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Mechanisms of membrane rupture: From cracks to pores

Zicong Zhou and Be´la Joós*
Ottawa Carleton Institute of Physics, University of Ottawa Campus, Ottawa, Ontario, Canada K1N 6N5

~Received 9 January 1997!

The rupture kinetics under isotropic tension of solid membranes with central-force interactions are studied as
a function of temperature and the range of the interparticle interactions. At zero temperature, rupture occurs
homogeneously at the mechanical instability point. At low temperature, rupture is heterogeneous, mainly by
the nucleation of a single crack, branching out into several cracks. This is accompanied by a homogeneous
expansion, and the critical rupture tension drops very rapidly with increasing temperature. At high temperature,
rupture involves the nucleation of dislocation dipoles, merging to form pores, and the critical rupture tension
varies almost linearly with temperature. The temperatureT1, separating these two regimes, is higher the shorter
the range of interaction, for potentials of equal depth. We find that under isotropic tension, the crack favors the
path along the direction with lowest surface energy, in contrast to that observed under uniaxial tension. The
identification of the rupture point is facilitated by the fact that the elastic constants, in particular the bulk
modulus, usually show precursor effects. Transverse fluctuations can play an important role as evidenced by a
one-dimensional model of self-assembled particles in a ring, pressurized by an ideal gas. These fluctuations are
dominant at high temperature, where the rupture pressure is only weakly dependent on temperature.
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I. INTRODUCTION

Under the application of increasing stress, a membr
will eventually rupture. The rupture of membranes has b
extensively studied experimentally especially for biologic
membranes.1–6 But the kinetics are not well understood. Pr
vious existing theoretical studies have concentrated usu
on the mechanical forces ignoring the effects of tempe
ture.7,8 Recently, pores, which are a common feature in
rupture of biological membranes, have been the focus of
statistical-mechanics studies.9,10

In contrast to bulk materials where the usual conditio
are the application of uniaxial tensile stress, a more relev
situation for membranes is isotropic stress. In this paper
show, with molecular-dynamics~MD! simulations, how,
with increasing temperature, monolayers with central-fo
interactions, go from rupture through the formation of crac
to processes dominated by the formation of pores. The ki
ics are found to be very sensitive to the range of the in
particle interaction. In brief, crack propagation is prevale
in the system with nearest-neighbor interaction. And the
posite is true for the longest-range force system, with
Lennard-Jones-type~LJ! potential of the form (r 282r 24)
whose range is about five atomic spacings. A crack propa
tion regime is hard to identify in the latter system. The
termediate range LJ monolayer~LJM! shows both regimes.

In this paper we also consider the relationship betw
rupture and mechanical instability, by studying the variat
of the elastic constants with stress. We find that the rup
point is below the mechanical instability point except
zero-temperature where the two points coincide. Precu
effects in the bulk modulus and the internal pressure
observed close to rupture. In the zero temperature st
some simple analytical expressions are obtained for the e
tic stiffness coefficients for systems with three kinds of
teraction, at zero temperature and under isotropic tensio
560163-1829/97/56~6!/2997~13!/$10.00
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Most of the work is on two-dimensional~2D! flat mem-
branes which do not have a third degree of freedom.
examine the effects of out-of-plane fluctuations, we int
duce a simple model of self-assembling particles which
use to consider one-dimensional~1D! closed membranes
~two-dimensional vesicles!. These exhibit two very distinc
regimes of rupture. The high-temperature behavior is in p
ticular interesting with the critical rupture pressure havi
little dependence on temperature.

The paper is organized as follows. We first introduce
model of the 2D flat membranes~Sec. II!. Section III dis-
cusses, for these systems, mechanical instability crite
while in Sec. IV the results of the molecular-dynamics sim
lations are presented. Section V presents the 1D closed m
branes, i.e., 2D vesicles. We conclude in Sec. VI with
discussion.

II. THE TWO-DIMENSIONAL MODEL

The model consists of monolayers of particles interact
with central forces. Several potentials are considered.

One of the simplest interactions is the nearest-neigh
piecewise linear force potential~PLFP! which yields a linear
restoring force between nearest-neighbor particles. The
tential is given by

fPLFP~r !55
1

2
k~r 2d0!22kw2 r<d01w,

2
1

2
k~r 2d022w!2 d01w,r<d012w,

0 r .d012w,
~1!

wherer is the distance between atoms,d0 is the equilibrum
lattice spacing in the stress-free state, andw is taken to be
0.15d0 as in Ref. 11 For this value ofw the dislocation core
has only one broken bond. Smaller values ofw lead to more
2997 © 1997 The American Physical Society
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2998 56ZICONG ZHOU AND BÉLA JOÓS
broken bonds in the core. There is no strong core repuls
in this potential, and under moderate compressive pres
there are only nearest-neighbor interactions between ato

Another simple potential, the LJ potential~LJP! or 6-12
potential is also well known. It is given by

fLJP~r !54eF S s

r D 12

2S s

r D 6G . ~2!

The LJP provides a reasonable description of the prope
of rare gases, via computer simulations, if the parametee
ands are chosen appropriately. There is a negative wel
depth e at 21/6s, responsible for cohesion in condens
phases. And there is a steeply repulsive wall at short
tances less thanr;s, due to nonbonded overlap between t
electron clouds. The cutoff for the LJP in our simulatio
was chosen to ber c53.0s. The LJP is simply viewed here
as a model potential with a hard core and a range excee
nearest neighbor.

