PHYSICAL REVIEW E VOLUME 62, NUMBER 5 NOVEMBER 2000

Rigorous solution for the elasticity of diluted Gaussian spring networks
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We present a rigorous solution of the elasticity of the diluted Gaussian spring netd@&&Ns at zero
temperature. We show that the deformation of a diluted DGSN is homogeneous provided that the displace-
ments of the particles on the boundary are homogeneous. It follows that at zero temperature the nonvanishing
elastic stiffness coefficients are proportional to the hydrostatic pressure in both two and three dimensions.
Follows a rigorous proof of the equivalence of the elasticity of the DGSN and the conductance of the random
resistor network at zero temperature.

PACS numbe(s): 64.60.Cn, 05.70.Fh, 62.20.Dc, 81.40.Jj

The elasticity of the diluted Gaussian spring networkshigher than the.. On the other hand, recent works suggest
(DGSNg9, in which the particles interact with their nearest that at finiteT the shear modulus of a diluted central force
neighbors via the potentiab(r)=3kr2, wherer is the dis- system has the same critical behaviorai the RRN[14—
tance between particles, is a very important issue not onlit6]. Noting that in many cases a finifeplays a role similar
because it is the common limit of various systems undeto a finite stress, it is natural to think that an elastic network
strong tension but also because it is equivalent to some otheinder tension may have a different critical behavior from the
interesting systems, such as the random resistor netwotiension-free one. An intriguing question is then in what
(RRN) [1]. It is believed that the elasticity of the DGSN has stressed elastic network is de Gennes’ prediction valid ex-
the same critical behavior as the conductamcef the RRN  actly? It was in general believed that a simple analog be-
and so can serve as a standard model system. Howevertween Kirchhoff's laws for a resistor network and the force
complete and rigorous solution of this equivalence is stillbalance conditions for the elastic network or the analog of
elusive. In this note we show that at zero temperafliyf@and  energy functions between the two systems leads directly to a
with trivial boundary conditions, the nonvanishing elasticrigorous proof of de Gennes’ prediction in the Gaussian
stiffness coefficients, which govern the elastic property of aspring network which is always stressed. However, a close
stressed systefi2—8|, are proportional to the stress in both examination of this argument show4] and also in the fol-
two and three dimensions at any concentration. As a conséewing text that such an analog in fact leads to the conclu-
qguence, we provide a complete and rigorous proof that theion that the hydrostatic pressuie(positive for compres-
elasticity of the DGSN has exactly the same behaviaras  sion), but not the elastic stiffness coefficients, has the same
any concentration. In contrast, the traditional elastic conbehavior asr. Since in general pressure does not even have
stants, which are the second derivatives of the free energyne same critical point as the elastic stiffness coefficients
with respect to straifi2—8] and are also often confused with such as in the tension-free state, to prove de Gennes’ predic-
the elastic stiffness coefficients, are all identical to zero ation in the DGSN it is necessary to study the relationship
T=0 and therefore play no role in the model system. Sincébetween the pressure and the elastic stiffness coefficients. In
the behavior of the conductance of the RRN is well known this paper we resolve this issue completely.
our results provide a complete solution of the elasticity of the The proof for de Gennes’ prediction in a tension-free iso-
DGSN atT=0. tropic force system is simple but instructive for the DGSN.

In a very influential letter in 19769], de Gennes argued Image a lattice with bonds of conductivity;; connecting
that the RRN and a diluted elastic network in which particlesnearest neighbors sitéendj, Kirchhoff's law requires that
interact through isotropic forces are in the same universality
class. More precisely, ifr vanishes at the geometric perco- _ _
lation concentratiop, aso~ (p— p.)! and the elastic modu- Z oij(Ui=U))=0 orzi =0, @
lus of an elastic network-(p—p.)' then the prediction is
f=t. Since then, extensive work has been done to investigatehereU; is the voltage at the lattice siteandl;; the current
whether the same conclusion can be drawn for other systenimgtween sites andj. But these equations are identical to the
[10-13. It has been shown, for instance, thaffat0 upon force balance equation
dilution, a tension-free network of particles interacting only
through central two-body forces generically loses its ability _ _
to withstand shear at a concentration of partigleshat is E. fij=0or Z kij(Ri—R;)=0, @)

