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Viscoelasticity near the gel point: A molecular dynamics study
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We report on extensive molecular dynamics simulations on systems of soft spheres of functionalityf, i.e.,
particles that are capable of bonding irreversibly with a maximum off other particles. These bonds are
randomly distributed throughout the system and imposed with probabilityp. At a critical concentration of
bonds,pc'0.2488 forf 56, a gel is formed and the shear viscosityh diverges according toh;(pc2p)2s. We
find s'0.7 in agreement with some experiments and with a recent theoretical prediction based on Rouse
dynamics of phantom chains. The diffusion constant decreases as the gel point is approached but does not
display a well-defined power law.
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I. INTRODUCTION

The behavior of transport coefficients and elastic mod
near the gelation transition has been discussed in the lit
ture for many years@1#. To date no consensus on either t
theoretical or experimental side has emerged as far as
critical behavior of these quantities is concerned. The p
nomenology is as follows. As monomers or polymers
randomly cross-linked to each other in a melt, the shear
cosity h increases with cross-link concentrationp and di-
verges at a critical concentrationpc at which an amorphous
rigid network is formed. Experiment and theory both yie
h;(pc2p)2s but there is no general agreement regard
the value of the exponents. One group of experiments ha
produced exponent values for the shear viscosity in the ra
0.6<s<0.9 @2,3#. Another group@4–6# has reported value
for s in the range 1.1–1.3 and used a scaling ansatz to in
pret these results@4#. At this point it is not clear if these quite
different values of the exponent result from different phy
cal mechanisms or if experimental problems are respons
The experimental situation is complicated by the fact that
size of the basic units can affect the size of the critical
gion: As de Gennes showed@7#, vulcanization~cross-linking
of very long chains! must be distinguished from gelatio
~cross-linking of short chains or monomers!. As the chain
length increases, the critical region becomes smaller and
behavior remains mean field like over a larger range op.
This conclusion is supported by recent experiments@4,8#
which show quite clearly that chain length is a relevant
rameter.

There is also considerable disagreement as far as theo
concerned. Many years ago, de Gennes@9# argued that the
viscosity is analogous to the conductivity of a random m
ture of normal conductors and superconductors, with an
ponents'0.67. The scaling argument mentioned above@4#
predictss52n2b'1.35, wheren'0.88 andb'0.41 are
the correlation length and order parameter exponents of
colation theory in three dimensions. Finally, a recent theo
ical analysis of randomly cross-linked phantom~i.e., non-
self-avoiding! polymers with Rouse dynamics@10# yields s
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5f2b'0.7 wheref'1.11 is the crossover exponent of
random resistor network. Given this wide disparity in bo
theoretical and experimental results, computer simulati
may help to clarify the situation.

Dynamical scaling theory relates the viscosity below t
gel point and the modulus above the gel point@1#. The shear
modulusm of a rigid network near the gel point is typicall
entropic in nature and vanishes with a power law of its o
as the gel point is approached from the rigid phase:m;(p
2pc)

t. Recent numerical work on systems in the percolat
universality class@11# has provided evidence that the exp
nent t is the same as that of the conductivity of a random
disordered network of conductors and insulators near the
colation point. This result is consistent with another arg
ment of de Gennes@12#. In the dynamical scaling theory o
the gelation transition, the two exponentst and s are not
independent, but rather obey the sum rules1t5z wherez
describes the divergence of the longest relaxation time in
incipient gel: t* 5t0(pc2p)2z @1#. Moreover, at high fre-
quencies the complex viscosityh* (v)[h8(v)1 ih9(v) is
expected to decrease according toh8,h9;vu21 with u
5t/s1t and withh8/h95tanpu/2. This connection allows
an important consistency check between the results repo
here and those of@11#.

The structure of this article is as follows. In Sec. II w
describe our model and computational methods. Section
contains the bulk of the results. We conclude in Sec. IV w
a discussion and outlook for future work.