The LJP and PLFP have been extensively used altho
for different purposes. The PLFP has been used mostl
simulations of the plasticity of solids.11–14 Whereas the LJP
was used extensively in attempts to understand the natu
the melting transition in two dimensions~for reviews see
Refs. 15–17!. More recently the melting behavior of th
PLFP was also considered.18 Due to their simplicity, the
PLFP and LJP systems are still the first systems which co
to mind when a simple model for structural properties
materials is being sought.19,20

In addition to the above two potentials, we have also c
sidered monolayers with a 4-8 potential~4-8P!, to explore
further the effect of the range of the interaction potential

f428P~r !54e8F S s8

r D 8

2S s8

r D 4G . ~3!

The advantages of the 4-8P are that it is easy to com
with the LJP and PLFP and that it has a longer range t
either of the other two potentials. The potential has a ne
tive well of depthe8 at 21/4s8. The cutoff was chosen to b
r c53.01.5s8.

To facilitate comparisons, the three potentials have b
chosen to have the same depthkw2, and the same minimum
(s5221/6d0, s85221/4d0). For the PLFP, the depth is se
by the value ofw which has been taken as 0.15d0, conse-
quently, for the LJP and 4-8P,e5e850.0225kd0

2 .

III. MECHANICAL INSTABILITY CRITERIA
AND THE CALCULATION OF ELASTIC CONSTANTS

Elasticity theory can make predictions based on stab
criteria as to when a membrane should rupture.

A. General form

It has been shown recently,21,22 that under constant load
ing, a system is stable if the following tensorCabst is posi-
tive definite:
n
re
s.

es

f

s-

ng

gh
in

of

e
f

-

re
n

a-
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y

Cabst[C° abst2
1

2
~S° abdst1S° stdab2S° asdbt2S° atdbs

2S° btdas2S° bsdat!, ~4!

where theC° abst are second-order elastic constants defin
by

C° abst[
1

V0
S ]2W

]hab]hst
D

h50

, ~5!

with W being the strain energy.W depends on the ensemb
used. It refers to the Helmholtz free energyF for the isother-
mal elastic constants of the canonical ensemble, i.e.,
TVN ensemble in computer simulations (T is the tempera-
ture,V the volume, andN the number of particles! or to the
internal energyE for the adiabatic elastic constants of th
microcanonical ensemble.V0 is the reference value of th
volumeV, i.e., before deformation, andhab the Lagrangian

strain tensor.23–25 The S° ab are equal to the applied stres
negative for compression. For a system under hydrost

pressurep, S° ab52pdab , the Cabst are equal to elastic
stiffness coefficients21,22which govern stress-strain relation
and

Cabst5
1

V0
S ]2G

]hab]hst
D

h50

, ~6!

whereG is Gibbs free energy or the enthalpy.

B. Application to 2D system under hydrostatic pressure

For an isotropic 2D system under hydrostatic pressu
there are only two independentCabst , which, in condensed
notation, arel[C11225C12 andm[C12125C44. In the ca-
nonical ensemble with central force interactions, they can
calculated from the expressions22

l5
1

kBT^A&H K (i , j

f8

r
~Dx!2L K (

i , j

f8

r
~Dy!2L

2K (
i , j

f8

r
~Dx!2(

i , j

f8

r
~Dy!2L J 1

1

^A&

3K (
i , j

f9

r 2 ~Dx!2~Dy!2L 2
1

^A&K (i , j

f8

r 3 ~Dx!2~Dy!2L
2

1

2^A&K (i , j
rf8L 1

NkBT

^A&

5C° 121p, ~7!
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TABLE I. r i and(xi
2yi

2 for triangular lattice up to the 11th neighbors (Z is the number of neighbors!.

Neighbor 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Z 6 6 6 12 6 6 12 6 12 12 6
r i /d 1 A3 2 A7 3 A12 A13 4 A19 A21 5
(xi

2yi
2/d4 0.75 6.75 12 37.5 60.75 108 253.5 192 805.5 843.75 468.
-
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m5
1

kBT^A&H K (i , j

f8

r
DxDyL 2

2K S (
i , j

f8

r
DxDyD 2L J

1
1

^A&K (i , j

f9

r 2 ~Dx!2~Dy!2L 2
1

^A&

3K (
i , j

f8

r 3 ~Dx!2~Dy!2L 1
1

2^A&K (i , j
rf8L

5C° 442p, ~8!

p5
NkBT

^A&
2

1

2^A&K (i , j
rf8L , ~9!

where the quantitiesDx andDy represent thex andy coor-
dinates of (xi2xj ), r the modulus of that vector, andA the
area of the system. Thê•••& designate configurational av
erages. The sums are over all pairs of particles. The stab
conditions are then21,22

B5l1m.0

and

m.0, ~10!

whereB is the bulk modulus.
In uniform dilation ensembles,26 including theTpN en-

semble, in which the shape of the MD cell is fixed and t
variations of the MD cell lengthsl 1 ,l 2, and l 3 satisfy
l 1 / l 01

5 l 2 / l 02
5 l 3 / l 03

, it has been shown27 that Eq. ~8! is
still valid, but Eq.~7! fails. In the present work we calculate
m using Eq.~8! in both theTVN and TpN ensembles, and
found that they agree to within 1%.

