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Viscoelasticity near the gel point: A molecular dynamics study
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We report on extensive molecular dynamics simulations on systems of soft spheres of functfpnality
particles that are capable of bonding irreversibly with a maximunf ofher particles. These bonds are
randomly distributed throughout the system and imposed with probabili§t a critical concentration of
bonds,p.~0.2488 forf =6, a gel is formed and the shear viscosjtgliverges according tg~ (p.—p) 5. We
find s=0.7 in agreement with some experiments and with a recent theoretical prediction based on Rouse
dynamics of phantom chains. The diffusion constant decreases as the gel point is approached but does not
display a well-defined power law.
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[. INTRODUCTION =¢—B~0.7 where¢p~1.11 is the crossover exponent of a
random resistor network. Given this wide disparity in both
The behavior of transport coefficients and elastic modulitheoretical and experimental results, computer simulations
near the gelation transition has been discussed in the literanay help to clarify the situation.
ture for many year$l1]. To date no consensus on either the Dynamical scaling theory relates the viscosity below the
theoretical or experimental side has emerged as far as thgel point and the modulus above the gel poitit The shear
critical behavior of these quantities is concerned. The phemodulusu of a rigid network near the gel point is typically
nomenology is as follows. As monomers or polymers aregntropic in nature and vanishes with a power law of its own
randomly cross-linked to each other in a melt, the shear visas the gel point is approached from the rigid phase:(p
cosity # increases with cross-link concentratipnand di-  —Ppc)'. Recent numerical work on systems in the percolation
verges at a critical concentratign at which an amorphous universality clasg11] has provided evidence that the expo-
rigid network is formed. Experiment and theory both yield nentt is the same as that of the conductivity of a randomly
n~(p.—p) S but there is no general agreement regardingdisordered network of conductors and insulators near the per-
the value of the exponerst One group of experiments has colation point. This result is consistent with another argu-
produced exponent values for the shear viscosity in the rang@ent of de Gennefl2]. In the dynamical scaling theory of
0.6<s=<0.9[2,3]. Another groupg[4—6] has reported values the gelation transition, the two exponertand s are not
for sin the range 1.1-1.3 and used a scaling ansatz to intetndependent, but rather obey the sum rstet=z wherez
pret these resulfgl]. At this point it is not clear if these quite describes the divergence of the longest relaxation time in the
different values of the exponent result from different physi-incipient gel:t* =tq(p.—p) * [1]. Moreover, at high fre-
cal mechanisms or if experimental problems are responsiblguencies the complex viscosity* (w)=7'(w)+i7"(w) is
The experimental situation is complicated by the fact that thexpected to decrease according 40, 7"~ "~ with u
size of the basic units can affect the size of the critical re=t/s+t and with »'/ %" =tanzu/2. This connection allows
gion: As de Gennes showé¢d], vulcanization(cross-linking ~ an important consistency check between the results reported
of very long chains must be distinguished from gelation here and those dfL1].
(cross-linking of short chains or monomgrés the chain The structure of this article is as follows. In Sec. Il we
length increases, the critical region becomes smaller and thdescribe our model and computational methods. Section IlI
behavior remains mean field like over a larger rangep.of contains the bulk of the results. We conclude in Sec. IV with
This conclusion is supported by recent experimddt$] a discussion and outlook for future work.
which show quite clearly that chain length is a relevant pa-

rameter. . . _Il. MODEL AND COMPUTATIONAL METHODS
There is also considerable disagreement as far as theory is
concerned. Many years ago, de Genf@sargued that the The model that we simulate is capable of describing the

viscosity is analogous to the conductivity of a random mix-entire range from simple liquid to entropic solid. We con-
ture of normal conductors and superconductors, with an exsider a system of soft spheres in three dimensions. All par-
ponents~0.67. The scaling argument mentioned abp¥k ticles interact through the potentistk,(r;) = €(o/r;)% for
predictss=2v— ~1.35, wherev~0.88 andB~0.41 are r;;<1.5¢0 [13] with o=1 and, for our simulationskgT/e

