherea is the area of the unit cell; the origin of the coordi-
K= aT(A) Z T Axay) - Z - Axay nate system is a lattice point and the summation is over the
B =) = coordinate of all lattice points except the origin, is actu-
+i 3 ﬂ(AX)Z(A 2 1 ally equal to the elastic constars, andC,,. Without com-
(M5 r? y (A) puting the sums, some conclusions can be drawn from these
" L formulas. If p>0 (compressiop then\+ u>2u, and the
¢ 2 2 , shear instability will always occur prior to the spinodal in-
X<IZ<J ;3 (A07(Ay) >+2<A><Zj ré > stability (in the sense of vanishing bulk modulus, ie.,
B=N+u=0). In contrast, if p<O (expansioi then
:&44_[), (8) N+ u<2u and the spinodal instability will always occur
prior to the shear instability. The spinodal instability corre-
NkgT 1 sponds to rupture. We can expect these conclusions to be
p= W—m |2<, re'), © also valid at low temperature. In three dimensions

where the quantitieAx andAy represent thex andy coor-
dinates of & —x;), r the modulus of that vector, andl the
area of the system. The - -) designate configurational av-

B=(3\+2u)/3, and such a simple argument cannot be
made.

r; and =x’y? up to the 11th neighbors for a triangular
lattice can be found in Table I. For the piecewise linear force

erages. The sums are over all pairs of particles. The stabilitpnonolayer (PLFM), using Eq.(12) and noting that for a

conditions are theit?2
B=A+u>0
and
u=>0, (20

whereB is the bulk modulus.
In uniform dilation ensemble¥, including theTpN en-

semble, in which the shape of the MD cell is fixed and the

variations of the MD cell lengthd,,l,, and |; satisfy
I1/16,=12/10,=13/lo,, it has been showii that Eq.(8) is
still valid, but Eq.(7) fails. In the present work we calculated
w using Eq.(8) in both theTVN and TpN ensembles, and
found that they agree to within 1%.

In uniform dilation ensembles, one can fiBdfrom

keT(A)
B

=(A%)—(A)A). 11

However, as we discussed in Ref. 27, the rate of convergence

of Eq. (11) is unsatisfactory in simulations. Therefore, we
calculatedB using Egs(7) and(8) in the TVN ensemble.

For a 2D simple Bravais lattice at zero temperature andvhere p=(do

hydrostatic pressure, using periodic boundary conditions
Egs.(7)—(9) can be further simplified to

)\:7\0+p, M:}\O_p!

_ 1 d)”(ri) . d),(ri) 2.2
p:_4_ari¢0 rig'(ri), (12

perfect triangular system witd=0.75d, we only need to
consider six nearest neighbors, we obtain

r

73(5,)1/2—4),( 0.759dy=d=<1.14,,
A \/75(4 6.5k 1.15d,<d=1.3d,,

L0 d>1.3d,,

.

?(4—3,)1/2),( 0.75dy=d=<1.14,,
K= \/75(3_9,)1/2_4),( 1.15dy<d=<1.3d,

L0 d>1.3d,,

B(p2—1)k  0.75,<d=<1.15d,,
p={ V3(1-1.3pY)k 1.15,<d<1.3d,, (13

0 d>1.3d,.

/d)? is the density relative to the stress-free
state. From Eq(13) we can see that there is a shear instabil-
ity (characterized by.<0) atd=0.75,. This corresponds
to the transition from the triangular lattice to a square
lattice?® At d=1.15d, both B and « jump discontinuously
to negative values. As will be seen in Sec. IV B 1, this spin-
odal instability is the rupture point at zero temperature. The
discontinuity results from a discontinuity ing” at
d=1.15d,. In the other two systems the spinodal instability
corresponding to rupture occurs continuously.