In uniform dilation ensembles, one can findB from

kBT^A&
B

5^A2&2^A&^A&. ~11!

However, as we discussed in Ref. 27, the rate of converge
of Eq. ~11! is unsatisfactory in simulations. Therefore, w
calculatedB using Eqs.~7! and ~8! in the TVN ensemble.

For a 2D simple Bravais lattice at zero temperature a
hydrostatic pressurep, using periodic boundary condition
Eqs.~7!–~9! can be further simplified to

l5l01p, m5l02p,

l05
1

2a (
r iÞ0

S f9~r i !

r i
2 2

f8~r i !

r i
3 D xi

2yi
2 ,

p52
1

4a (
r iÞ0

r if8~r i !, ~12!
ty

e

ce

d

wherea is the area of the unit cell; the origin of the coord
nate system is a lattice point and the summation is over
coordinate of all lattice points except the origin.l0 is actu-

ally equal to the elastic constantsC° 44 andC° 12. Without com-
puting the sums, some conclusions can be drawn from th
formulas. If p.0 ~compression!, then l1m.2m, and the
shear instability will always occur prior to the spinodal i
stability ~in the sense of vanishing bulk modulus, i.e
B5l1m50). In contrast, if p,0 ~expansion!, then
l1m,2m and the spinodal instability will always occu
prior to the shear instability. The spinodal instability corr
sponds to rupture. We can expect these conclusions to
also valid at low temperature. In three dimensio
B5(3l12m)/3, and such a simple argument cannot
made.

r i and (xi
2yi

2 up to the 11th neighbors for a triangula
lattice can be found in Table I. For the piecewise linear fo
monolayer ~PLFM!, using Eq. ~12! and noting that for a
perfect triangular system withd>0.75d0 we only need to
consider six nearest neighbors, we obtain

l55
A3

4
~5r1/224!k 0.75d0<d<1.15d0 ,

A3

4
~426.5r1/2!k 1.15d0,d<1.3d0 ,

0 d.1.3d0 ,

m55
A3

4
~423r1/2!k 0.75d0<d<1.15d0 ,

A3

4
~3.9r1/224!k 1.15d0,d<1.3d0 ,

0 d.1.3d0 ,

p5H A3~r1/221!k 0.75d0<d<1.15d0 ,

A3~121.3r1/2!k 1.15d0,d<1.3d0 ,

0 d.1.3d0 .

~13!

where r5(d0 /d)2 is the density relative to the stress-fre
state. From Eq.~13! we can see that there is a shear instab
ity ~characterized bym<0) at d50.75d0. This corresponds
to the transition from the triangular lattice to a squa
lattice.28 At d51.15d0 both B and m jump discontinuously
to negative values. As will be seen in Sec. IV B 1, this sp
odal instability is the rupture point at zero temperature. T
discontinuity results from a discontinuity inf9 at
d51.15d0. In the other two systems the spinodal instabil
corresponding to rupture occurs continuously.

For the LJ monolayer~LJM!, using Eq.~12! and Table I,
up to the 11th neighbors, we obtain
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l5374.732S s

d D 14

2132.240S s

d D 8 e

s2 ,

m5208.183S s

d D 14

243.9324S s

d D 8 e

s2 ,

p583.2729S s

d D 14

244.1538S s

d D 8 e

s2 . ~14!

The only instability point in this system is the ruptu
spinodal instability characterized byB going nega-
tive at d51.2207s(51.0875d0) or p523.8521e/
s2(520.1092k).

Similarly for the 4-8 monolayer~4-8M!, and also up to
the 11th neighbors, we find

l5197.31S s8

d D 10

286.707S s8

d D 6 e8

s82 ,

m584.530S s8

d D 10

216.808S s8

d D 6 e8

s82 ,

p556.389S s8

d D 10

234.949S s8

d D 6 e8

s82 ~15!

In this case also the only instability point is the ruptu
spinodal instability at d51.285s8(51.080d0) or
p523.168e8/s82(520.101k).

We expect that, at zero temperature, rupture will occu
this mechanical instability point, but that, at finiteT, it will
not be so. For a range ofupu,upcu, the free energy barrie
can be so small that local thermal fluctuations will be enou
to overcome it. We illustrate this in Sec. IV.

IV. SIMULATIONS ON THE TWO-DIMENSIONAL
SOLID MEMBRANES

A. Methods

In our MD simulations, theTpN ensemble29–31 was used
for the kinetics, suplemented by theTVN ensemble32–34 for
the calculation of the elastic constants. The basic time s
wast050.05t0, wheret05Am/k. A critical rupture pressure
pc is defined as the pressure for which the membrane
tures in about 53105 time steps. This definition ofpc is
based on the assumption of an exponential decrease o
rupture time with increasingupu, a reasonable assumption fo
a thermally activated process. The above assumption is v
fied in the simulations. Within 5% ofpc are intervals ofp of
rapid rupture~less than 104 time steps! and no observed rup
ture over times in excess of 33106 time steps. The motiva
tion for the use of 53105t0 as the maximum rupture time i
based on the observation that by that time, the systems
peared well equilibrated.