II. MODEL AND COMPUTATIONAL METHODS

The model that we simulate is capable of describing
entire range from simple liquid to entropic solid. We co
sider a system of soft spheres in three dimensions. All p
ticles interact through the potentialVsa(r i j )5e(s/r i j )

36 for
r i j <1.5s @13# with s51 and, for our simulations,kBT/e
51. If there are no other interactions, this system form
simple three-dimensional liquid at least at low density. All
our simulations are done at a volume fractionF
5pNs3/6V50.4 which is well below the liquid-solid coex
©2001 The American Physical Society05-1
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istence density. The viscosity of the system is progressiv
increased by introducing random cross-links between p
ticles. In order to ensure that the gel point coincides with
geometrical percolation point, we choose a very special
tial condition. Specifically, the system of particles is initial
placed on a simple cubic lattice that fills the cubic compu
tional box. Each particle may bond with probabilityp with
each of its six nearest neighbors. This step is precisely
same as a bond-percolation process on the simple cubic
tice. The bonding is permanent and enforced by the sph
cally symmetric potentialVnn(r i j )5 1

2 k(r i j 2r 0)2 with k
55e/s2 andr 05(p/6F)1/3s. This choice ofr 0 ensures that
the system is unstrained for allp, at least atT50. The ad-
vantage of this cross-linking procedure is that we have a v
accurate estimate of the percolation probabilitypc'0.2488
@14# and thus one less source of potential error. On the o
hand, it is certainly conceivable that the dynamics in the
phase can influence the topology and connectivity of the
cipient gel. The present model does not incorporate s
effects. We shall return to this point in Sec. IV.

For p,pc , the system consists of finite clusters of var
ing masses. Forp.pc the system is an entropic solid wit
nonvanishing shear modulus. This system has been p
ously studied by us@11# for Vsa50 and p.pc . As men-
tioned above, the results in both two and three dimensi
indicate that the moduli of such ‘‘phantom networks’’ a
controlled by the same exponent as the conductivity o
random resistor network. More recently, Farago and Kan
as well as Cohen and Plischke@15# have shown that self
avoidance is irrelevant as far as the critical behavior of
elastic constants is concerned.

Once the cross-links or bonds have been imposed,
particles move in the full three-dimensional space, subjec
periodic boundary conditions. The system of particles is fi
equilibrated for 53104 time steps with Brownian dynamics
At the end of this equilibration time, the damping and th
mal noise are turned off and the subsequent evolution is c
servative. The equations of motion are integrated with a s
dard velocity Verlet algorithm@16# with a time step ofdt
50.005Ams2/e. The shear viscosityh(p) and the self-
diffusion constantD(p) are then calculated from the appr
priate Green-Kubo formula@17#:

h5 lim
tmax→`

E
0

tmax
dtCss~ t !

5 lim
tmax→`

1

3VkBTE0

tmax
dt (

a,b
^sab~ t !sab~0!&, ~1!

where

sab5(
i 51

N

mv iav ib2(
i , j

r i j ar i j b

r i j
V8~r i j !

and whereV8 is the derivative of the total potential energ
Similarly, the diffusion constant is given by the familiar e
pression
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tmax→`

1

3N (
i 51

N E
0

tmax
dt^vi~ t !•vi~0!&. ~2!

It is well known that the velocity-velocity autocorrelatio
function decays extremely slowly, typically with a ‘‘long
time tail’’ t23/2 power law, even in simple liquids@17#. We
find the same long-time behavior in our simulations as w
remarkably for all values ofp. There is considerably more
disagreement regarding the stress-stress correlation func
Extended mode-coupling theory@18# suggests that close t
the melting point the stress correlator decays exponentiall
long times. Powles and Heyes@13# have found that both an
exponential decay and a Lorentzian provide a reasona
good fit to their data in the dense liquid regime. More r
cently, Broderixet al. @19# have shown, using Rouse dynam
ics for a system of Gaussian polymers with randomly po
tioned cross-links, that the stress correlator decays accor
to a stretched exponential formCss;exp$2(t/t)l% with a
nonuniversal exponentl (0.2,l,0.5) throughout the so
phase. We have also found that the stretched expone
function provides a very good fit to the data close to the
point, typically with an exponentl'0.2. In any case, the
decay ofCss is dramatically affected by cross-linking an
becomes very slow close to the gel point. Therefore in
evaluation of Eqs.~1! and~2! we have used time series from
tmax5300t to tmax51200t wheret is the average time be
tween collisions for particles in the non-cross-linked liqu
(p50). Even with such long runs, forp close topc an esti-
mate of the residual integral tot5` had to be added. This is
discussed further below.