the correlation length and order parameter exponents of per=1. If there are no other interactions, this system forms a
colation theory in three dimensions. Finally, a recent theoretsimple three-dimensional liquid at least at low density. All of
ical analysis of randomly cross-linked phantdie., non- our simulations are done at a volume fractio®
self-avoiding polymers with Rouse dynamid¢4.0] yields s = 7No3/6V=0.4 which is well below the liquid-solid coex-
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istence density. The viscosity of the system is progressively 1N e
increased by introducing random cross-links between par- D= Ilim ﬁE dt{v;(t)-v;(0)). (2
ticles. In order to ensure that the gel point coincides with the tmax—* =170

geometrlic'al percolqpon point, we choose a very ?p?c."?" N1t is well known that the velocity-velocity autocorrelation
tial condition. _SpeC|f|caI_Iy, the_ system_of partlcles_ is initially function decays extremely slowly, typically with a “long
placed on a simple CL_Jblc lattice that f|I_Is the cub|_c_ computa-time tail” t~ 2 power law, even in simple liquidgl7]. We
tional box. Each particle may bond with probabilpywith  fing the same long-time behavior in our simulations as well,
each of its six nearest neighbors. This step is precisely th?emarkably for all values op. There is considerably more
same as a bond-percolation process on the simple cubic lagisagreement regarding the stress-stress correlation function.
tice. The bonding is permanent and enforced by the sphergxtended mode-coupling theofg8] suggests that close to
cally symmetric potentialV,y(ri;)=3k(rij—ro)®> with k  the melting point the stress correlator decays exponentially at
=5¢/ 0 andry=(7/6®) 3¢ This choice ofr , ensures that long times. Powles and Hey¢s3] have found that both an
the system is unstrained for gl at least alf=0. The ad- exponential decay and a Lorentzian provide a reasonably
vantage of this cross-linking procedure is that we have a vergood fit to their data in the dense liquid regime. More re-
accurate estimate of the percolation probabifity=0.2488  cently, Broderixet al.[19] have shown, using Rouse dynam-
[14] and thus one less source of potential error. On the othd€s for a system of Gaussian polymers with randomly posi-
hand, it is certainly conceivable that the dynamics in the sofioned cross-links, that the stress correlator decays according
phase can influence the topology and connectivity of the inf0 @ stretched exponential for@,,,~exp{—(t/n)"} with a
cipient gel. The present model does not incorporate sucRonuniversal exponent (0.2<\<0.5) throughout the sol
effects. We shall return to this point in Sec. IV. phasg. We h_ave also found that the stretched exponential
For p<p., the system consists of finite clusters of vary- function provides a very good fit to the data close to the gel

ing masses. Fop>p. the system is an entropic solid with point, typically with an exponenk~0.2. In any case, the

nonvanishing shear modulus. This system has been pre\)‘?i—ecay ofC,, is dramatically affected by cross-linking 'and
ously studied by ug11] for V.,=0 andp>p,. As men- becomes very slow close to the gel point. Therefore in the

. . . ._evaluation of Eqs(1) and(2) we have used time series from
tioned above, the results in both two and three dimensions™ ~ _ i : . )
indicate that the moduli of such “phantom networks” are ﬁ“ax_ 3007 10 tq,= 1200r where is the average time be

controlled by the same exponent as the conductivity of tween collisions for particles in the non-cross-linked liquid
. p=0). Even with such long runs, fqr close top, an esti-

random resistor network. More recently, Farago and Kantop,4ie of the residual integral te=oc had to be added. This is

as yvell as .CQhen and Plischk&5] havg 'shown thqt self-  giscussed further below.

avoidance is irrelevant as far as the critical behavior of the

elastic constants is concerned. Ill. RESULTS

Once the cross-links or bonds have been imposed, the . o 3 .

particles move in the full three-dimensional space, subject to . e have simulated systems consisting\of L " particles

periodic boundary conditions. The system of particles is firstVith L=5, 8, 13' a;f ZhO, fthe fr':St tlhrfee gverzthtla:cor;lcentra-

equilibrated for 5< 10* time steps with Brownian dynamics. tion range G< p=<0.24, the fourth only fop=0.20. For these

At the end of this equilibration time, the damping and ther_relatlvely small systems, the probability that one of the clus-

. S ters percolates in at least one of the three directions is an
mal noise are turned off and the subsequent evolution is COMlSsue. If there is percolation, then the viscosity is not a well-