The paths to rupture consisted in a slow increase of
tensionupu, in small stepsuDpu, from an initial perfect lattice
configuration. For each value ofupu the system was allowed
to equilibrate well~at least during time 53105t0). uDpu was
a function of the temperature, the range of interactions,
whetherupu.upcu. The higher the temperature and the long
the range of interactions, the smalleruDpu as upcu itself was
t

h

p

p-

the

ri-

p-

e

d
r

smaller. For instance, for the PLFM atT50.0005kd0
2/kB and

upu,upcu, uDpu50.001k. But for the PLFM at
T.0.006kd0

2/kB and upu,upcu, uDpu50.0002k. For the
LJM and 4-8M at T.0.006kd0

2/kB and upu,upcu,
uDpu50.0001k, half of what was used in the PLFM. It i
therefore reasonable to state that the tension rates in our
tems were low.

For convenience of comparison, for our equal depth
tentials,p is in units ofk andT in units ofkd0

2/kB . For the
LJM, to convert p to e/s2 and T to e/kB , multiply by
35.2756 and 44.4444, respectively. For the 4-8M, to conv
p to e8/s82 and T to e8/kB , multiply by 31.4270 and
44.4444, respectively.

Most of the simulations are for rhombuses with 28 ato
on the side. We also tried samples with 51 atoms on the
to check size effects.

B. Critical quantities

1. At zero temperature

The set of Figs. 1 to 5 show the critical rupture press
pc and the corresponding values at rupture of the lattice c
stant dc , bulk modulusBc , and shear modulusmc , as a
function of temperature. All these quantities tend to th
mechanical instability point whenT→0; this is the case for
all three kinds of potentials, where the values ofpc , dc ,
Bc , andmc at T50 are obtained from Eqs.~13!–~15!. This
supports the approach taken in Sec. III, that the rupture p
at zero temperature is a mechanical instability point. Mo
specifially, at zero temperature it is a spinodal instabil
point, whereB goes through zero continuously in the LJ
and 4-8M, and jumps to negative values in the PLFM.

No other instability was found for either the LJM or 4-8M
in the analysis of the elastic constants in Sec. III. Numeri
simulations on the LJM in theTpN ensemble at
T50.0022e/kB with pressures up top52100e/s2 support
this prediction.

FIG. 1. The variation ofupcu vs T for the two-dimensional per-
fect solid PLFM ~solid diamond! and PLFM with a vacancy con
centration of 2.56 at. %~solid triangle!.
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2. At finite temperature

The first observation that can be made from Figs. 4 an
is that, as expected, at finite temperature, rupture occurs p
to mechanical instability, since bothB and m greater than
zero at the critical pressure. Second, Figs. 1–5 show cle
that there are two temperature regimes for all three kind
interactions. The first regime, at low temperature, is char
terized by a fast nonlinear drop ofupcu from the zero-
temperature instability point. The second regime at hig
temperatures is characterized by an almost linear decrea
upcu with T, with or without vacancies. These two regim
represent different rupture kinetics, as we will discuss in
next section.

FIG. 2. The variation ofupcu vs T for the two-dimensional per-
fect solid LJM~solid triangle!, LJM with vacancy concentration o
2.56 at. %~star!, and perfect 4-8M~solid diamond!.

FIG. 3. The variation ofdc vs T for the two-dimensional perfec
solid PLFM ~solid diamond!, LJM ~solid triangle!, and 48M~star!.
5
ior

rly
of
c-

r
of

e

Figure 5 also shows that the shorter the range of inte
tion the largermc is. Since the Rayleigh speed, the upp
limit of the velocity of crack propagation, is approximate
equal to the transverse sound speed,35,36 which itself is pro-
portional toAm/r (r is the density!, we can expect that the
shorter the range of the interaction, the faster the crack
propagate. This has been verified in the simulations.

We also find that the PLFM and LJM remain solid up
the point of rupture (m.0 andB.0 for upu,upcu). But for
T.0.008kd0

2/kB , the 4-8M, with the interaction of the long
est range, melts first~lattice constant increases suddenly a
m50) and then ruptures. The liquid PLFM and LJM ruptu
under minimal stresses. These facts limit the use of th
potentials to the study of rupture in the solid phase.

FIG. 4. The variation ofBc vs T for the two-dimensional perfec
solid PLFM ~solid diamond!, LJM ~solid triangle!, and 48M~star!.

FIG. 5. The variation ofmc vs T for the two-dimensional perfec
solid PLFM ~solid diamond!, LJM ~solid triangle!, and 48M~star!.
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3. Precursor effects to rupture

At zero temperature, as follows from Eqs.~13!–~15!, the
mechnical instability point, which coincides with the ruptu
point, corresponds to an extremum in the tension2p. At
finite temperature, the two points do not coincide. Rupt
occurs before mechanical instability. However, we fou
precursor effects in bothB and m; an accelerated drop
aroundpc , especially in the PLFM and the LJM~see Figs. 6
and 7 for some typical results!. This is reminiscent of the
precursor effects, observed in the compressibility at melt
which have been investigated by Boyer.37 He argued that
their presence makes melting in solids exhibiting this eff
less abrupt, i.e., with less of a jump in the thermodynam
functions.17

In our case, with relation to rupture, the precursor effe
permit an easier identification of the critical rupture pressu

FIG. 6. The variation ofB ~diamond! andm ~solid triangle! vs
p for two-dimensional perfect PLFM atT50.006kd0

2/kB .
pc50.0508k.