III. RESULTS

We have simulated systems consisting ofN5L3 particles
with L55, 8, 12, and 20, the first three over the concent
tion range 0<p<0.24, the fourth only forp>0.20. For these
relatively small systems, the probability that one of the clu
ters percolates in at least one of the three directions is
issue. If there is percolation, then the viscosity is not a w
defined quantity and the sample is characterized instead
shear modulus. Therefore, we have eliminated all percola
samples from the calculation. ForL55, a non-negligible
number of samples percolates in at least one direction
ready atp50.15; atL520 percolation becomes significan
only at p50.23.

Figure 1 depicts the stress correlator forN5123 particles
for several cross-link concentrations. The top panel sho
this function over the entire range in time, the lower pan
for t.2t. The top panel shows thatCss(t) is essentially
unaffected by cross-linking for smallt. The effect of increas-
ing cross-link density is illustrated in the lower panel, whe
it is clearly seen that the decay of the correlation funct
becomes progressively slower as the gel point is approac
and that even att51200t, for p>0.2, the correlator is non
negligible. Therefore, integratingCss(t) only to tmax would
result in an underestimate of the shear viscosity. In orde
capture the remaining contribution, we have fittedCss(t)
with a stretched exponential over various windows (ts ,tmax)
for starting valuests.2t. Such a fit is shown in Fig. 1~b! for
the uppermost curve (p50.24) over the range 2t<t
<tmax. The fit is essentially indistinguishable from th
5-2
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simulation. As mentioned above, there is reason to beli
@19# that the stretched exponential is the appropriate fu
tional form at long times@20#. To check the quality of this fit
and to obtain an estimate of the error in the shear visco
due to this procedure, we have chosen several different s
ing points for the fit: the spread in values of the rema
integral of the fitting function fromtmax to infinity provides
an estimate of the error associated with this part of the
culation. Forp,0.2, the error due to the integration is ne
libigle; for p.0.2 we believe it to be less than 5%.

In Fig. 2 we display our data for the dimensionless sh
modulushs2/AmkBT in two versions. In part~a! the raw
data are shown as a function of (pc2p) together with a
guide to the eye of the forma(pc2p)0.7. This function
clearly captures the general behavior of the data in the in
mediate range ofp. Forp close to zero, one would not expe
the system to anticipate the formation of a gel atp'0.25,
and for p close topc finite-size effects are clearly eviden
Part~b! of this figure attempts to collapse the data by me
of the finite-size scaling ansatzh(L,p)5Ls/nC@L(p
2pc)

n# @21# with s50.7 andn50.88. Internal consistenc
requires that the scaling function have the asymptotic fo
C(x);x2s/n for large x and a line corresponding to thi
form is also shown on the figure.

Further support for the conclusions'0.7 comes from the
complex frequency-dependent viscosityh* (v)[h8(v)
1 ih9(v)5G* (v)/( iv) where G* is the complex elastic

FIG. 1. The dimensionless stress-stress correlation func
sCss /m for L512 and several cross-linking probabilities for~a!
all t/t.0 and ~b! t/t.2. In the uppermost curve in~b! we also
show the fit ofCss to a stretched exponential~solid line!. For p
50.1 the data are obtained from 30 different cross-linkings;
largerp from between 100 and 200 cross-linkings.
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modulus. The scaling ansatz for these functions@1# is
lim

v→0
h8(v);(pc2p)2s for p,pc ; lim

v→0
G8(v);(p

2pc)
t for p.pc ; and, for frequenciesv.v* , wherev* is

a characteristic crossover frequency that approaches ze
p→pc , G* (v);( iv)u. The connection between the critica
behavior of the modulus in the rigid phase and the visco
in the fluid phase is then expressed through the scaling r
tion u5t/(s1t). Moreover, in the high frequency region
one expectsh8(v) andh9(v) to both vary asvu21 and the
ratio of the real and imaginary parts to obeyu
52/p tan21$h8/h9%. In our previous work on the rigid phas

FIG. 3. Plot of the complex viscosityh* (v) as function ofv
for L512 andp50.2 ~lowest curve in each set!, 0.22, 0.23, and
0.24~top curve in each set!. The power-law formh;vu21 is more
evident for h8 than for h9 and becomes more prominent asp
→pc .