For the LJ monolaye(LJM), using Eq.(12) and Table I,
up to the 11th neighbors, we obtain
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fect solid PLFM (solid diamongl and PLFM with a vacancy con-
centration of 2.56 at. %solid triangle.

o\ a\e 0.25
AN=374.73 3 —132.24 al 52 \
o 14 o\ e 0.20h
“:208'1#6) —43.932{6) 2
L 4
o\ 14 o\ 8 e 015
= 2| - — @ .
p 83.272%(1) 44.153£€d) -l (14 5
|
The only instability point in this system is the rupture 0.10 * .
spinodal instability characterized byB going nega- .
tive at d=1.220w(=1.087%;,) or p=-—3.852%k/ °
o?(=-0.109%). 0.05 4 . .
Similarly for the 4-8 monolayef4-8M), and also up to Y e e
the 11th neighbors, we find fauy .
0 _~
o’ o'\8¢€ 0.002 0.004 0.006 0.008 0.01
A=197.3 vl —86 70 g o2
T(xdj/kp)
')6 €' FIG. 1. The variation ofp.| vs T for the two-dimensional per-

=84.53 o 16.808 —
et i d

r\ 10
p=56.389<c;) —34.9446;) aif (15  smaller. For instance, for the PLFMBt=0.0005¢d2/ks and
Ip|<|pe/, |Ap|=0.00k. But for the PLFM at
In this case also the only instability point is the ruptureT>0.006¢d5/ks and |p|<|pc|, |Ap|=0.000%. For the
spinodal instability at d=1.28%'(=1.08,) or LIJM and 4-8M at T>0.006<d5/ks and |p|<|pql,

p=—3.16&'/0'?(= —0.101k). . |Ap|=0.000k, half of what was used in the PLFM. It is
We expect that, at zero temperature, rupture will occur atherefore reasonable to state that the tension rates in our sys-
this mechanical instability point, but that, at finite it will tems were low.

not be so. For a range ¢p|<|p|, the free energy barrier For convenience of comparison, for our equal depth po-
can be so small that local thermal fluctuations will be enoughentials,p is in units ofx andT in units of kd3/kg . For the

to overcome it. We illustrate this in Sec. IV. LIM, to convertp to e/o? and T to e/kg, multiply by
35.2756 and 44.4444, respectively. For the 4-8M, to convert
IV. SIMULATIONS ON THE TWO-DIMENSIONAL p to €'/o'? and T to €'/kg, multiply by 31.4270 and
SOLID MEMBRANES 44.4444, respectively.

Most of the simulations are for rhombuses with 28 atoms
on the side. We also tried samples with 51 atoms on the side
In our MD simulations, thel pN ensembl&~3'was used to check size effects.
for the kinetics, suplemented by tA&/N ensembl&~>*for
the calculation of the elastic constants. The basic time step B. Critical quantities
was 7= 0.0%,, wherety,=ym/ . A critical rupture pressure
p. is defined as the pressure for which the membrane rup-
tures in about X 10° time steps. This definition op, is The set of Figs. 1 to 5 show the critical rupture pressure
based on the assumption of an exponential decrease of thg and the corresponding values at rupture of the lattice con-
rupture time with increasingp|, a reasonable assumption for stantd,, bulk modulusB;, and shear modulug., as a
a thermally activated process. The above assumption is verfunction of temperature. All these quantities tend to their
fied in the simulations. Within 5% qd,. are intervals op of  mechanical instability point whefi— 0; this is the case for
rapid rupture(less than 1btime stepsand no observed rup- all three kinds of potentials, where the valuespgf, d.,
ture over times in excess oP31(° time steps. The motiva- B, andu. at T=0 are obtained from Eq$13)—(15). This
tion for the use of X 10°7, as the maximum rupture time is supports the approach taken in Sec. Ill, that the rupture point
based on the observation that by that time, the systems apt zero temperature is a mechanical instability point. More
peared well equilibrated. specifially, at zero temperature it is a spinodal instability
The paths to rupture consisted in a slow increase of th@oint, whereB goes through zero continuously in the LIM
tension|p|, in small stepsAp|, from an initial perfect lattice and 4-8M, and jumps to negative values in the PLFM.
configuration. For each value @] the system was allowed No other instability was found for either the LIM or 4-8M
to equilibrate well(at least during time % 10°7,). |Ap| was  in the analysis of the elastic constants in Sec. Ill. Numerical
a function of the temperature, the range of interactions, andimulations on the LJM in theTpN ensemble at
whether|p|>|p.|. The higher the temperature and the longerT=0.0022/kg with pressures up t@=2100/c? support
the range of interactions, the smallévp| as|p| itself was  this prediction.