FIG. 7. The variation ofB ~diamond! andm ~solid triangle! vs
p for two-dimensional perfect LJM atT50.006kd0

2/kB .
pc50.0300k.
e

,

t
c

s
.

But, on the other hand, they make it harder to extrapolate
the mechanical instability point. This point has been found
be inaccessible by either theTpN or theTVN ensemble. We
observed that, in theTVN ensemble, slightly above the rup
ture point ~within about 10% ofpc), that the averageB
~often ,0) andm are highly unstable even up to 106t0 in
simulations and also sensitive to the initial conditions~con-
figuration and velocity!. In contrast, the same quantities b
low the rupture point are very stable within less th
105t0. In the intermediate region occurs the accelerated d
in B andm aroundpc—the precursor effects shown in Fig
6 and 7 for the PLFM and LJM, respectively. They becom
more pronounced with increasing temperature and rang
interaction. The latter fact is illustrated by comparing t
effect in the LJM with that in the PLFM which has neares
neighbor interactions.

The TVN ensemble, which is a better ensemble as a r
to calculate elastic constants,27 should be used to identify the
rupture point. SinceB drops more rapidly thanm near rup-
ture, it is the quantity to follow. Typically, in theTVN en-
semble, 105t0 is enough to obtain rather good results f
B, m, andp. But in theTpN ensemble, we have to run som
samples to over 33106t0.

In the 4-8M, which melts before rupturing, bothB and
m drop to zero at the melting point, making the identificati
of this transition easy~see Fig. 8!. B then rises after melting
There is no evidence of precursor effects in this state.

C. Rupture kinetics

The rupture kinetics are investigated in theTpN en-
semble, which allows larger fluctuations and is closer to n
mal experimental conditions. The observed behavior is q
different at lowT than at highT.

At very low temperature, for the PLFM and LJM, ruptu
is mainly through the propagation of a single crack, acco
panied by a homogeneous area expansion. A small c
nucleates and grows. At a certain sizeL, the crack begins to
branch out.L is dependent on the temperature, the range
interaction, and the initial conditions of the simulation. It
typically a few lattice constants~5 to 9!.

FIG. 8. The variation ofB ~diamond! andm ~solid triangle! vs
d for two-dimensional perfect 4-8M atT50.0085kd0

2/kB .
dc51.041d0 andpc50.0164k.
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FIG. 9. Configurations of atoms at various timest for the LJM at T50.00005kd0
2/kB and p520.1055k. ~a! t51750t0, ~b!

t51950t0, ~c! t52000t0, ~d! t52100t0, ~e! t52450t0. The arrows represent the Burgers vectors of the dislocations and are placed a
core.
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Under isotropic tension, the crack always propaga
along ‘‘soft’’ directions, i.e., the directions with the lowe
surface energy. It agrees with the conventional wisd
which would identify the lowest energy surface as the cle
age direction, but is obviously different from that observ
under uniaxial tension where fracture can occur along
‘‘stiff’’ direction, i.e., a direction of high surface energy.36

Crack branching has also been observed in brittle ma
als under uniaxial tension or with a temperature gradient
both experimental and theoretical studies.38–41However, in a
uniaxial tension experiment this requires large values of
strain rate or temperature gradient.36,38,39At small strain rate,
the cracks do not seem to branch out.36,39 In systems under
isotropic tension, the situation is quite different. The str
builds up in all direction. This favors, or maybe even r
quires, crack branching.

Note that there are two competitive factors in rupture
netics. One is the area expansion or the increase in the la
s
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a

ri-
in

e

s
-

-
ice

constants. This is a homogeneous process. The other is
growth of the crack, which is a heterogeneous process. If
rate of area expansion is comparable with the propaga
speed of the crack, the system may eventually rupture ho
geneously. This happens at very low temperature. Increa
the range of interaction favors homogeneous rupture
longer range of interaction induces a longer correlat
length which favors a collective response to the strain.
the LJM, we observed that the system finally ruptures hom
geneously forT,0.002kd0

2/kB , but for the PLFM this oc-
curs for T,0.0005kd0

2/kB . One can expect that due to an
isotropy, a system under uniaxial tension does not exh
homogeneous rupture.36

Figure 9 shows a rupture sequence for a LJM
T50.00005kd0

2/kB and upu50.1055k, slightly higher than
upcu (50.105k). At time t51750t0, a crack is nucleated, a
shown in Fig. 9~a!. At t51950t0, the size of the crack in-
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FIG. 10. Configurations of atoms at various timest for the PLFM atT50.0005kd0
2/kB andp520.168k. ~a! t5800t0, ~b! t5860t0, ~c!

t51000t0, ~d! t51280t0, ~e! t52200t0.
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creases to about 5d with d51.088d0, and a dislocation di-
pole can be seen, as shown in Fig. 9~b!. At t52000t0, the
crack begins to branch out as shown in Fig. 9~c!. At about
t52100t0 ~Fig. 9~d!!, the crack stops growing and the fast
area expansion completes the rupture process.
t52450t0, the average lattice constantd52.887d0.3s, the
cutoff of LJP, so the system has ruptured homogeneo
@Fig. 9~e!#.

