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Rigorous solution for the elasticity of diluted Gaussian spring networks
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We present a rigorous solution of the elasticity of the diluted Gaussian spring networks~DGSNs! at zero
temperature. We show that the deformation of a diluted DGSN is homogeneous provided that the displace-
ments of the particles on the boundary are homogeneous. It follows that at zero temperature the nonvanishing
elastic stiffness coefficients are proportional to the hydrostatic pressure in both two and three dimensions.
Follows a rigorous proof of the equivalence of the elasticity of the DGSN and the conductance of the random
resistor network at zero temperature.

PACS number~s!: 64.60.Cn, 05.70.Fh, 62.20.Dc, 81.40.Jj
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The elasticity of the diluted Gaussian spring netwo
~DGSNs!, in which the particles interact with their neare
neighbors via the potentialF(r )5 1

2 kr2, wherer is the dis-
tance between particles, is a very important issue not o
because it is the common limit of various systems un
strong tension but also because it is equivalent to some o
interesting systems, such as the random resistor netw
~RRN! @1#. It is believed that the elasticity of the DGSN ha
the same critical behavior as the conductances of the RRN
and so can serve as a standard model system. Howev
complete and rigorous solution of this equivalence is s
elusive. In this note we show that at zero temperature~T! and
with trivial boundary conditions, the nonvanishing elas
stiffness coefficients, which govern the elastic property o
stressed system@2–8#, are proportional to the stress in bo
two and three dimensions at any concentration. As a co
quence, we provide a complete and rigorous proof that
elasticity of the DGSN has exactly the same behavior ass at
any concentration. In contrast, the traditional elastic c
stants, which are the second derivatives of the free ene
with respect to strain@2–8# and are also often confused wit
the elastic stiffness coefficients, are all identical to zero
T50 and therefore play no role in the model system. Sin
the behavior of the conductance of the RRN is well know
our results provide a complete solution of the elasticity of
DGSN atT50.

In a very influential letter in 1976@9#, de Gennes argue
that the RRN and a diluted elastic network in which partic
interact through isotropic forces are in the same universa
class. More precisely, ifs vanishes at the geometric perc
lation concentrationpc ass;(p2pc)

t and the elastic modu
lus of an elastic network;(p2pc)

f then the prediction is
f 5t. Since then, extensive work has been done to investi
whether the same conclusion can be drawn for other syst
@10–13#. It has been shown, for instance, that atT50 upon
dilution, a tension-free network of particles interacting on
through central two-body forces generically loses its abi
to withstand shear at a concentration of particlespr that is
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higher than thepc . On the other hand, recent works sugge
that at finiteT the shear modulus of a diluted central for
system has the same critical behavior ass in the RRN@14–
16#. Noting that in many cases a finiteT plays a role similar
to a finite stress, it is natural to think that an elastic netwo
under tension may have a different critical behavior from
tension-free one. An intriguing question is then in wh
stressed elastic network is de Gennes’ prediction valid
actly? It was in general believed that a simple analog
tween Kirchhoff’s laws for a resistor network and the for
balance conditions for the elastic network or the analog
energy functions between the two systems leads directly
rigorous proof of de Gennes’ prediction in the Gauss
spring network which is always stressed. However, a cl
examination of this argument shows~@1# and also in the fol-
lowing text! that such an analog in fact leads to the conc
sion that the hydrostatic pressureP ~positive for compres-
sion!, but not the elastic stiffness coefficients, has the sa
behavior ass. Since in general pressure does not even h
the same critical point as the elastic stiffness coefficie
such as in the tension-free state, to prove de Gennes’ pre
tion in the DGSN it is necessary to study the relations
between the pressure and the elastic stiffness coefficient
this paper we resolve this issue completely.