; : . i Mefined guantity and the sample is characterized instead by a
dard velocity Verlet algorithnj16] with a time step ofét  gpaar modulus. Therefore, we have eliminated all percolating
=0.005/mo“/e. The shear viscosityp(p) and the self-  samples from the calculation. Far=>5, a non-negligible

diffusion constanD(p) are then calculated from the appro- number of samples percolates in at least one direction al-

priate Green-Kubo formulgl7]: ready atp=0.15; atL =20 percolation becomes significant
only atp=0.23.
. tmax Figure 1 depicts the stress correlator foe 12° particles
7= lim j dtCy,(t) for several cross-link concentrations. The top panel shows
tmax—~ 0 this function over the entire range in time, the lower panel

1 nax for t>27. The top panel shows tha,,(t) is essentially
= lim mj dt E (a“B(t)a*P(0)), (1) unaffected by cross-linking for smdllThe effect of increas-

X% 81./0 a<p ing cross-link density is illustrated in the lower panel, where
it is clearly seen that the decay of the correlation function
where becomes progressively slower as the gel point is approached
and that even at=1200r, for p=0.2, the correlator is non-

tma

N . negligible. Therefore, integrating,,(t) only to t,,, would
U“B=2 mviaviB—Z Il“—”’BV’(rij) result in an underestimate of the shear viscosity. In order to
i=1 i<y Tij capture the remaining contribution, we have fitt€g(t)

with a stretched exponential over various windows t(,,,,)
and whereV' is the derivative of the total potential energy. for starting value$s>27. Such a fit is shown in Fig.(b) for
Similarly, the diffusion constant is given by the familiar ex- the uppermost curve p=0.24) over the range 2<t
pression <tnhax- The fit is essentially indistinguishable from the
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FIG. 1. The dimensionless stress-stress correlation function
oC,,/m for L=12 and several cross-linking probabilities f@
all t/7>0 and(b) t/7>2. In the uppermost curve itb) we also
show the fit ofC,, to a stretched exponentiéolid line). For p
=0.1 the data are obtained from 30 different cross-linkings; for
largerp from between 100 and 200 cross-linkings.

FIG. 2. Log-log plot of the dimensionless shear viscosity as a
function of cross-linking probability: (a) raw data;(b) finite-size
scaling form of the data.

modulus. The scaling ansatz for these functidi$ is
_ _ _ _ _lim 7' (0)~(pc—p) ° for p<pc; lim  G'(w)~(p
simulation. As mentioned above, there is reason to believe “ | ) : . .
[19] that the stretched exponential is the appropriate func- Po)" for P=Pe; and, for frequencies> o™, wherew™ is

tional form at long time$20]. To check the quality of this fit a Charath”St'C crossuover frequenc_y that approaches_z_ero as
and to obtain an estimate of the error in the shear viscosit] ~*Pe: G” (@)~ (iw)". The connection between the critical

due to this procedure, we have chosen several different star, 9Fhavz(?r.gf tﬁe mgd?rllus in the rigiz ?r?ase STS the vliscosi:y
ing points for the fit: the spread in values of the remaingm € fluid phase 1s then expressed through the scaling refa-

integral of the fitting function from,,, to infinity provides tion u=t/(s+’t). Mor;:O\’{er, n tl?e hh'gh freqlﬂErllcy (rje%lon,
an estimate of the error associated with this part of the cal®"€ €XPect; (@) and 7"(w) to both vary asv®"* and the

culation. Forp<<0.2, the error due to the integration is neg- ratio Of,lthe, rsal and ima_\ginary parts to .obey
libigle; for p>0.2 we believe it to be less than 5%. =2/mtan”"{n'/7"}. In our previous work on the rigid phase

In Fig. 2 we display our data for the dimensionless shear

modulus 7a/\/mksT in two versions. In par(a) the raw 10° g

data are shown as a function op(—p) together with a ) ;

guide to the eye of the forma(p.—p)®’. This function 10 I :
clearly captures the general behavior of the data in the inter- §, 100 L ]
mediate range gb. Forp close to zero, one would not expect =
the system to anticipate the formation of a gelpat0.25, g 10" L " ]
and forp close top, finite-size effects are clearly evident. = i n ]
Part(b) of this figure attempts to collapse the data by means 10° 3 3
of the finite-size scaling ansatzy(L,p)=LY"¥[L(p 10° P ]

—po)¥1 [21] with s=0.7 andv=0.88. Internal consistency
requires that the scaling function have the asymptotic form
P (x)~x"%" for large x and a line corresponding to this
form is also shown on the figure.