Figure 10 shows a rupture sequence for a PLFM of s
51351 at T50.0005kd0

2/kB and upu50.168k (upcu
50.160k). At t5800t0, a crack is nucleated, as shown
Fig. 10~a!. The crack then grows to a size ofL53d at
t5860t0. At this size, the crack begins to branch out,
shown in Fig. 10~b!. At t51000t0, we can see a secon
branching out of the original crack, as shown in Fig. 10~c!.
In Fig. 10~d! a third branch in the crack occurs
At

ly

e

s

t51280t0. Finally at t52200t0, the system ruptures@Fig.
10~e!#; a clear case of a heterogeneous process.

As mentioned in Sec. IV B 2 crack propagation is the fa
est in the shorter range systems. For instance, at low t
perature, for the PLFM atT50.00005kd0

2/kB , the time du-
ration from the crack nucleation to a crack of size 5d is
about 130t0, but for the LJM growth to the same size re
quires 200t0. The thermal fluctuations reduce the crack v
locity in two ways. First it favors asymmetric stresses arou
the tip of the crack, and hence nonrectilinear motion wh
reduces the forward velocity of the crack. Secondly it wea
ens the solid, with the ensuing effect on crack velocity.

The high-temperature dynamics are different. At hi
temperature, gliding dislocation dipoles are created fi
which then develop into holes. Ingrown vacancies limit t
role of dislocations and can lead to direct cavitation. Ir
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FIG. 11. Configurations of atoms at various timest for the PLFM at T50.006kd0
2/kB and p520.0550k. ~a! t528100t0, ~b!

t528650t0, ~c! t528750t0, ~d! t529200t0, ~e! t529400t0, ~f! t529600t0.
te
th
le
m

e-
e
e

f
t-
c
o
2

p-

a

s

ri-
re.
is a
nical

p-
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spective of the presence of the ingrown vacancies, the sys
becomes porous before rupture, and rupture is mainly via
merger of holes. Furthermore, pores become more preva
as the range of interparticle interactions increases. The
terial is more ductile.

The temperatureT1 separating these two regimes is d
pendent on the range of interaction. The shorter the rang
interaction, the higherT1. In other words, the shorter th
range of the interaction, the larger the temperature range
the fast nonlinear drop ofupcu. This is because the shor
range interaction favors the formation of a single large cra
In systems with long-range interaction the formation
dislocation dipoles is favored, as was discussed in Ref.
For the PLFM, T1'0.0035kd0

2/kB . For the LJM, T1

'0.0025kd0
2/kB . But for the 4-8M,T1,0.000025kd0

2/kB .
And below 0.00002kd0

2/kB , we observe homogeneous ru
ture. No crack was ever seen in this last system.

Figure 11 shows a rupture sequence for a PLFM
m
e
nt
a-

of

or

k.
f
7.

t

T50.006kd0
2/kB , higher thanT1, andupu50.0550k, slightly

higher thanupcu(50.0534k). At t528100t0, some vacan-
cies are nuclueated, as shown in Fig. 11~a!. At t528650t0, a
dislocation dipole is created@Fig. 11~b!#. The dislocation di-
pole then develops into small pores@Fig. 11~c!#. Figures
11~d! and 11~e! show clearly the merger of these pores. A
we can see from Fig. 11~f!, at t529600t0, more holes and
dislocations appear just before rupture.

The kinetics can explain why the mechanical stability c
teria fail to predict the rupture point at finite temperatu
The propagation of a single crack or the merger of holes
heterogeneous process, but the derivation of the mecha
stability criteria assumes homogeneous deformation.21,22

V. EFFECT OF OUT-OF-PLANE FLUCTUATIONS:
A ONE-DIMENSIONAL CLOSED MEMBRANE

In Secs. III and IV, we have discussed in detail the ru
ture kinetics of a flat membrane, which is constrained with
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a two-dimensional space, and hence does not allow tr
verse fluctuations. For a real membrane there is, howe
normally the third degree of freedom and transverse fluc
tions will be present. To assess their effect on the rupt
kinetics we consider a simple model of self-assembled m
branes, which we study here in one dimension, by form
closed molecular chains. This 2D vesicle is pressurized w
an ideal gas. We find two very distinct regimes of ruptu
behavior. At lowT rupture can be explained by the avera
force on the membrane approaching close to the critical b
strength in the membrane. But at highT, it seems totally
fluctuation driven, with the critical gas pressure bearing lit
connection with the average bond strength.

A. The self-assembling molecules

In the 1D closed chains or 2D vesicles, the particles
assumed to have a directorn, which can also be considere
as a main axis of symmetry. They interact through the p
potential

f~r 1,r 2!54eH S s

r 12
D N

2S s

r 12
D M

@11g f ~r 1,r 2!#J , ~16!

with

f ~r 1,r 2!5n1–n22@~n11n2!•~r 12!#
2. ~17!