The proof for de Gennes’ prediction in a tension-free is
tropic force system is simple but instructive for the DGS
Image a lattice with bonds of conductivitys i j connecting
nearest neighbors sitesi and j, Kirchhoff’s law requires that

(
i

s i j ~Ui2U j !50 or(
i

I i j 50, ~1!

whereUi is the voltage at the lattice sitei andI i j the current
between sitesi and j. But these equations are identical to th
force balance equation

(
i

f i j 50 or (
i

ki j ~Ri2Rj !50, ~2!

for an elastic network with energyE5 1
2 ( i , j ki j (Ri2Rj )

2

~the isotropic Born model@9,10,17#! whereki j corresponding
to s i j now represents a set of spring constants andRi is the
displacement of thei th particle from its tension-free position
7490 ©2000 The American Physical Society
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Explicitly, Ri5r i2Ri
0 wherer i is the coordinate of thei th

particle andRi
0 the coordinate of particles in the tension-fr

state. It is clear that there is a one-to-one corresponde
between the quantities in the two systems

I i j ↔ f x or f y or f z ,

Ui2U j↔Xi2Xj or Yi2Yj or Zi2Zj .

For the whole system, we have for the RRN:I 5GU, where
I is the macroscopic current,U is the macroscopic voltag
drop,G5sL0

d22 @1# is the macroscopic conductivity withd
the dimension of the system andL0 is the length of the
undeformed system with the assumption that all directi
have the same size for simplicity. Correspondingly for t
elastic network

F5K8dL

and so

S5
K8dL

L0
d21

5
K8

L0
d22

•

dL

L0
5

K8

L0
d22

e5Ke, ~3!

with K5K8/L0
d22, whereF is a component of the total forc

on the boundary,dL is the corresponding deformation of th
system,S is a component of the stress~negative for compres
sion and52P), ande5dL/L0 is a macroscopic strain de
termined by the deformation. The uniqueness of the solu
and the one-to-one correspondence between the two sys
guarantee thatK, the elastic constant, must have the sa
behavior ass at all concentrations.

There is an important subtlety in this mapping associa
with the boundary conditions@1#. In the RRN the net curren
flow can be in arbitrary directions so thatGa (a5x, y, and
z) can be obtained separately. However, in the spring pr
lem, the frame acts equally in all Cartesian directions so
Ka8 or Ka are strongly correlated. This is not a concern
high symmetry networks whereKx85Ky85Kz8 . We shall fol-
low Ref. @1# and refer to such networks as electrically is
tropic. These are the only networks that we shall discus
this work. This class of system includes square netwo
triangular networks and cubic networks, either undiluted
randomly diluted. We should point out that there are in g
eral three independent elastic constants in the square
cubic lattices so that their elastic properties are not in gen
isotropic. We also assume for convenience that the sys
has the shape of a hypercube. Note that the deformationdL
is arbitrary, so we can conclude that all nonvanishing ela
constants should have the same critical behavior ass.

It is clear that the above arguments can be applied onl
a system with a tension-free reference~undeformed! state
becauseRi is measured from the tension-free state as ise.
Consequently,e is finite and may be large for a state und
tension. However, in this case in general Eq.~3! fails be-
cause the relationship between stress anddL ~or e) is no
longer linear. For instance, a uniform dilation from th
tension-free volumeV0 to V leads toS5*V0

V @B(V)/V#dV,

whereB is the bulk modulus. In the simplest case ofB being
independent ofV, we getS5B ln(V/V0) but it can be reduced
into Eq. ~3! only if (V2V0)/V0!1. Therefore, the valida
ce
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tion of de Gennes’ prediction for a strongly stressed isotro
Born model is not self-evident. Equation~3! together with
these explanations do not seem to be available in the lit
ture.

It has been shown@1# that in DGSNP has the same be
havior ass. This can be understood by noting that the for
balance equation in the system is

(
i

ki j ~r i2r j !50, ~4!

and so the one-to-one correspondences between the two
tems are

I i j ↔ f x or f y or f z

and

Ui2U j↔xi2xj or yi2yj or zi2zj . ~5!

It follows that in the DGSN,

F5K8L5
K8

Ld22
Ld215SLd21, ~6!

and S, the stress instead of any elastic constant, must h
the same behavior ass. More exactly,S must be propor-
tional to s at any concentration.