A. Methods

1. At zero temperature
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FIG. 2. The variation ofp| vs T for the two-dimensional per- FIG. 4. The variation 0B, vs T for the two-dimensional perfect

fect solid LIM(solid triangle, LIM with vacancy concentration of  sojig PLFM (solid diamond, LIM (solid triangle, and 48M(stay.
2.56 at. %(stap, and perfect 4-8Msolid diamongl.
o Figure 5 also shows that the shorter the range of interac-
2. At finite temperature tion the largeru, is. Since the Rayleigh speed, the upper

The first observation that can be made from Figs. 4 and §mit of the velocity of crack propagation, is approximately
is that, as expected, at finite temperature, rupture occurs priGdual to the transverse sound sp&&t,which itself is pro-
to mechanical instability, since bo and x greater than Portional toyu/p (p is the density, we can expect that the
zero at the critical pressure. Second, Figs. 1-5 show cleari§horter the range of the interaction, the faster the crack will
that there are two temperature regimes for all three kinds dPropagate. This has been verified in the simulations.
interactions. The first regime, at low temperature, is charac- We also find that the PLFM and LIM remain solid up to
terized by a fast nonlinear drop dp.| from the zero- the point of rupture >0 andB>0 for [p|<|p.|). But for
temperature instability point. The second regime at highefl >0.008¢d}/kg, the 4-8M, with the interaction of the long-
temperatures is characterized by an almost linear decrease @8t range, melts firgtattice constant increases suddenly and
[pc| with T, with or without vacancies. These two regimes u=0) and then ruptures. The liquid PLFM and LIM rupture
represent different rupture kinetics, as we will discuss in theinder minimal stresses. These facts limit the use of these

next section. potentials to the study of rupture in the solid phase.
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FIG. 3. The variation ofl, vs T for the two-dimensional perfect FIG. 5. The variation of.. vs T for the two-dimensional perfect

solid PLFM (solid diamond, LIM (solid trianglg, and 48M(stay. solid PLFM (solid diamond, LIM (solid trianglg, and 48M(staJ).
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FIG. 6. The variation oB (diamond and x (solid triangle vs
p for two-dimensional perfect PLFM atT=O.006<d§/kB.
p.=0.0508«.

3. Precursor effects to rupture

At zero temperature, as follows from Ed43)—(15), the
mechnical instability point, which coincides with the rupture
point, corresponds to an extremum in the tensiop. At
finite temperature, the two points do not coincide. Ruptur

precursor effects in botlB and w; an accelerated drop
aroundp,., especially in the PLFM and the LJksee Figs. 6
and 7 for some typical resujtsThis is reminiscent of the

precursor effects, observed in the compressibility at melting

which have been investigated by BoyérHe argued that
their presence makes melting in solids exhibiting this effec
less abrupt, i.e., with less of a jump in the thermodynami
functions®’

In our case, with relation to rupture, the precursor effect

1.0
0.8} «
5 .
x 0.6
- L g
] -
" 04 . ¢
A a . .
0.2 Ya,
L 4
0.01 0.02 0.03 0.04
—p(k)

FIG. 7. The variation oB (diamond and . (solid triangle vs
p for two-dimensional perfect LIM atT=O.006<d§/kB.
p.=0.0300«.
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€
occurs before mechanical instability. However, we found

C

s
permit an easier identification of the critical rupture pressure

56
0.5
L 3
*
0.4 .
= .
S 03
"% 4 a
m 0.2 o : * PS ..‘“
0.1
1 1.01 192  1.03 ° 1.04
-0.1

d(dy)

FIG. 8. The variation oB (diamond and x (solid triangle vs
d for two-dimensional perfect 4-8M atT=0.0085<d§/kB.
d.=1.04d, andp.=0.0164%.