We choseM56,N512 ~Lennard–Jones-like potential o
LJP! and M54,N58 ~4-8 potential or 4-8P! to probe the
effects of the range of the interaction. Thef term in the
potential introduces an orientation interaction, andg can be
used as a measure of that interaction.g50 gives the usua
M2N potential and the system tends to form a bulk ev
with the inclusion of a pressurizing gas. In our simulatio
we choseg50.9, since for this value the particles can se
assemble into long chains at moderate temperatures. Th
teraction favors a parallel orientation of the directors~i.e.,
n1–n251). The cutoff was chosen to ber c53.0s for LJP
andr c53.01.5s for 4-8P. The unit of time in the simulation
is t05Ams2/e.

To deal with the changes in direction of the main axisn,
a rotational inertiaI was introduced.I 51/2ms2 was chosen
for convenience, wherem is the mass of the particles.

Pressure inside the vesicle is produced with a gas of
ticles, of mass equal to the particles forming the chain. Th
particles interact with the particles of the vesicles with
1/r 12 law, but not with each other. The pressurizing gas
essentially an ideal gas. Changing the mass of the gas
ticles could modify the kinetics.

B. The simulations

The isothermal-isochoreTVN ensemble32–34 was used
with the damped force method34 to keep the temperatur
constant. The basic time step in most of our simulations
t050.005t0, where t05Ams2/e. We also tried for some
samplest050.0025t0 but there was no significant chang
Following the same argument as in Sec. IV, a critical rupt
pressurepc could be easily determined as the pressure se
rating intervals ofp of rapid rupture and no observed ruptu
over 23106 time steps. The intermediate region is abo
s-
r,

a-
re
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d

e

ir
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s
ar-
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e
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t

2% of pc , a little smaller than in 2D, which is expected fo
reasons of dimensionality. The initial configuration was
closed circular chain.

Since the pressurizing gas is essentially an ideal gas
usedupu5NgaskBT/A to calculate the pressure, whereA is
the area enclosed by the chain, andNgas the number of par-
ticles in the pressurizing gas. The area was calculated by
methods, one isA5pR2 with R5Nd/2p. N is the number
of particles in the vesicle,d the average distanc
between the nearest neighbors. The justification of t
expression is that in our simulations the vesicle is alwa
nearly circular up to rupture. The other method is to u
A51/2( i

N(yi1yi 11)(xi2xi 11) with xN115x1 and
yN115y1. The results of both methods were consistent.

C. Results

From Figs. 12–14, we can see that there are also
regimes, separated by a special temperature namedT2, in the
variation of pc vs T, anddc , the corresponding critical lat
tice constant, vsT. There is a fast decrease ofupcu and dc

FIG. 12. The variation ofupcu vs T for a one-dimensional closed
LJM of 100 particles~solid diamond! and 150 particles~solid tri-
angle!.

FIG. 13. The variation ofupcu vs T for a one-dimensional closed
4-8M of 100 particles.
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below T2 for both LJP and 4-8P interactions. This is th
expected behavior for a thermally activated process. AtT2, a
sudden drop ofupcu and dc occur for the LJP. There is no
such drop in the 4-8P system. The longer range force te
to behave more smoothly. In the shorter range LJP sys
pc is nearly constant over a significant temperature inter

T2 is dependent on both the interaction and the size of
system. T2'0.125e/kB with the LJP and 100 particles
T2'0.120e/kB with the LJP and 150 particles, an
T2'0.14e/kB with the 4-8P and 100 particles.

As in the 2D case discussed in Sec. IV, one can ass
that in these two regimes the rupture kinetics are differe
But contrary to the 2D case, it is difficult to determine d
rectly what causes the rupture. To gain some insight,
monitored the relationship between the critical force and
pressure at rupture in the 100 particle LJP vesicle.

At zeroT, assuming that the system is a perfect circle,
relationship between the pressure and the force (F) on a
particle from particles on each side is given by

F52pR, ~18!

whereR is the radius of circle. It is to be expected that stro
thermal fluctuations, dominantly transverse, will lead to v
lation of this relation. For a more detailed comparison,
also calculatedF5F8(d)1F8(2d), where

F~r !54eH S s

r D N

2~11g!S s

r D MJ .

F is another approximation for the force since the orientat
term f in the interparticle interaction@see Eq.~17!# is always
'1 in simulations. Table II, gives the values of these qu
tities at rupture.

From Table II, we can see that at highT, 2pcR is signifi-
cantly smaller than̂Fc& or F8(dc)1F8(2dc). But, at low
T, ^Fc&'F8(dc)1F8~2dc), and comparable to 2pcR. This
suggests that, at aboutT50.12, thermal fluctuations sud
denly become large enough to drive the rupture kinetics.

FIG. 14. The variation ofdc vs T for a one-dimensional close
LJM with 100 particles~solid diamond! and 4-8M with 100 par-
ticles ~solid triangle!.
ds
m,
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e

e
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e
e

e

-
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In our simulations, the vesicle is always nearly circular
to rupture. Shape fluctuations do, however, become not
able in the longer-range system.