The elastic stiffness coefficientscabst , which govern
stress-strain relations are defined by

Sab~h!5Sab~0!1cabsthst ~7!

for a system without internal torques@2–5#, whereSab(0) is
the stress of the reference state andhab the Lagrangian
strain tensor@2,3,7#.

For a central force system the stress tensor and the
thermal elastic stiffness coefficients can be calculated fr
@5#

Sab5
1

V K (
i , j

r a~ i j !r b~ i j !
F8

r i j
L 2

NkBT

V
dab , ~8!

cabst5
1

V K (
i , j

r a~ i j !r b~ i j !r s~ i j !r t~ i j !
1

r i j
2 S F92

F8

r i j
D L

2
1

kBTV K DS (
i , j

r a~ i j !r b~ i j !
F8

r i j
D

3DS (
i , j

r s~ i j !r t~ i j !
F8

r i j
D L 2

1

2
~2Sabdst2Sasdbt

2Satdbs2Sbtdas2Sbsdat!

1
NkBT

V
~dasdbt1datdbs!, ~9!

where ^•••& designates ensemble averages,D(A)5A
2^A&, r a( i j )5r ia2r j a , andr i j

2 5(r i2r j )
2.

Equations~8!,~9! are valid in bothd52 andd53, at any
T and under arbitrary stress. AtT50, for a homogeneously
deformed system such as a perfect lattice with only one p
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ticle in the primitive cell, we can simply remove the ‘‘fluc
tuation term,’’ i.e., the second term in Eq.~9! and setT50.
However, for the lattice with more than one particle in t
primitive cell or in our case the diluted lattice, atT50 the
‘‘fluctuation term’’ tends to a limit called the ‘‘relaxation’’
term @18#. This ‘‘relaxation’’ term arises from the require
ment of mechanical equilibrium that the total force oneach
particle be zero. As a consequence, there may be local
rangements of the particles@18# and therefore the displace
ment is in general not homogeneouseverywhere. The ‘‘re-
laxation’’ term is complex and is in general non-negligib
For instance, for a central force system, this term is n
vanishing and is comparable to the first term~‘‘Born term’’ !
in Eq. ~9! at the critical point@19#. Therefore, to go further
we have to check in a Gaussian system whether the ho
geneous displacement guarantees the mechanical equilib
of every particle.

Under a homogeneous deformation, the displacement
point initially at r i

0 can be written as@2,3,6–8#

uia~r i
0!5r ia~r i

0!2r ia
0 5 (

b51

d

uabr ib
0 , a51,2, . . . ,d,

~10!

whereuab are constants everywhere. Requiring mechan
equilibrium in the reference state of the Gaussian sys
gives

Fia
0 5(

j
ki j ~r ia

0 2r j a
0 !50. ~11!

After a homogeneous displacement, Eqs.~10!,~11! lead to

Fia5(
j

ki j ~r ia2r j a!5Fia
0 1 (

b51

d

uabFib
0 50. ~12!

Therefore in the DGSN, for an initially mechanically stab
state, homogeneous displacement guarantees mecha
equilibrium after deformation. In other words, all particles
the system will be subjected to a homogeneous displacem
provided that the displacements on the boundary are ho
geneous. This boundary condition is trivial and is wea
than the one required for Eq.~3! since it allows the system to
be anisotropic.

With the above result, it is easy to find the relation b
tween elastic stiffness coefficients and stress tensor. He
forth we focus on the system subjected to hydrostatic p
sure since it is the most interesting case. First, from Eq.~8!
the pressure is

P52
1

dV (
i , j

ki j r i j
2 52

1

dV12 2/d (
i , j

ki j qi j
2 , ~13!