But, on the other hand, they make it harder to extrapolate to
the mechanical instability point. This point has been found to
be inaccessible by either tig N or theTVN ensemble. We
observed that, in th&VVN ensemble, slightly above the rup-
ture point (within about 10% ofp.), that the averag®
(often <0) andu are highly unstable even up to %8 in
simulations and also sensitive to the initial conditidqnen-
figuration and velocity In contrast, the same quantities be-
low the rupture point are very stable within less than
10°7,. In the intermediate region occurs the accelerated drop
in B and u aroundp.—the precursor effects shown in Figs.

6 and 7 for the PLFM and LJM, respectively. They become
fmore pronounced with increasing temperature and range of
interaction. The latter fact is illustrated by comparing the
effect in the LIM with that in the PLFM which has nearest-
neighbor interactions.

The TVN ensemble, which is a better ensemble as a rule
to calculate elastic constarftsshould be used to identify the
rupture point. Sinc8 drops more rapidly tham near rup-
ture, it is the quantity to follow. Typically, in th& VN en-
semble, 107, is enough to obtain rather good results for
B, u, andp. But in theTpN ensemble, we have to run some
samples to over 3 10°7,.

In the 4-8M, which melts before rupturing, boB and
w drop to zero at the melting point, making the identification
of this transition easysee Fig. 8 B then rises after melting.
There is no evidence of precursor effects in this state.

C. Rupture kinetics

The rupture kinetics are investigated in tig@N en-
semble, which allows larger fluctuations and is closer to nor-
mal experimental conditions. The observed behavior is quite
different at lowT than at highT.

At very low temperature, for the PLFM and LJM, rupture
is mainly through the propagation of a single crack, accom-
panied by a homogeneous area expansion. A small crack
nucleates and grows. At a certain slzethe crack begins to
branch outL is dependent on the temperature, the range of
interaction, and the initial conditions of the simulation. It is
typically a few lattice constant$ to 9).
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FIG. 9. Configurations of atoms at various timesfor the LIM at T=0.00005d3/kg and p=—0.1055¢. (a) t=1750r, (b)
t=1950r,, (c) t=2000r, (d) t=2100r, (e) t=2450r,. The arrows represent the Burgers vectors of the dislocations and are placed at their
core.

Under isotropic tension, the crack always propagategonstants. This is a homogeneous process. The other is the
along “soft” directions, i.e., the directions with the lowest growth of the crack, which is a heterogeneous process. If the
surface energy. It agrees with the conventional wisdonrate of area expansion is comparable with the propagation
which would identify the lowest energy surface as the cleavspeed of the crack, the system may eventually rupture homo-
age direction, but is obviously different from that observedgeneously. This happens at very low temperature. Increasing
under uniaxial tension where fracture can occur along ghe range of interaction favors homogeneous rupture. A
“stiff” direction, i.e., a direction of high surface enerd§.  |onger range of interaction induces a longer correlation

Crack branching has also been observed in brittle materiyngih which favors a collective response to the strain. For

als under uniaxial tension or with a temperature gradient, i,,o LIM, we observed that the system finally ruptures homo-
both experimental and theoretical studigs* However, in a geneously forT = 0.002d2/ka . but for the PLEM this oc
. o' "B -

uniaxial tension experiment this requires large values of th 2
strain rate or temperature gradiéht®3°At small strain rate, °Y'S forT<0.0005¢dy/Kg . One can expect that due to an-

the cracks do not seem to branch &1° In systems under isotropy, a system under uniaxial tension does not exhibit

isotropic tension, the situation is quite different. The stresdl0mogeneous rupturé.

builds up in all direction. This favors, or maybe even re- Figure 9 shows a rupture sequence for a LIM at

quires, crack branching. T=0.00005cd3/kg and |p|=0.1055, slightly higher than
Note that there are two competitive factors in rupture ki-|p¢| (=0.105¢). At time t=1750r,, a crack is nucleated, as

netics. One is the area expansion or the increase in the latticlown in Fig. %9a). At t=1950r,, the size of the crack in-
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FIG. 10. Configurations of atoms at various tintéder the PLFM atT=O.0005<dS/kB andp= —0.168. (a) t=800r, (b) t=860r, (c)
t=1000r¢, (d) t=1280rg, (€) t=2200r,.