Finally, we should point out that the units in this sectio
are different from those in Sec. IV A. Converting them in
the same units using the remarks in Sec. IV, we find t
upcu is much smaller than in the 2D flat membranes. Ho
ever, it does not necessarily mean that the out-of-plane fl
tuations are dominant. The energies of fluctuations in a
system scale inversely with system size,~wave vector! 2

times lengthL, or (2p/L)2L}1/L. So we expected and
found significant finite-size effects. We are not able for th
reason to determine whether the transverse fluctuation dr
regime occurs before or after the in-plane mechanism. T
will be the subject of future work.

VI. SUMMARY AND DISCUSSION

We have investigated the rupture kinetics of monolay
subjected to isotropic stress, in three central-force syst
with the range of the interparticle interaction going fro
nearest neighbor to about five lattice spacings. Here is a s
mary of our findings on the 2D model with in-plane kinetic

At T50 K, rupture is by a homogeneous process, a
critical stress is as predicted by stability criteria. As the te
perature is raised, there is a rapid drop in the critical str
pc . Rupture becomes a heterogeneous process and o
below the stress values predicted by stability criteria wh
assume homogeneous deformation. Precursor effects in
elastic constants, in particular the bulk modulus, facilitate
identification of the rupture point. At lowT, the regime of
the rapid drop inpc , the kinetics is by nucleation of a singl
crack, which branches out and grows till through a combi
tion of area expansion and crack growth the monolayer fa

At temperatures higher than some criticalT1, the rate of
decrease of the critical stress slows down. Gliding dislo
tion dipoles are nucleated, suggesting a ductile behav
These grow with the addition of vacancies. The holes gr
and merge till failure. Ingrown vacancies reduce the infl
ence of dislocations and can lead to direct cavitation.

Crack propagation is faster in the system with short-ran
force. It is prevalent in systems with nearest-neighbor int
action. The opposite is true for the longest-range force s
tem ~4-8P, cutoff at 5s), where a crack propagation regim
is hard to identify.

The temperatureT1 separating these two regimes is d
pendent on the range of interaction and the shorter the ra
of interaction, the higher this temperature. We have also p
sented simple expressions for stress, bulk modulusB and
shear modulusm for systems with PLFP, LJP, and 4-8P,

TABLE II. Critical quantities in 1D for system with LJP and
100 particles.

T dc 2pcR5pcNd/p ^Fc& F8(dc)1F8~2dc) pc

0.15 1.0238 1.462 5.218 3.5623 0.044
0.14 1.0220 1.311 5.055 3.2803 0.040
0.11 1.0283 4.548 4.750 4.4086 0.139
0.10 1.0330 6.280 4.910 5.1368 0.191
0.09 1.0300 5.852 4.585 4.6770 0.178
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zero temperature and under isotropic tension.
Although this work focuses on the behavior of two

dimensional systems, it also throws some light on the fr
ture kinetics of bulk materials. Our results support the co
clusion that the cleavage direction under isotropic stres
different from that under anisotropic stress. We have a
shown that the crack velocity decreases with an increas
the range of interaction. This can account for the fact that
crack velocity of the modified LJP system~MLJ!, used in
Ref. 36, is faster than in the original LJP system. The MLJ
a nearest-neighbor interaction but the LJP has a rang
several atomic sites. We will venture a comment about
method of prenotching of a single crack in materials, wh
is often used in studies of the fracture dynamics and
brittle-to-ductile transition. These experiments may give d
ferent rupture kinetics than if isotropic stress were applied
the system, in particular for ductile materials. With isotrop
stress, cracks are more likely to branch out along the equ
lent low energy surfaces. Anisotropic stress with prenotch
may preempt the formation of holes in ductile materials, t
favored mechanism under isotropic stress in our 2D co
puter simulations.

The two regimes of rupture kinetics reported seem rela
to the brittle-to-ductile transition. This transition is accomp
nied by a large increase in the dislocation density.42 The
temperatureT1 separating the two regimes, would then b
the brittle-to-ductile transition temperature. This also su
gests that the system with the shorter range of interactio
more brittle sinceT1 is higher.

There is a parallel between the observed rupture beha
and the vacancy annealing kinetics studied in ear
o

i

t

-
-
is
o
in
e

s
of
e
h
e
-
o

a-
g
e
-

d
-

-
is

or
r

papers.20,27,43In simulations of annealing behavior the PLF
system formed slowly cavities of varying size, the LJP s
tem had a low temperature and pressure phase, with a sim
behavior, and a higher pressure and temperature phase w
rapid dislocation mediated annealing~DMA ! kinetics. The
4-8P system, with the longest-range potential, exhibited o
the DMA kinetics. The presence of dislocations again in
cates ductile behavior. In brittle materials, annealing co
only rely on the slow diffusion of vacancies and their mutu
attraction.

Biological membranes tend to be in liquidlike phases. T
relevance of this work to biological systems is in showi
how the role of vacancies increases as the material sof
and becomes more ductile. Dislocations are generate
pairs as dipoles, which are in fact condensed lines
vacancies.44 The ease of nucleation of dislocations appe
related to the nucleation rate of vacancy clusters, or po
There is a connection between the two. The nucleation
vacancies in a brittle material would seem much more di
cult.

The 1D model system, that we studied, shows that tra
verse fluctuations can also drive the rupture kineti
Whether, in a 3D vesicle, they can preempt the mechani
discussed above is still an open issue.
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