for an elastic network with energg= 3% k;;(Ri—R;)?
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Explicitly, Ri:ri_RiO wherer; is the coordinate of theth  tion of de Gennes’ prediction for a strongly stressed isotropic
particle andR? the coordinate of particles in the tension-free Born model is not self-evident. Equatid) together with

state. It is clear that there is a one-to-one correspondend8€Se explanations do not seem to be available in the litera-
ture.

between the quantities in the two systems .
It has been showfl] that in DGSNP has the same be-

lijefyorfyorf,, havior aso. This can be understood by noting that the force
balance equation in the system is
Ui_UjHXi_Xj OrYi_Yj OrZi_Zj .

For the whole system, we have for the RRN: GU, where Z kij(ri—rj)=0, 4)

| is the macroscopic current) is the macroscopic voltage

drop, G=oL§ 2 [1] is the macroscopic conductivity with ~and so the one-to-one correspondences between the two sys-
the dimension of the system arld, is the length of the tems are

undeformed system with the assumption that all directions

have the same size for simplicity. Correspondingly for the lij—fyorfyorf,

elastic network
and
F=K’6L
Ui—UjeX—Xjory;—y;orz—z. (5)
and so
It follows that in the DGSN,

K'oL K' oL K ,
Ke, (3 K

S= = T =
L9 182 L g2° F=K/L= pL? t=sL L (©)

with K=K'/L$ ™2, whereF is a component of the total force

on the boundarysL is the corresponding deformation of the

s_ystem,Sl_s a compone_nt of the_stresrsaegatlve fqr Compres- . 'io o at any concentration.

sion and=~P), ande=4L/L is a macroscopic strain de- The elastic stiffness coefficients, which govern

termined by the deformation. The uniqueness of the solution ) : . afor: 9

and the one-to-one correspondence between the two syster%tgess—stram relations are defined by

behvior as» at al concentaons. e Sep(1)=Su(0)+ Capotar "
There is an important subtlety in this mapping associatedor a system without internal torqué2-5], whereS, 4(0) is

with the boundary conditionsl]. In the RRN the net current the stress of the reference state aﬂgﬁ the Lagrangian

flow can be in arbitrary directions so th@t, (a=x, y, and  strain tensof2,3,7).

z) can be obtained separately. However, in the spring prob- For a central force system the stress tensor and the iso-

lem, the frame acts equally in all Cartesian directions so thaghermal elastic stiffness coefficients can be calculated from

K/ or K, are strongly correlated. This is not a concern for[5]

high symmetry networks whei¢, =K, =K. We shall fol-

and S, the stress instead of any elastic constant, must have
the same behavior as. More exactly,S must be propor-

low Ref.[1] and refer to such networks as electrically iso- Sua=— S r(ij)r (i')(z _ NkBT5 )
tropic. These are the only networks that we shall discuss in VAN T DT i VR
this work. This class of system includes square networks,

triangular networks and cubic networks, either undiluted or 1 1 d'

randomly diluted. We should point out that there are in gen-caﬁ(”:v< 2 NUNIF UM UG )_Z(q)"_ r_)>

eral three independent elastic constants in the square and = rij ij

cubic lattices so that their elastic properties are not in general 1 o'

isotropic. We also assume for convenience that the system — <A( 2 r (1)1 (i )_)

has the shape of a hypercube. Note that the deformalion keTV i<j Fij

is arbitrary, so we can conclude that all nonvanishing elastic

constants should have the same critical behaviar.as <A
It is clear that the above arguments can be applied only to

a system with a tension-free referen@endeformed state

becauseR; is measured from the tension-free state as.is

Consequentlye is finite and may be large for a state under NkgT

tension. However, in this case in general K8). fails be- +—y (SacOprT 8ardps), C)

cause the relationship between stress ahd(or €) is no

longer linear. For instance, a uniform dilation from the where (...) designates ensemble averageS(A)=A

tension-free volume/, to V leads toS=NO[B(V)/V]dV, —(AY, 1(1)=Tia=Tja, andrﬁz(ri—rj)z.