creases to aboutdbwith d=1.0881,, and a dislocation di- t=1280r,. Finally att=2200r,, the system ruptureg-ig.
pole can be seen, as shown in Figb)9 At t=2000r,, the 10(e)]; a clear case of a heterogeneous process.
crack begins to branch out as shown in Figc)9At about As mentioned in Sec. IV B 2 crack propagation is the fast-
t=2100r, (Fig. 9(d)), the crack stops growing and the faster est in the shorter range systems. For instance, at low tem-
area expansion completes the rupture process. Aperature, for the PLFM aT=O.00005<dS/kB, the time du-
t=2450r,, the average lattice constasht=2.88H,>30, the  ration from the crack nucleation to a crack of sizd &
cutoff of LJP, so the system has ruptured homogeneouslgbout 136, but for the LIM growth to the same size re-
[Fig. A&)]. quires 206,. The thermal fluctuations reduce the crack ve-
Figure 10 shows a rupture sequence for a PLFM of sizeocity in two ways. First it favors asymmetric stresses around
51x51 at T=0.0005d3/kg and |p|=0.168 (|p the tip of the crack, and hence nonrectilinear motion which
=0.160¢). At t=800r;, a crack is nucleated, as shown in reduces the forward velocity of the crack. Secondly it weak-
Fig. 10@@. The crack then grows to a size &f=3d at ens the solid, with the ensuing effect on crack velocity.
t=860ry. At this size, the crack begins to branch out, as The high-temperature dynamics are different. At high
shown in Fig. 1(b). At t=1000r,, we can see a second temperature, gliding dislocation dipoles are created first,
branching out of the original crack, as shown in Fig(dd0 which then develop into holes. Ingrown vacancies limit the
In Fig. 10d) a third branch in the crack occurs at role of dislocations and can lead to direct cavitation. Irre-
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FIG. 11. Configurations of atoms at various timedor the PLFM at T=0.006¢d%/ks and p=—0.0550. (a) t=28100r, (b)
t=28650r, (C) t=28750r, (d) t=29200r, (€) t=29400r,, (f) t=29600r.

spective of the presence of the ingrown vacancies, the syste=0.006¢d3/kg, higher thariT;, and|p|=0.0550, slightly
becomes porous before rupture, and rupture is mainly via thhigher than|p.|(=0.0534). At t=28100r, some vacan-
merger of holes. Furthermore, pores become more prevalepies are nuclueated, as shown in Fig(d1At t=28650r, a
as the range of interparticle interactions increases. The malislocation dipole is creatddrig. 11(b)]. The dislocation di-
terial is more ductile. pole then develops into small por¢Big. 11(c)]. Figures
The temperaturd@; separating these two regimes is de-11(d) and 11e) show clearly the merger of these pores. As
pendent on the range of interaction. The shorter the range a¥€ can see from Fig. 1f), att=29600r,, more holes and
interaction, the highefT;. In other words, the shorter the dislocations appear just before rupture.
range of the interaction, the larger the temperature range for The kinetics can explain why the mechanical stability cri-
the fast nonlinear drop ofp,|. This is because the short- teria fail to predict the rupture point at finite temperature.
range interaction favors the formation of a single large crackThe propagation of a single crack or the merger of holes is a
In systems with long-range interaction the formation ofheterogeneous process, but the derivation of the mechanical
dislocation dipoles is favored, as was discussed in Ref. 27&tability criteria assumes homogeneous deformaitiéh.
For the PLFM, T,;~0.0035d3/ks. For the LIM, T,
~0.0025¢d3/kg . But for the 4-8M,T;<0.00002%d3/kg .
And below O.OOOORdglkB, we observe homogeneous rup-
ture. No crack was ever seen in this last system. In Secs. lll and IV, we have discussed in detail the rup-
Figure 11 shows a rupture sequence for a PLFM ature kinetics of a flat membrane, which is constrained within