Further support for the conclusias=0.7 comes from the
complex frequency-dependent viscosity* (w)=7'(w)
+i7"(0)=G*(w)/(iw) where G* is the complex elastic

10 10° 10* 10% 0)10'2 107 10°

FIG. 3. Plot of the complex viscosity* (w) as function ofw
for L=12 andp=0.2 (lowest curve in each 9gt0.22, 0.23, and
0.24(top curve in each setThe power-law formp~ "~ is more
evident for ' than for »” and becomes more prominent ps

—Pc-
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01 | e for the conductivity of a random resistor network. Also the

viscosity in the gel phase diverges as the critical point is
approached from below with an exponent, again within error
bars, the same as that for the conductivity of a network of
perfect conductors and resistors. Moreover, the complex
frequency-dependent viscosity at high frequencies connects
these two regimes and again the results support these con-
clusions. Finally, the results of the present paper are in agree-
ment with recent theoretical wofi 0] on cross-linked phan-
tom polymers subject to Rouse dynamics.

The relation of these calculations to experiment is less
clear. While there have been some experimg@atsS] that

FIG. 4. The dimensionless diffusion constantL,p) as a func- have obtained an exponesitelatively close to ours, there is
tion of p. The straight line corresponds to a power lgw£ p)°7. another set of results rather differeft,6,4], with s more

than 50% higher than ours. The results of Lusigegal. [4]

[11], we concluded that~2 in three dimensions. Therefore, are particularly interesting in that the system, consisting of
with s~0.7 we haveu~0.74. The frequency-dependent vis- very small units, has a cluster-size distribution that is well
cosity is plotted in Fig. 3 fol.=12 andp>0.20. There is described by percolation theory. Therefore, one would expect
clearly a region of power-law behavior that extends to lowerour models to be applicable to this system, certainly as far as
frequencies as the critical point is approached. This behavidhe static properties are concerned. However, the experimen-
is seen more clearly i’ than in 7”. Nevertheless, both tal system has rheological properties~1.36t{~2.7) very
pieces of the shear viscosity decrease in a way consistegifferent from ours. At present we have no explanation for
with @~ %2%in very satisfactory agreement with the forego- these differences. One possibility is that the slow gelation
ing discussion. The ratio of)’ to %" in this regime also process in the experiment allows molecular diffusion to af-
produces a second estimate-0.76. fect the structural properties much more than our “flash

Finally, in Fig. 4 we show the dimensionless self- bonding” process does. This could change the connectivity
diffusion constant/m/a?kgTD obtained from the velocity- ©f the units without necessarily affecting the size distribution
velocity correlator(2) for all particles in the system. In this Of the clusters in a dramatic way. Such effects are easily
case, we show only the raw data. It seems clear from thécorporated in our models and will be the subject matter for
behavior ofD in the critical region that a finite-size scaling future work. _ . .
analysis is unlikely to improve the collapse of the data. For e are aware of one previous simulation that attempted to
p<0.2 the data are not inconsistent with a power-law behavaddregs the critical behavior of the shea}r viscosity near the
ior of the form (p.— p)°7 but the evidence for this is weak at 9€! point. Recently del Gadet al. [22] simulated a very
best. Moreover, the fact that the data forp. are essen- different model, namely, particles confined to the sites of a
tially independent o suggests thad (L—,p—p,) is fi- lattice and randomly cross-linked to form clusters of various
nite. Precisely at the gel point, in the thermodynamic limit,SizeS. This system was then evolved by a bond-fluctuation
the system consists of a percolating cluster with fractal dimethod and the diffusion constarids, of clusters of masen
mensionD¢~2.5. The particles that are not on the spanningMeasured. They postulated the relatibfR) ~R™ @),
network are organized into finite clusters of various sizesVhereR s the radius of gyration of a cluster, and from this
Approximately 18% remain as monomers that presumablyl€términeds~1.3. We are not aware of any rigorous deriva-
are able to diffuse quite easily through the percolating clustefon of this connection between diffusion and viscosity.
since this cluster contains holes on all length scales. Thi§lowever, it may be that their model simply contains differ-
would account for the absence of critical behavioiDin ent physics.

DLp)| 2 B,

0.01 L
0.001 0.01
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