whereB is the bulk modulus. In the simplest caseBbeing Equations(8),(9) are valid in bothd=2 andd=3, at any

independent of/, we getS=B In(V/V,) but it can be reduced T and under arbitrary stress. At=0, for a homogeneously

into Eq. (3) only if (V—V)/Vy<1. Therefore, the valida- deformed system such as a perfect lattice with only one par-

> r (i i 1255 S
e, ra(”)rr(”)ﬁ _E( aBCor™ SacOpr

i<j

- SaTgﬁo'_ 857'5010_ S,Bo'gum')
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ticle in the primitive cell, we can simply remove the “fluc- We can find every elastic stiffness coefficient in this way
tuation term,” i.e., the second term in E@®) and seff=0. by applying to the system different kinds of homogeneous
However, for the lattice with more than one particle in thedeformation. However, an equivalent but simple way is to
primitive cell or in our case the diluted lattice, &=0 the  use Eq.(9) by removing the “fluctuation term” and sek
“fluctuation term” tends to a limit called the “relaxation” =0. The “Born term” in Eq.(9) vanishes so that all elastic
term [18]. This “relaxation” term arises from the require- stiffness coefficients are proportional to the pressure and
ment of mechanical equilibrium that the total force @ch  therefore there is only one independent elastic stiffness co-
particle be zero. As a consequence, there may be local reaefficient. In the condensed Voigt notatip®,3,7], we have
rangements of the particl¢48] and therefore the displace-

ment is in general not homogeneoergerywhere The “re- C11=C9y=C33= = Cyy= C55=Cgc= — P, (14)
laxation” term is complex and is in general non-negligible.

For instance, for a central force system, this term is non- C1o=Cp;=C13=C3;=Cp3=C3,=P, (15
vanishing and is comparable to the first teftBorn term™)

in Eq. (9) at the critical poin{19]. Therefore, to go further Cap=0 otherwise. (16)

we have to check in a Gaussian system whether the homo-
geneous displacement guarantees the mechanical equilibriughere 4 is the shear modulus. Equatiof4),(15) give B

of every particle. =(1-2/d)P again. Equation§14)—(16) complete the proof
Under a homogeneous deformation, the displacement of ghat the elasticity of the DGSN has exactly the same behav-
point initially atr{ can be written a§2,3,6—§ ior at all concentrations as, or in other wordsg;; must be
p proportional too at any concentration. It is also interesting