V. EFFECT OF OUT-OF-PLANE FLUCTUATIONS:
A ONE-DIMENSIONAL CLOSED MEMBRANE
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a two-dimensional space, and hence does not allow trans- (.30
verse fluctuations. For a real membrane there is, however,
normally the third degree of freedom and transverse fluctua- 0.25 *
tions will be present. To assess their effect on the rupture
kinetics we consider a simple model of self-assembled mem-
branes, which we study here in one dimension, by forming __
closed molecular chains. This 2D vesicle is pressurized with &
an ideal gas. We find two very distinct regimes of rupture = 0.15 . o
behavior. At lowT rupture can be explained by the average .
force on the membrane approaching close to the critical bond ©  0.10
strength in the membrane. But at high it seems totally

fluctuation driven, with the critical gas pressure bearing little 0.05 -
connection with the average bond strength.

0.20 .

CVURE SR I R

Ada,

0.0 “—e
A. The self-assembling molecules 0.10 0.15 0.20

. . . T(e/k
In the 1D closed chains or 2D vesicles, the particles are (/)

assumed to have a directoy which can also be considered  F|G. 12. The variation ofp,| vs T for a one-dimensional closed

as a main axis of symmetry. They interact through the paiLim of 100 particles(solid diamond and 150 particlegsolid tri-
potential angle.

a\N (oM 2% of p., a little smaller than in 2D, which is expected for
b(r1.ro)=4e [ _(f_lz) [1+7f(rorad]r, (18 reasons of dimensionality. The initial configuration was a
closed circular chain.
with Since the pressurizing gas is essentially an ideal gas, we
used|p|=NgkgT/A to calculate the pressure, whebeis
f(rir)=ngnp—[(ng+ny)-(rip]% (17 the area enclosed by the chain, avghsthe number of par-
ticles in the pressurizing gas. The area was calculated by two
methods, one i&=7R? with R=Nd/27. N is the number
of particles in the vesicle,d the average distance

il introd . o . dan b between the nearest neighbors. The justification of this
potential introduces an orientation interaction, andan be oy pression is that in our simulations the vesicle is always

used as a measure of that interactigr=0 gives the usual neqqy circular up to rupture. The other method is to use
M —N potential and the system tends to form a bulk BVeMA = 1725 N(y. +vi . ) (X—Xi+1) With xXy.i=X; and

. . . .. . . I I | | |
with the |nc_lu5|on (_)f a pressurizing gas. In our S|mulat|ons,yN+1:y1_ The results of both methods were consistent.
we chosey=0.9, since for this value the particles can self-
assemble into long chains at moderate temperatures. The in-

We choseM=6N=12 (Lennard—Jones-like potential or
LIJP) and M=4N=8 (4-8 potential or 4-8Pto probe the
effects of the range of the interaction. Tlieterm in the

teraction favors a parallel orientation of the directéis., C. Results

n;-n,=1). The cutoff was chosen to bbeg=3.00- for LIP From Figs. 12-14, we can see that there are also two
andr .=3.0"%s for 4-8P. The unit of time in the simulations regimes, separated by a special temperature ndmed the

is to=mo?/e. variation ofp. vs T, andd., the corresponding critical lat-

To deal with the changes in direction of the main axjs tice constant, v&. There is a fast decrease jgf;| andd,
a rotational inertid was introducedl = 1/2mg? was chosen
for convenience, wherm is the mass of the particles. 0.20

Pressure inside the vesicle is produced with a gas of par-
ticles, of mass equal to the particles forming the chain. These
particles interact with the particles of the vesicles with a 0.15
1/r? law, but not with each other. The pressurizing gas is .
essentially an ideal gas. Changing the mass of the gas par -
5 H H 5 L 4
ticles could modify the kinetics. \% 0.10