where theqi5r i /L are scaled coordinates and must rem
constant in a uniform dilation. It follows immediately tha
the pressure ind52 for any lattice is independent of the siz
of the system, in agreement with Ref.@1#. As a consequence
B must be zero since a uniform dilation costs no~Gibbs’!
free energy.B can also be obtained fromB52V(dP/dV)
5(122/d)P<0. It gives againB50 in d52 at any con-
centration.
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We can find every elastic stiffness coefficient in this w
by applying to the system different kinds of homogeneo
deformation. However, an equivalent but simple way is
use Eq.~9! by removing the ‘‘fluctuation term’’ and setT
50. The ‘‘Born term’’ in Eq.~9! vanishes so that all elasti
stiffness coefficients are proportional to the pressure
therefore there is only one independent elastic stiffness
efficient. In the condensed Voigt notation@2,3,7#, we have

c115c225c335m5c445c555c6652P, ~14!

c125c215c135c315c235c325P, ~15!

cab50 otherwise. ~16!

wherem is the shear modulus. Equations~14!,~15! give B
5(122/d)P again. Equations~14!–~16! complete the proof
that the elasticity of the DGSN has exactly the same beh
ior at all concentrations ass, or in other words,ci j must be
proportional tos at any concentration. It is also interestin
to note that for the high symmetry DGSN, which are elec
cally isotropic, c112c12522P52m. This means that the
DGSN are elastically isotropic, and only two elastic co
stants are required. This is quite remarkable since Gaus
networks encompass diluted square and cubic lattices w
in general are not isotropic, as mentioned earlier. For
reason this elastic isotropy has to be considered as ‘‘accid
tal.’’ We should emphasize again that these results are ba
on the homogeneity of the displacements in these netwo

It is interesting to note that atT50 the traditional elastic
constants consist of only the ‘‘Born term’’@5# and therefore
are equal to zero for the DGSN. It is another illustration
the fact that the traditional elastic constants are not the qu
tities which determine the elasticity of a system under t
sion @2–5#. We should also point out that the relationsh
betweencab and the stress tensor can be easily derived in
same way for anisotropically stressed systems. For insta
c1152c1252c135S11, c445

1
2 (S221S33), etc.

Since the DGSN is a limiting case of the isotropic Bo
model, it is reasonable to think that at arbitrary tension, them
of the Born model has the same critical behavior ass. Mean-
while, because the DGSN is also the infinite tension limit
the central force system, it is clear that the critical behav
of thecab’s of the central force network must depend on t
tension. A previous work focusing on the displacement g
dient moduli@20# made this point, though a convincing con
clusion should be drawn from the investigation of the beh
ior of cab which describes the elasticity more precisely.

At finite T, theP of the DGSN still has the same behavi
as s. To show this we need only to replace the quantit
appearing in Eqs.~4!–~6! by their ensemble averages. It
also easy to show, since the interparticle interactions
completely separable, that Eqs.~15! and ~16! are still satis-
fied for DGSN. A direct consequence is that for an isotro
systemB5m1P in d52 andB5(3m12P)/3 in d53. We
can also expect that the critical points at finiteT remain the
same as atT50 since entropy favors rigidity@14–16#. How-
ever, it is not easy to find a rigorous relationship between
cab andP at finite T even for a perfect lattice.

In summary, we completely solve the problem of the el
ticity of the DGSN atT50. We show that atT50 the dis-
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placement of the particles in the diluted DGSN is homo
neous provided a trivial boundary condition is imposed, i
the displacements of the particles on the boundary are ho
geneous. As a consequence, the bulk modulus is zero a
concentration for a two-dimensional system and those n
vanishing elastic stiffness coefficients are proportional to
stress in both two and three dimensions. This provescom-
pletely and rigorously that the elasticity of the DGSN h
exactly the same behavior ass at any concentration. In con-
trast, the traditional elastic constants are all identically eq
to zero. Moreover, the elasticity of all electrically isotrop
n

tt.
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DGSN ~i.e., all high symmetry networks! under hydrostatic
pressure are ‘‘by accident’’ isotropic. Our results may a
shed light on the tight-binding Hamiltonian and spin wav
in a Heisenberg ferromagnet at lowT since it has been
shown that these three systems are equivalent@1#. Finally,
our conclusions hold for either the bond or site percolat
problem.
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