o 0 .0 _ 0 -~ to note that for the high symmetry DGSN, which are electri-
Uil =Tia(T] )_r‘“_ﬁzl Uaplip, a@=12,...4, cally isotropic, c;;—Cy,=—2P=2u. This means that the
(10 DGSN are elastically isotropic, and only two elastic con-
stants are required. This is quite remarkable since Gaussian
whereu,z are constants everywhere. Requiring mechanicahetworks encompass diluted square and cubic lattices which
equilibrium in the reference state of the Gaussian systerh general are not isotropic, as mentioned earlier. For this
gives reason this elastic isotropy has to be considered as “acciden-
tal.” We should emphasize again that these results are based
FO=> kij(rioa_ rjoa):o_ (1)  on the homogeneity of the displacements in these networks.
i It is interesting to note that &t=0 the traditional elastic
. constants consist of only the “Born tern{’5] and therefore
After a homogeneous displacement, E(<)),(11) lead to are equal to zero for the DGSN. It is another illustration of
d the fact that the traditional elastic constants are not the quan-
Fia=2 kij(ria_rja):Fioa+ 2 uaBFiOB:O' (12) tiFies which determine the elasf[icity of a system un_der te_zn-
] B=1 sion [2-5]. We should also point out that the relationship
) o ) betweerc,; and the stress tensor can be easily derived in the
Therefore in the DGSN, for an initially mechanically stable same way for anisotropically stressed systems. For instance,
state, homogeneous displacement guarantees mechanigdl= —c ,= —c,3=S,;, Csu= 5(Sy+Ss9), etc.
equilibrium after deformation. In other words, all particles in "~ sjnce the DGSN is a limiting case of the isotropic Born
the system will be subjected to a homogeneous displacemef{odel, it is reasonable to think that at arbitrary tension sthe
provided that the displacements on the boundary are homgsf the Born model has the same critical behavioraMean-
geneous. This boundary condition is trivial and is weakefyhile, because the DGSN is also the infinite tension limit of
than the one required for E(B) since it allows the system o tne central force system, it is clear that the critical behavior
be anisotropic. . _ _ of thec,p's of the central force network must depend on the
With the above result, it is easy to find the relation be-iensjon. A previous work focusing on the displacement gra-
tween elastic stiffness coefﬁuents. and stress tensor.. Hencgient moduli[20] made this point, though a convincing con-
forth we focus on the system subjected to hydrostatic press|ysion should be drawn from the investigation of the behav-
sure since it is the most interesting case. First, from(BH. jor of C.s Which describes the elasticity more precisely.
the pressure is At finite T, the P of the DGSN still has the same behavior
as o. To show this we need only to replace the quantities
p—_ i 2 Ko.r2=— 1 E K o2 (13) appearing in Eqgs(4)—(6) by their ensemble averages. It is
dviz dvi- 2/ = T also easy to show, since the interparticle interactions are
completely separable, that Eq45) and (16) are still satis-
where theg;=r;/L are scaled coordinates and must remainfied for DGSN. A direct consequence is that for an isotropic
constant in a uniform dilation. It follows immediately that systemB=u+P ind=2 andB=(3ux+2P)/3 ind=3. We
the pressure id=2 for any lattice is independent of the size can also expect that the critical points at finiteemain the
of the system, in agreement with REE]. As a consequence, same as at =0 since entropy favors rigidity14—16. How-
B must be zero since a uniform dilation costs (@ibbs’) ever, it is not easy to find a rigorous relationship between the
free energyB can also be obtained froB=—V(dP/dV) C.p andP at finite T even for a perfect lattice.
=(1-2/d)P=<0. It gives againB=0 in d=2 at any con- In summary, we completely solve the problem of the elas-
centration. ticity of the DGSN atT=0. We show that aT =0 the dis-
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placement of the particles in the diluted DGSN is homoge-DGSN (i.e., all high symmetry networksunder hydrostatic
neous provided a trivial boundary condition is imposed, i.e.pressure are “by accident” isotropic. Our results may also
the displacements of the particles on the boundary are hom@hed light on the tight-binding Hamiltonian and spin waves
geneous. As a consequence, the bulk modulus is zero at afy & Heisenberg ferromagnet at loW since it has been
concentration for a two-dimensional system and those norshown that these three systems are equivdlghtFinally,
vanishing elastic stiffness coefficients are proportional to théur conclusions hold for either the bond or site percolation
stress in both two and three dimensions. This prosas- ~ Problem.

pletely and rigorously that the elasticity of the DGSN has  This work was supported by the National Science Council
exactly the same behavior asatany concentrationin con-  of the Republic of China under Grant No. NSC 90-2112-
trast, the traditional elastic constants are all identically equaM008-002 and the Natural Sciences and Engineering Re-
to zero. Moreover, the elasticity of all electrically isotropic search Council of Canada.
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