B. The simulations I&

The isothermal-isochor@ VN ensembl 34 was used 0.05
with the damped force methdtito keep the temperature '
constant. The basic time step in most of our simulations is -
70=0.00%,, wherety,=\mo?/e. We also tried for some 0.0 R
samplesr,=0.0025, but there was no significant change. ' 0.15 0.20 0.25
Following the same argument as in Sec. 1V, a critical rupture T(e/ks)
pressurep. could be easily determined as the pressure sepa-
rating intervals op of rapid rupture and no observed rupture  FIG. 13. The variation ofp.| vs T for a one-dimensional closed
over 2x1C° time steps. The intermediate region is about4-8M of 100 particles.
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1.05 TABLE II. Critical quantities in 1D for system with LJP and
100 particles.
1.040 T dc 2p.R=p:Nd/ 7 <Fc> ®'(do)+P'(2d,) Pc
* 4 aa 0.15 1.0238 1.462 5.218 3.5623 0.0449
™ * ., .4 R 0.14 1.0220 1.311 5.055 3.2803 0.0403
'y
3 1.030 e o a afta aa 0.11 1.0283 4.548 4.750 4.4086 0.1390
MR . 0.10 1.0330 6.280 4.910 5.1368 0.1910
% o 0.09 1.0300 5.852 4.585 4.6770 0.1785
<
1.020 ¢
In our simulations, the vesicle is always nearly circular up
to rupture. Shape fluctuations do, however, become notice-
1.010 able in the longer-range system.
0.10 0.15 0.20 0.25 Finally, we should point out that the units in this section
T(e/kp) are different from those in Sec. IV A. Converting them into

the same units using the remarks in Sec. IV, we find that
FIG. 14. The variation ofl; vs T for a one-dimensional closed |P¢| is much smaller than in the 2D flat membranes. How-
LJIM with 100 particles(solid diamond and 4-8M with 100 par- ever, it does not necessarily mean that the out-of-plane fluc-
ticles (solid triangle. tuations are dominant. The energies of fluctuations in a 1D
system scale inversely with system sizeyave vectoy?
below T, for both LIP and 4-8P interactions. This is the times lengthL, or (2m/L)?L=1/L. So we expected and
expected behavior for a thermally activated processT A found significant finite-size effects. We are not able for this
sudden drop ofp.| andd, occur for the LJP. There is no reason to determine whether the transverse fluctuation driven
such drop in the 4-8P system. The longer range force tend€gime occurs before or after the in-plane mechanism. This
to behave more smoothly. In the shorter range LJP systenwill be the subject of future work.
p. is nearly constant over a significant temperature interval.
T, is dependent on both the interaction and the size of the VI. SUMMARY AND DISCUSSION
system. T,~0.12%/kg with the LJP and 100 particles,

T,~0.12C/kg with the LJP and 150 particles, and . . . X
T,~0.14e/kg with the 4-8P and 100 particles. subjected to isotropic stress, in three central-force systems

As in the 2D case discussed in Sec. IV. one can assum‘@ith the range of the interparticle interaction going from

that in these two regimes the rupture kinetics are different€arest neighbor to about five lattice spacings. Here is a sum-

But contrary to the 2D case, it is difficult to determine di- mary of our findings on the 2D model with in-plane kinetics.

rectly what causes the rupture. To gain some insight, we At T=0 K, rupture is by a homogeneous process, and

monitored the relationship between the critical force and thé:ritical stress _is as predic'ged by s'tability qriteria. As the tem-
pressure at rupture in the 100 particle LIP vesicle perature is raised, there is a rapid drop in the critical stress

At zeroT, assuming that the system is a perfect circle, thegcl' Rutf]turet becomles a he;gr;)g dertl)eouts bplr_?ces_? "’?”d zgc#rs
relationship between the pressure and the foieg ¢n a elow ?\S ress va uesdprfe Ic et' yPs abriity cri ;rlatw. lcth
particle from particles on each side is given by assume homogeneous deformation. Precursor effects in the

elastic constants, in particular the bulk modulus, facilitate the
identification of the rupture point. At low, the regime of
the rapid drop irp., the kinetics is by nucleation of a single

. . . . crack, which branches out and grows till through a combina-
whereR is the radius of circle. It is to be expected that Strongy o of area expansion and crac?< growth the mgonolayer fails.

o companso. e, ALIPerLS igher than some cria e a o
I | IatedF:(I)’id)nL(I)’(Zd) where k (jecregse of the critical stress slows_down. GI|Q|ng dlsloqa-
aiso caicu ' tion dipoles are nucleated, suggesting a ductile behavior.