n

r

FIG. 2. Log-log plot of the dimensionless shear viscosity a
function of cross-linking probabilityp: ~a! raw data;~b! finite-size
scaling form of the data.
5-3
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DANIEL VERNON, MICHAEL PLISCHKE, AND BÉLA JOÓS PHYSICAL REVIEW E64 031505
@11#, we concluded thatt'2 in three dimensions. Therefore
with s'0.7 we haveu'0.74. The frequency-dependent vi
cosity is plotted in Fig. 3 forL512 andp.0.20. There is
clearly a region of power-law behavior that extends to low
frequencies as the critical point is approached. This beha
is seen more clearly inh8 than in h9. Nevertheless, both
pieces of the shear viscosity decrease in a way consis
with v20.25 in very satisfactory agreement with the foreg
ing discussion. The ratio ofh8 to h9 in this regime also
produces a second estimateu'0.76.

Finally, in Fig. 4 we show the dimensionless se
diffusion constantAm/s2kBTD obtained from the velocity-
velocity correlator~2! for all particles in the system. In thi
case, we show only the raw data. It seems clear from
behavior ofD in the critical region that a finite-size scalin
analysis is unlikely to improve the collapse of the data. F
p,0.2 the data are not inconsistent with a power-law beh
ior of the form (pc2p)0.7 but the evidence for this is weak a
best. Moreover, the fact that the data forp'pc are essen-
tially independent ofL suggests thatD(L→`,p→pc) is fi-
nite. Precisely at the gel point, in the thermodynamic lim
the system consists of a percolating cluster with fractal
mensionDF'2.5. The particles that are not on the spann
network are organized into finite clusters of various siz
Approximately 18% remain as monomers that presuma
are able to diffuse quite easily through the percolating clu
since this cluster contains holes on all length scales. T
would account for the absence of critical behavior inD.

IV. DISCUSSION

The results presented above and those obtained previo
@11,15# are consistent with the following physical picture
networks and viscoelastic materials for which percolation
the structural agent that generates the gel or network.
elastic constants decrease to zero at the percolation p
with a power law that, within error bars, is the same as t

@1# For a review, see M. Adam and D. Lairez, inThe Physical
Properties of Polymeric Gels, edited by J. P. Cohen Adda
~John Wiley and Sons, New York, 1996! p. 87.

@2# M. Adam, M. Delsanti, D. Durand, G. Hild, and J. P. Munc

FIG. 4. The dimensionless diffusion constantD(L,p) as a func-
tion of p. The straight line corresponds to a power law (pc2p)0.7.
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for the conductivity of a random resistor network. Also th
viscosity in the gel phase diverges as the critical point
approached from below with an exponent, again within er
bars, the same as that for the conductivity of a network
perfect conductors and resistors. Moreover, the comp
frequency-dependent viscosity at high frequencies conn
these two regimes and again the results support these
clusions. Finally, the results of the present paper are in ag
ment with recent theoretical work@10# on cross-linked phan-
tom polymers subject to Rouse dynamics.

The relation of these calculations to experiment is le
clear. While there have been some experiments@2,3# that
have obtained an exponents relatively close to ours, there i
another set of results rather different@5,6,4#, with s more
than 50% higher than ours. The results of Lusignanet al. @4#
are particularly interesting in that the system, consisting
very small units, has a cluster-size distribution that is w
described by percolation theory. Therefore, one would exp
our models to be applicable to this system, certainly as fa
the static properties are concerned. However, the experim
tal system has rheological properties (s'1.36,t'2.7) very
different from ours. At present we have no explanation
these differences. One possibility is that the slow gelat
process in the experiment allows molecular diffusion to
fect the structural properties much more than our ‘‘fla
bonding’’ process does. This could change the connecti
of the units without necessarily affecting the size distributi
of the clusters in a dramatic way. Such effects are ea
incorporated in our models and will be the subject matter
future work.

We are aware of one previous simulation that attempte
address the critical behavior of the shear viscosity near
gel point. Recently del Gadoet al. @22# simulated a very
different model, namely, particles confined to the sites o
lattice and randomly cross-linked to form clusters of vario
sizes. This system was then evolved by a bond-fluctua
method and the diffusion constantsDm of clusters of massm
measured. They postulated the relationD(R);R2(11s/n),
whereR is the radius of gyration of a cluster, and from th
determineds'1.3. We are not aware of any rigorous deriv
tion of this connection between diffusion and viscosi
However, it may be that their model simply contains diffe
ent physics.
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