" These grow with the addition of vacancies. The holes grow
g and merge till failure. Ingrown vacancies reduce the influ-
r ) ] ence of dislocations and can lead to direct cavitation.

Crack propagation is faster in the system with short-range
Fis another approximation for the force since the orientatiorforce. It is prevalent in systems with nearest-neighbor inter-
termf in the interparticle interactiofsee Eq(17)] is always action. The opposite is true for the longest-range force sys-
~1 in simulations. Table I, gives the values of these quantem (4-8P, cutoff at 50), where a crack propagation regime
tities at rupture. is hard to identify.

From Table Il, we can see that at high 2p.R is signifi- The temperaturd; separating these two regimes is de-
cantly smaller thaF.) or ®'(d.)+®'(2d.). But, at low  pendent on the range of interaction and the shorter the range
T, (Foy=®’'(d.) +®’(2d.), and comparable to2.R. This  of interaction, the higher this temperature. We have also pre-
suggests that, at abodt=0.12, thermal fluctuations sud- sented simple expressions for stress, bulk mod@uand
denly become large enough to drive the rupture kinetics. shear modulug: for systems with PLFP, LJP, and 4-8P, at

We have investigated the rupture kinetics of monolayers

F=2pR, (18)

O')N
T —(1+7y)

CI>(r)=4e(
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zero temperature and under isotropic tension. papers’®2'43|n simulations of annealing behavior the PLFP
Although this work focuses on the behavior of two- system formed slowly cavities of varying size, the LIP sys-
dimensional systems, it also throws some light on the fractem had a low temperature and pressure phase, with a similar
ture kinetics of bulk materials. Our results support the conbehavior, and a higher pressure and temperature phase with a
clusion that the cleavage direction under isotropic stress igapid dislocation mediated annealif§MA) kinetics. The
different from that under anisotropic stress. We _have alsg_gp system, with the longest-range potential, exhibited only
shown that the crack velocity decreases with an increase ihe DMA kinetics. The presence of dislocations again indi-
the range of interaction. This can account for the fact that th@ates ductile behavior. In brittle materials, annealing could

crack velocity of the modified LJP systefMLJ), used in  only rely on the slow diffusion of vacancies and their mutual
Ref. 36, is faster than in the original LIP system. The MLJ isgttraction.

a nearest-neighbor interaction but the LIJP has a range of Bjological membranes tend to be in liquidlike phases. The
several atomic sites. We will venture a comment about thee|evance of this work to biological systems is in showing
method of prenotching of a single crack in materials, whichhow the role of vacancies increases as the material softens
is often used in studies of the fracture dynamics and theind becomes more ductile. Dislocations are generated in
brittle-to-ductile transition. These eXperimentS may giVe dif-pairs as dipolesy which are in fact condensed lines of
ferent rupture kinetics than if isotropic stress were applied t/acancie4* The ease of nucleation of dislocations appears
the system, in particular for ductile materials. With isotropicrelated to the nucleation rate of vacancy clusters, or pores.
stress, cracks are more likely to branch out along the equivarhere is a connection between the two. The nucleation of
lent low energy surfaces. Anisotropic stress with prenotchingacancies in a brittle material would seem much more diffi-
may preempt the formation of holes in ductile materials, theg|t.

favored mechanism under iSOtrOpiC stress in our 2D com- The 1D model System, that we Studied, shows that trans-

puter simulations. verse fluctuations can also drive the rupture kinetics.

The two regimes of rupture kinetics reported seem relategyhether, in a 3D vesicle, they can preempt the mechanisms
to the brittle-to-ductile transition. This transition is accompa-discussed above is still an open issue.

nied by a large increase in the dislocation den&itfhe
temperaturel; separating the two regimes, would then be
the brittle-to-ductile transition temperature. This also sug-
gests that the system with the shorter range of interaction is
more brittle sinceT, is higher. This work was supported by the Natural Sciences and

There is a parallel between the observed rupture behavidengineering Research Council of Canada. Useful discussions
and the vacancy annealing kinetics studied in earliewith Michael Wortis are gratefully acknowledged.
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